Genetic monitoring of endemic measles virus circulation in European countries

Authors

  • S Kalinichenko Mechnikov Institute of Microbiology and Immunology,
  • K Melentyeva Mechnikov Institute of Microbiology and Immunology,
  • I Toryanik Mechnikov Institute of Microbiology and Immunology,
  • N Zvereva State Institution "Kharkiv Regional Laboratory Center of the Ministry of Health of Ukraine",
  • T Antusheva Mechnikov Institute of Microbiology and Immunology,
  • S Buriachenko Mechnikov Institute of Microbiology and Immunology,

Keywords:

Genetic monitoring, measles, circulation, Europe

Abstract

Introduction. The measles virus is still one of the main causes of morbidity and mortality in children and adults and is a threat of infectious outbreaks in many countries around the world. The World Health Organization (WHO), at the 2015 meeting in Europe, set out to eliminate measles infection. To control the elimination of this disease requires the accumulation of genotyping data of the detected measles virus to interrupt the situation of endemic spread. All six WHO regions have set a target for combating measles. In order to monitor and evaluate the degree of endemic circulation of measles virus (MV), the transmission chains of the epidemiologically relevant variants of MV identified in Central and Western Europe are analyzed. More systematic molecular monitoring and recording of MV transmission data between many countries can help to create a meaningful picture of the process of eliminating the problem of the occurrence and spread of measles infection. Goal. To study whether molecular surveillance meets the challenge of eliminating measles infection with the assurance of molecular data quality, continuity and intensity of molecular monitoring and analysis of transmission chains in different geographical regions.  Material & methods. Published articles, molecular program for external WHO quality assessment, WHO EUR central infectious disease information system, and WHO measles surveillance database.  Results & discussion. According to the WHO standardized nomenclature using the nucleotide (nt) sequences of the N and H variable genes, wild-type measles viruses are currently divided into 24 genotypes. The most variable is the 450-nt variable coding sequence of the C-terminal portion of the N protein (N-450 region) and is used to differentiate detected MV for observation. Antigenic differences between measles virus strains - representatives of different genotypes are minimal, all known genotypes of the virus belong to one serotype. Since the beginning of molecular surveillance in Europe in the early 1990s, only two genotypes of MV (C2 and D6) have been identified, which have been spread throughout the region and are therefore called indigenous European genotypes. Molecular observation has shown that, over the years, the endemic genotypes C2 (IR / Kempten.DEU / 23.00) and D6 (IR / Berlin.DEU / 47.00) have changed rapidly with the circulating D7 genotype (IR / Mainz.DEU / 06.00) to the beginning of 2003. The imported measles virus of genotypes B3, D4, D5, D6, D8, D9, H1 appeared in Germany from 2005 to 2009 - 2010. Most cases were related to the measles virus of genotype D4, and its several sub-variants. According to the monitoring data, genotypes D8, B3, H1, D9, D4 have been circulating in the world in recent years (from August 2017 to July 2018).  Of the 179 measles deaths reported in European countries during 2009-2018, 114 (64%) occurred during 2017-2018, including 93 (82%) in four countries: Romania (46), Ukraine ( 20), Serbia (15) and Italy (12). EU countries report 17587 measles virus sequences to the WHO global measles surveillance database. The most common measles virus genotypes were D4 (21% overall, 66% in 2009-2012), D8 (45% overall, 76% in 2013-2016) and B3 (33% overall, 58% in 2017- 2018). Conclusion. Our research illustrates the long-term transmission of MV in Europe. Which probably happens because of the unvaccinated people in the various hard-to-reach groups that transmit the infection to the general population. This situation is, of course, inconsistent with the purpose of the WHO and UNESCO (WHO-UNICEF, 2002) measles elimination program already achieved in America and Australia. In order to address the global problem of measles infection worldwide, additional efforts are needed to identify deficiencies in immunization among the population. As the elimination of MV should be a problem for all EUR countries, similar research to ours should be expanded to obtain comprehensive information on the circulation of MV strains in different regions across Europe.

DOI: 10.5281/zenodo.3885184

References

Shulga S.V., Tsvirkun O.V., Tikhonova N.T. [et al.] Genetic monitoring of measles and rubella virus circulation // Epidemiology. Prevention of Infectious Diseases. Respiratory tract infections Guidelines MR 3.1.2.0135-18 Moscow 2019. Р.18

Knipe DMH, Peter M. Measles Virus // Fields Virology. 2007. Vol. 2. Р. 1551–1586.

WHO. Global Measles and Rubella Laboratory Network // MMWR Morb Mortal Wkly Rep. 2005. №54. Р. 1100–1104.

Global measles mortality // MMWR Morb Mortal Wkly Rep. 2009. №58. Р. 1321–1326.

Mulders M.N, Rota P.A., Icenogle J.P. [et al.] Global Measles and Rubella Laboratory Network support for elimination goals, 2010–2015 // MMWR Morb Mortal Wkly Rep. 2016. №65. Р.438–442.

World Health Organization (WHO) Regional Office for Europe. Eliminating measles and rubella: Framework for the verificationprocess in the WHO European Region. Copenhagen // WHO Regional Office for Europe. 2014.

Bellini W. J., Rota P. A. Genetic diversity of wild-type measles viruses: Implications for global measles elimination programs // Emerging Infectious Diseases 1998. №4. V.1. Р. 29.

Neverov A. A. The study of the genetic properties of measles and mumps viruses // Ph.D. Candidate of Biological Science 03.00.06 – Vіrusologіya. Koltsove. 2006. Р.15. URL: http://earthpapers.net/izuchenie-geneticheskih-svoystv-virusov-kori-i-parotita#ixzz6IAb07uAX

Zhuravleva Yu. N. Characterization of measles virus strains circulating in the Russian Federation during the period of mass vaccine prophylaxis // Ph.D. Candidate of Biological Science 03.00.06. Moscow. 2004. Р.160.

Griffin D.E., Knipe D.M, HowleyP.M. et al Measles virus. // Fields Virology, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins. 2007. Р. 1551–1585.

Rota P.A., Featherstone D.A., Bellini W.J. Measles. Pathogenesis and control Chapter 7, Molecular Epidemiology of Measles Virus // Curr Top Microbiol Immunol. 2009. № 330. №1. P. 129 – 150.

World Health Organization (WHO). Measles virus nomenclature update: 2012. // Wkly Epidemiol Rec. 2012. № 9. Р.73–80

Bellini W.J., Helfand R.F. Current challenges in the laboratory diagnosis of measles infections // Journal Infection Diseas. 2003. № 187. P. 283–290.

Bellini W.J., Rota P.A. Genetic diversity of wild-type measles viruses: implications for global measles elimination programs // Journal of General Virology. 2001. № 82. P. 2463–2474.

Mulders M.N., Truong А.Т., Muller С.Р. Monitoring of measles elimination using molecular epidemiology // Vaccine. 2001. № 19. P. 2245–2249.

Rota J.S., Heath J.L., Rota Р.А. [et al.] Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination // J Infect Dis. 1996. № 173.V.1. P. 32–37.

Bellini W.J., Rota P.A. Update on the global distribution of genotypes of wild type measles viruses // J. Infect. Dis. 2003. № 15; 187. P.270–276.

Measles virus nomenclature update: 2012//Wkly Epidemiol Rec. 2012. V. 87. № 9. P. 73 – 80.

Genetic diversity of wild type measles viruses and the global measles nucleotide surveillance database (MeaNS) // Wkly Epidemiol Rec. 2015. № 24; 90 (30). P. 373 – 380.

Bankamp B., Takeda M., Zhang Y. [et al.] Genetic Characterization of Measles Vaccine Strains //J Infect Dis. 2011. № 204 (suppl 1). P. 533 –548.

Rima B.K., Earle JAP, Yeo R.P. [et al.] Temporal and geographical distribution of measles virus genotypes. // J Gen Virol. 1995. №76. Р.1173–1180.

Jin L., Brown D.W., Ramsay M.E. The diversity of measles virus in the United Kingdom 1992–1995 // J. Gen Virol. 1997. №78. Р. 1287–1294.

Santibanez S., Heider A., Gerike E. [et al.] Genotyping of measles virus isolates from central Europe and Russia. // J Med Virol. 1999. №58. Р.313–320.

Hanses F., van Binnendijk R., Ammerlaan W. [et al.] Genetic variability of measles virus circulating in the Benelux // Arch Virol. 2000. № 145. Р.541–551.

Santibanez S., Tischer A., Heider A. [et al.] Rapid replacement of endemic measles virus genotypes // J Gen Virol. 2002. №83. Р. 2699–2708.

Kremer J.R., Brown K.E., Jin L. [et al.] High genetic diversity of measles virus, World Health Organization European Region, 2005–2006. // Emerg Infect Dis. 2008. № 14. Р. 107–114.

Shulga S.V., Rota P.A., Kremer J.R. [et al.] Genetic variability of wild-type measles viruses, circulating in the Russian Federation during the implementation of the National Measles Elimination Program, 2003–2007. // Clin Microbiol Infect. 2009. № 15. Р. 528–537.

Torner N., Anton A., Barrabeig I. [et al.] Epidemiology of two large measles virus outbreaks in Catalonia: what a difference the month of administration of the first dose of vaccine makes // Hum Vaccin Immunother. 2013. № 9. Р. 675–680.

Kopel E., Amitai Z., Savion M. [et al.] Ongoing African measles virus genotype outbreak in Tel Aviv district since April, Israel, 2012. // Euro Surveill 2012. № 17. P. 20272. URL: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20272.

Siedler A., Tischer A., Mankertz A. [et al.] Two outbreaks of measles in Germany 2005 // Euro Surveill. 2006. № 11. Р. 131–134.

Muscat M., Marinova L., Mankertz A. [et al.] The measles outbreak in Bulgaria, 2009-2011: Anepidemiological assessment and lessons learnt. // Euro Surveill. 2016. № 21. V. 9. P. 30152.

Mankertz A., Mihneva Z., Gold H. [et al.] Spread of measles virus D4-Hamburg, Europe, 2008–2011 // Emerg Infect Dis. 2011. № 8. V. 17. Р. 1396–1402.

Nedeljković J., RakićAdrović S., Tasić G. [et al.] Resurgence of measles in Serbia 2010 highlights the need of supplementary immunization activities // Epidemiol Infect. 2016. № 144. Р.1121–1128.

Necula G., Lazar M., Stanescu A. [et al.] Transmission and molecular characterisation of wild measles virus in Romania, 2008 to 2012 // Euro Surveill. 2013. № 18. P. 20658.

Antona D., Levy-Bruhl D., Baudon C. [et al.] Measles elimination efforts and 2008–2011 outbreak, France // Emerg Infect Dis. 2013. № 19. Р. 357–364.

Richard J.L., Masserey Spicher V. Large measles epidemic in Switzerland from 2006 to 2009: consequences for the elimination of measles in Europe // Euro Surveill. 2009. № 14. P. 19443.

Schmid D., Holzmann H., Schwarz K. [et al.] Measles outbreak linked to a minority group in Austria, 2008 // Epidemiol Infect. 2010. № 138. Р. 415–425.

Santibanez S., Hübschen J.M., Muller C.P. [et al.] Long-term transmission of measles virus in Central and continental Western Europe // Virus Genes. 2015. № 50. Р. 2–11.

Salimović-Bešić I., Šeremet M., Hübschen J.M. [et al.] Epidemiologic and laboratory surveillance of the measles outbreak in the Federation of Bosnia and Herzegovina, February 2014–April 2015 // Clin Microbiol Infect. 2016. № 22. Р. 563–567.

Santibanez S., Prosenc K., Lohr D. [et al.] Measles virus spread initiated at international mass gatherings in Europe, 2011 // Euro surveillance. 2014. № 19. P. 20891.

Werber D., Hoffmann A., Santibanez S. [et al.] Large measles outbreak in Berlin, 2014/2015—introduced by asylum seekers and spread among the insufficiently vaccinated resident population // Euro surveillance. 2017. № 22. V. 34. P. 30599.

Rota P.A., Brown K.E., Mankertz A. [et al.] Global distribution of measles genotypes and measles molecular epidemiology // J Infect Dis. 2011. № 204. Р. 514–523.

Torner N., Anton A., Barrabeig I. [et al.] Epidemiology of two large measles virus outbreaks in Catalonia: what a difference the month of administration of the first dose of vaccine makes // Hum Vaccin Immunother. 2013. № 9. Р. 675–680.

Rota J., Lowe L., Rota P. [et al.] Identical genotype B3 sequences from measles patients in 4 countries, 2005 // Emerg Infect Dis. 2006. № 12. Р. 1779–1781.

Takashima Y., Schluter W.W., Mariano KML. [et al.] Progress toward measles elimination—Philippines, 1998–2014 // MMWR Morb Mortal Wkly Rep. 2015. № 64. Р. 357–362.

World Health Organization (WHO) Regional Office for Europe. WHO EpiBrief. № 1. 2014.

World Health Organization (WHO) Regional Office for Europe. WHO EpiBrief. № 1. 2015.

World Health Organization (WHO) Regional Office for Europe. WHO EpiBrief. №. 1. 2016.

Mandal S., Ramsay M., Brown K. Measles s on a cruise ship: links with the outbreak in the Philippines // Euro Surveill. 2014. № 19. P. 20774.

Filia A., Amendola A., Faccini M. [et al.] Outbreak of a new measles B3 variant in the Roma/Sinti population with transmission in the nosocomial setting, Italy, November 2015 to April 2016 // Euro surveillance. 2016. № 21. P. 30235.

Kumar S., Stecher G., Tamura K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets // Mol Biol Evol. 2016. № 33. Р. 1870–1874.

Wairagkar N., Chowdhury D., Vaidya S. [et al.] Molecular epidemiology of measles in India, 2005–2010 // J Infect Dis. 2011. № 204. Р. 403–413.

Santibanez S., Hübschen J.M., Ben Mamou M.C. [et al.] Molecular surveillance of measles and rubella in the WHO European Region: new challenges in the elimination phase // Clinical Microbiology and Infection. 2017. № 23. Р. 516 – 523.

European Centre for Disease Prevention and Control. Measles outbreaks still ongoing in 2018 and fatalities reported from four countries. URL: https://ecdc.europa.eu/en/news-events/measles-outbreaks-still-ongoing-2018-andfatalities-reported-four-countries. Accessed: March 9, 2018.

Velicko I., Müller L.L., Pebody R. [et al.] Nationwide measles epidemic in Ukraine: the effect of low vaccine effectiveness // Vaccine. 2008. № 26. Р. 6980–6985. URL: doi:10.1016/j.vaccine.2008.09.012).

Global measles and rubella laboratory network support for elimination goals, 2010 - 2015//Wkly Epidemiol. Rec. 2016. № 48. P. 240 - 246.

Rogalska J., Santibanez S., Mankertz A. [et al.] Spotlight on measles 2010: an epidemiological over view of measles outbreaks in Poland in relation to the measles elimination goal // Euro Surveill. 2010. № 15. P. 19549.

Pervanidou D., Horefti E., Patrinos S. [et al.] Spotlight on measles 2010: ongoing measles outbreak in Greece, January–July 2010 // Euro Surveill. 2010. № 15. P. 19629.

Gee S., Cotter S., O’Flanagan D. Spotlight on measles 2010: measles outbreak in Ireland 2009–2010 // Euro Surveill. 2010. № 15. P. 19500.

Curtale F., Perrelli F., Mantovani J. [et al.] Description of two measles outbreaks in the Lazio Region, Italy (2006–2007). Importance of pockets of low vaccine coverage in sustaining the infection // BMC Infect Dis. 2010. № 10. V. 62. P. 1471 – 2334.

Gil H., Fernández-García A., Mosquera M.M. [et al.] Measles virus genotype D4 strains with nonstandard length M-Fnon-coding region circulated during them ajorout breaks of 2011-2012 in Spain // PLoS One. 2018. № 7. V. 13. doi: 10.1371/journal.pone.0199975.

World Health Organization (WHO), Wkly. Epidemiol. Rec. 2005. № 80. Р. 347–351.

Santibanez S., Hübschen J.M., Muller C.P. [et al.] Long-term transmission of measles virus in Central and continental Western Europe // Virus Genes. 2015. № 50. Р. 2–11.

Tamura K., Dudley J., Nei M. [et al.] MEGA4 Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 // Mol. Biol. Evol. 2007. V. 24. Р.1596–1599.

Richard J.L., Masserey Spicher V. Large measles epidemic in switzerland from 2006 to 2009: consequences for the elimination of measles in europe // Euro. Surveill. 2009. V. 14. Р. 592–600.

van Binnendijk R.S., Hahne S., Timen A. [et al.] Air travel as a risk factor for introduction of measles in a highly vaccinated population // Vaccine. 2008. V. 26. № 46. P. 5775–5777.

Necula G., Lazar M., Stanescu A. [et al.] Transmission and molecular characterisation of wild measles virus in Romania, 2008 to 2012 // Euro. Surveill. 2013. V. 18. (50). URL: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20658.

Melidou A., Gioula G., Pogka V. [et al.] Molecular and phylogenetic analysis of Greek measles 2010 strains // Epidemiol. Infect. 2012. V. 140. № 3. Р. 432–438.

Medić S., Petrović V., Lončarević G. [et al.] Epidemiological, clinical and laboratory characteristics of the measles resurgence in the Republic of Serbia in 2014-2015 // PLoS ONE. 2019. V. 14(10). URL: https://doi.org/10.1371/journal.pone.0224009.

Tleumbetova N., Nusupbaeva G., Amandosova D. [et al.] Results of molecular – genetic monitoring of measles viruses, circulated in the territory of Kazakhstan in 2015 // Kazakhstan. Infectious diseases. 2017. № 4. Р. 27 – 30.

Atrasheuskaya A. V., Kameneva S. N., Neverov A. A. [et al.] Acute infectious mononucleosis and coincidental measles virus infection // 2004. J Clin Virol. V. V. 31, № 2. P. 160.

WHO guidelines for the laboratory diagnosis of measles and rubella // World Health Organization Second edition 2010. Р. 1-115.

The incidence of measles and rubella in Russia in 2017 // Newsletter № 28. Federal State Budgetary Institution Scientific Research Institute of Mineral Power Engineering named after G.N. Gabrichevsky "Rospotrebnadzor. 2018. URL: http://gabrich.ru/files/pdf/kor2017.

Rota J.S., Rota P.A., Redd S.B. [et al.] Genetic analysis of measles viruses isolated in the United States, 1995–1996 // J Infect Dis. 1998. № 177. Р. 204–208.

Wairagkar N., Rota P.A., Liffick S. [et al.] Characterization of measles sequences from Pune, India // J Med Virol. 2002. № 68. Р. 611–614.

Goncharov V.O., Kotlik L.S., Skopenko A.V Epidemic indicators for measles in Odessa oblast // Ukraine Current infectology. 2019. Vol 7. № 2 Р. 76 – 82.

Ministry of Health of Ukraine. Online measles morbidity data: week 40. URL: http://moz.gov.ua/arti- cle/news/operativni-dani-zahvorjuvanosti-na-kir-40-tizhden.

Zimmerman L.A., Muscat M., Singh S. [et al.] Progress Toward Measles Elimination — European Region, 2009–2018 // MMWR Morb Mortal Wkly Rep. 2019. V.68. № 17. Р. 396–401.

Epidemiological evaluation of selected vaccine-preventable diseases // WHO epidemiological report. 2017. № 2. Р. 1 – 9.

Epidemiological evaluation of selected vaccine-preventable diseases // WHO epidemiological report. 2018. № 2. Р. 1 – 11.

MeaNS. Nucleotide database for the WHO Measles Laboratory Network URL: http://www.who-measles.org/PublicAVeb_Front/main.php.

Orenstein W.A, Papania M.J., Wharton M.E. Measles elimination in the United States // J. Infect. Dis. 2004. V. 189. P. 1–3.

Australian Government T.D.o.H. Measles – Elimination Achieved in Australia // WHO announces Australia’s Elimination of Measles. 2014.

Downloads

How to Cite

Kalinichenko, S., Melentyeva, K., Toryanik, I., Zvereva, N., Antusheva, T., & Buriachenko, S. (2020). Genetic monitoring of endemic measles virus circulation in European countries. Annals of Mechnikov’s Institute, (2), 57–70. Retrieved from https://journals.uran.ua/ami/article/view/205069

Issue

Section

Research Articles