DOI: https://doi.org/10.18198/j.ind.gases.2011.0548

НОВЫЕ ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ СО2 ИЗ ДЫМОВЫХ ГАЗОВ ТЕПЛОВЫХ СТАНЦИЙ

Г. К. Лавренченко, А. В. Копытин

Аннотация


В последние годы повышенное внимание уделяется снижению эмиссии СО2 в окружающую среду, связанную с действиями антропогенного происхождения. Особое влияние оказывают дымовые газы, отходящие от крупных ТЭС. Для извлечения диоксида углерода из дымовых газов применяют различные технологии, реализующие процессы на основе химической абсорбции. В результате исследований показано, что наиболее перспективной технологией является «Chilled Ammonia Process», разработанная компанией «Alstom». Удельный расход теплоты составляет 2 ГДж/т СО2, что эквивалентно расходу около 1 т пара/т СО2.

Ключевые слова


Диоксид углерода; Дымовой газ; Химическая абсорбция; Десорбция; Абсорбент; Моноэтаноламин; Технология; Удельный расход теплоты; Удельный расход водяного пара; Степень извлечения

Полный текст:

PDF

Пристатейная библиография ГОСТ


1. U.S. Patent 6146603. System for Recovering Carbon Dioxide from a Lean Feed.

2. U.S. Patent 6174506 B1. Carbon Dioxide Recovery from an Oxygen containing.

3. Hopson Steve. Amine Inhibitor Copes with Corrosion// Oil & Gas Journal. — 1985. — V. 83. — No 26. — P. 44-47.

4. Capturing and Storing Carbon Dioxide: Technical lessons learned/ European carbon dioxide network, September, 2004. 5. UOP Amine Guard FS Process/ Brochure / UOP LLC, Des Plaines, IL, USA (www.uop.com).

6. IEAHIA Task 16 Hydrogen from Carbon Containing Materials. Subtask C: Small-scale Reformers for Stationary Hydrogen Production with Minimum CO2-emissions, July 2005.

7. «UOP» LLC: www.uop.com.

8. Kinetics of the Absorption of CO2 into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine/ Naveen Ramachandran, Ahmed Aboudheir, Raphael Idem, and Paitoon Tontiwachwuthikul// Ind. Eng. Chem. Res. — 2006. — V. 45. — No 8. — P. 2608-2616.

9. A Novel Design for the Nozzle of the Laminar Jet Absorber/ Ahmed Aboudheir, Paitoon Tontiwachwuthikul, Amit Chakma, Raphael Idem// Ind. Eng. Chem. Res. — 2004. — V. 43. — No 10. — Р. 2568-2574.

10. Ahmed Aboudheir, Paitoon Tontiwachwuthikul, Raphael Idem. Applications of New Absorption Kinetics and Vapor/Liquid Equilibrium Models to Simulation of a Pilot Plant for Carbon Dioxide Absorption into High CO2-Loaded, Concentrated Monoethanolamine Solutions// The 7th International Conference and Exhibition on Chemistry in Industry «CHEMINDIX-2007», Manama, Kingdom of Bahrain, March 26-28, 2007.

11. Mass Transfer Parameter Estimation Using Optimization Technique: Case Study in CO2 Absorption with Chemical Reaction/ Xinsheng J.I., Weerapong Kritpiphat, Ahmed Aboudheir, Paitoon Tontiwachwuthikul// The Canadian Journal of Chemical Engineering. — 1999. — V. 77. — Р. 602-634.

12. Kinetics of the Reactive Absorption of Carbon Dioxide in High CO2-Loaded, Concentrated Aqueous Monoethanolamine Solutions/ Ahmed Aboudheira, Paitoon Tontiwachwuthikula, Amit Chakmab, Raphael Idema// Chemical Engineering Science. — 2003. — V. 58. — P. 5195-5210.

13. On the numerical Modeling of Gas Absorption into Reactive Liquids in a Laminar Jet Absorber/ Ahmed Aboudheira, Paitoon Tontiwachwuthikula, Amit Chakmab, Raphael Idema// Chemical Engineering. — 2003. — V. 81. — P. 604-612.

14. Ahmed Aboudheir, Paitoon Tontiwachwuthikul, Raphael Idem. Rigorous Model for Predicting the Behavior of CO2 Absorption into AMP in PackedBed Absorption Columns// Ind. Eng. Chem. Res. — 2006. — V. 45. — No 8. — P. 2553-2557.

15. Modelling the Performance of a CO2 Absorber Containing Structured Packing/ David deMontigny, Ahmed Aboudheir, Paitoon Tontiwachwuthikul and Amit Chakma// American Chemical Society, Published on Web 01/28/2006. 16. «Kansai Electric Power Company» («KEPCO»): www.kepco.co.jp/english

17. «Mitsubishi Heavy Industries» («MHI»): www.mhi.co.jp/en; www.mhi.ru

18. Development of Flue Gas Carbon Dioxide Recovery Technology/ T. Suda, M. Fujii, T. Mimura et al.// International Symposium on CO2 Fixation and Efficient Utilization of Energy, November 29-December 1, 1993.

19. Development of Flue Gas Carbon Dioxide Recovery Technology/ T. Suda, M. Fujii, K. Yoshida et al.// First International Conference on Carbon Dioxide Removal, Amsterdam, The Netherlands, Pergamon Press, March, 1992, pp. 317-324.

20. Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant/ T. Mimura, S. Shimojo, T. Suda et al.// Energy Conversion and Management. — 1995. — V. 36. — No 6-9. — Р. 397-400.

21. Don Gelowitz. Carbon Dioxide Extraction: Optimization of Facility and Solvent Technologies, Chapter 6. — Regina, Saskatchewan. — 1993. — Р. 28-33.

22. Dan G. Chapel, Carl L. Mariz, John Ernst. Recovery of CO2 from Flue Gases: Commercial Trends// Originally presented at the Canadian Society of Chemical Engineers annual meeting. October 4-6, 1999, Saskatoon, Saskatchewan, Canada.

23. «DowChemical Co.»: www.dow.com

24. «Fluor Daniel Inc.»: www.fluor.com

25. «Wittemann Company»: www.wittemann.com 26. «Union Engineering»: www.union.dk

27. Kinetic Study of SO2 and O2 Induced Degradation of Aqueous MEA/ Raphael O. Idem, Itoro J. Uyanga, Ahmed Aboudheir, Paitoon Tontiwachwuthikul/ The 7th International Conference and Exhibition on Chemistry in Industry «CHEMINDIX-2007», Manama, Kingdom of Bahrain, March 26-28, 2007.

28. John H. Copen, Terrence B. Sullivan, Bruce C. Folkedahl. Principles of flue gas water recovery system/ SIEMENS Power Generation, Inc.// Report POWER-GEN International. — Las Vegas, Nevada, USA. December 6-8. — 2005.

29. Mariz C.L. Carbon Dioxide Recovery: Large Scale Design Trends// Journal of Canadian Petroleum Technology. — 1998. — V. 37. — No 7. — Р. 42-47.

30. Design and Engineering Factors Affecting CO2 Capture and EOR Applications/ Ahmed Aboudheir, Koorosh Asghari, Raphael Idem et al.// The 7th International Conference and Exhibition on Chemistry in Industry, CHEMINDIX-2007, Manama, Kingdom of Bahrain, March 26-28, 2007.

31. Satish Reddy, Dennis Johnson, John Gilmartin. Fluor's Econamine FG Plus Technology For CO2 Capture at Coal-fired Power Plants// Power Plant Air Pollutant Control «Mega» Symposium, Baltimore, USA. August 25-28, 2008.

32. CO2 Recovery Technology for Coal-Fired Power Plants/ Masaki Iijima, Tatsuto Nagayasu, Susumu Okino, Yoshinori Kajiya// Mitsubishi Heavy Industries Technical Review. — 2009. — V. 46. — No 1. — Р. 46-52.

33. Improvements of carbon dioxide capture technology from flue gas/ Yasuyuki Yagi, Tomio Mimura, Masaki Iijima et al.// Kansai Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd, Japan, 2003.

34. Development and application of flue gas carbon dioxide recovery technology/ Tomio Mimura, Kouji Matsumoto, Masaki Iijima and Sigeaki Mitsuoka// Kansai Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd, Japan, 2000. 35. Hydrocarbon Processing. — May, 2002.

36. Ahmed Aboudheir, Gavin McIntyre. Industrial design and optimization of CO2 capture, dehydration and compression facilities/ «HTC Purenergy», Regina, SK, Canada and «Bryan Research & Engineering», Bryan, Texas, USA/ Report, 2008: www.bre.com

37. Design and Engineering Factors Affecting CO2 Capture and EOR Applications/ Ahmed Aboudheir, Koorosh Asghari, Raphael Idem et al.// The 7th International Conference and Exhibition on Chemistry in Industry «CHEMINDIX-2007», Manama, Kingdom of Bahrain, March 26-28, 2007. 38. U.S. Department of Energy: www.energy.org

39. «Kerr-McGee Chemical Corp.»: www.kerrmcgee.com

40. «HTC Purenergy»: www.htcenergy.com

41. «Vattenfall AB»: www.vattenfall.com

42. CASTOR SP2: Experiments on Pilot Plant/ Jacob Nygaard Knudsen, Poul-Jacob Vilhelmsen, Jorgen N. Jensen, Ole Biede// Common Technical Training Workshop, Lyon, France. 22-24 January 2008.

43. Janecke E. Uber das System H2O, CO2 und NH3// Zeitschrift fuer Elektrochemie. — 1929. — V. 39. — S. 332-334; 716-728.

44. Terres E. and Weiser H. Beitrag zur Kenntnis der Ammoniak-Kohlensauerverbindungen im Gleigewicht mit ihren wasserigen Losungen// Zeitschrift fuer Elektrochemie. — 1921. — V. 27. — S. 177-193.

45. Terres E. and Behrens H. Zur Kenntnis des physikalisch-chemischen Grundlagen der Harnstoffsynthese aus Ammoniak, Kohlensaure und Wasser// Zeitschrift fuer Physikalische Chemie. — 1928. — V. 139. — S. 693-716.

46. Guyer А. and Piechowicz T. Losungsgleichgewichte in wasserigen Systemen. Das System CO2-NH3-H2O bei 20-50 °// Helvitica Chimica Acta. — 1944. — V. 27. — S. 858-867.

47. Thomsen K., Rasmussen P. Modeling of Vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems// Chemical Engineering Science. — 1999. — V. 54. — P. 1787-1802.

48. «ALSTOM»: www.alstom.com

49. Richard Rhudy, Sean Black. Chilled Ammonia Process// «EPRI», «ALSTOM»/ CO2 Capture Network, Lyon, France. May 24, 2007.

50. Chilled Ammonia Process for CO2 Capture/ Fred Kozak, Arlyn Petig, Ed Morris et al.// Energy Procedia. — 2009. — V. 1. — Р. 1419-1426.





Flag Counter