УДК 621.56/.59

С.В. Артёменко, Ю.В. Семенюк, В.П. Железный, В.А. Мазур*

Одесская государственная академия холода, ул. Дворянская, 1/3, г. Одесса, Украина, 65082 *e-mail: mazur@ paco.net

Н. Кокс

«Earthcare Products Limited», 405, Mill Studio, Crane Mead, Ware, Herts, UK, SG12 9PY

Д. Коулборн

Re-phridge, PO Box 4745, Stratford-upon-Avon, Warwickshire, UK, CV37 1FE

ОЦЕНКА ТЕРМОДИНАМИЧЕСКОЙ ЭФФЕКТИВНОСТИ АЗЕОТРОПНЫХ СМЕСЕЙ ХЛАДАГЕНТОВ С НИЗКИМИ ЗНАЧЕНИЯМИ ПОТЕНЦИАЛА ГЛОБАЛЬНОГО ПОТЕПЛЕНИЯ

Представлены результаты исследований азеотропных смесей с температурами нормального кипения в диапазоне от -40 до -80 °C. Цель работы — поиск новых хладагентов IV-го поколения, обладающих теми же термодинамическими свойствами на линии насыщения и холодопроизводительностью, что и существующие хладагенты, которые подлежат выводу из обращения из-за высоких значений потенциала глобального потепления GWP. Из большого числа возможных комбинаций, были идентифицированы три азеотропные смеси, состоящие из природных и синтетических хладагентов с GWP<150: R1270/R161 (пропилен/фторэтан), R170/R717 (этан/аммиак) и R600a/R161 (изобутан/фторэтан). Каждая из указанных смесей обладает индивидуальным набором свойств, которые обусловливают области практических приложений. Для смесей были проведены экспериментальные измерения Р-Т-х-свойств. С учётом результатов экспериментов была разработана термодинамическая модель, использующая уравнение состояния Пенга-Робинсона, для предсказания фазового равновесия в широком интервале составов, давлений и температур. Новые смеси обладают значительными преимуществами перед существующими хладагентами: нулевой потенциал разрушения озонового слоя и низкий потенциал глобального потепления (ниже 150); присутствие в смесях природных компонентов; улучшенные термодинамические свойства, например, более высокая критическая температура и минимальная неизотермичность; хорошая растворимость с маслами; низкая токсичность и сниженная пожароопасность; предсказуемая химическая совместимость.

Ключевые слова: Смеси с низким потенциалом глобального потепления. Азеотропия. Фазовые равновесия. Термодинамическая эффективность. R1270/R161. R170/R717. R600a/R161. Xолодильная машина. Тепловой насос.

S.V. Artemenko, Yu.V. Semenyuk, V.P. Zhelezny, V.A. Mazur, N. Cox, D. Colbourne

THERMODYNAMIC EFFICIENCY OF LOW GWP AZEOTROPIC REFRIGERANT MIXTURES

The results of azeotropic mixtures research with a normal boiling point between $-40\,^{\circ}\mathrm{C}$ and $-80\,^{\circ}\mathrm{C}$ are stated. The aims were to design refrigerants of the fourth generation and to match the saturated pressure-temperature characteristics and refrigerating capacity of existing refrigerants within this range. There have been selected three azeotropic mixtures R1270/161 (propene/fluoroethane), R170/717 (ethane/ammonia), and R600a/161 (isobutane/fluoroethane) of a large number of potential combinations, all formed from natural refrigerants or synthetic chemicals with a global warming potential GWP<150. Each of these has distinct characteristics and is suited to certain types of applications. Experimental measurements of P-T-x-properties were made for mixtures. Based on the results of the measurements, a thermodynamic model was developed using the Peng-Robinson type equation of state to predict the phase behaviour of the full range of compositions, pressures and temperatures. These new blends offer notable advantages over existing refrigerants, in particular: zero ODP and low GWP, below 150, and mainly «naturally» occurring fluids; improved thermodynamic properties (such as critical temperature and minimal temperature glide) over