Beta-lactamases of enterobacteria: general characteristics, mechanisms and regional features of distribution.


  • Olena Peretyatko Mechnikov Institute of microbiology and immunology, Ukraine
  • Yuliia Yagniuk Mechnikov Institute of microbiology and immunology, Ukraine
  • Nadiya Sklyar Mechnikov Institute of microbiology and immunology, Ukraine
  • Galina Bolshakova Mechnikov Institute of microbiology and immunology, Ukraine
  • Tetyana Holodna Mechnikov Institute of microbiology and immunology, Ukraine



The problem of the formation and spread of resistance to β-lactam antibiotics in clinically significant types of microorganisms is extremely important, since β-lactams traditionally form the basis of the treatment of bacterial infections. Special attention of antibiotic resistance researchers is directed to the microorganisms of the Enterobacteriaceae family, namely, to pathogens such as Enterobacter spp., Citrobacter spp., Proteus spp., K. pneumoniae, E. coli, which are capable of producing a wide range of β-lactamases. Since the discovery of the first beta-lactamase in the 1960s, these enzymes have evolved, and today several hundred types of beta-lactamases have been discovered, but new varieties of them are constantly emerging and the dominant groups of these enzymes are changing. It has been discovered that some members of the Enterobacteriaceae family (Enterobacter spp., Citrobacter freundii, Morganella morganii, Serratia marcescens, Providencia spp.) have the ability to produce chromosomal cephalosporinases characterized by high affinity to 3rd generation cephalosporins. However, enterobacteria (Escherichia coli, Salmonella spp., Shigella spp., Klebsiella spp., Enterobacter spp., etc.) most often contain beta-lactamases of the TEM and SHV genetic groups, which are associated with plasmids and are responsible for the formation of resistance to penicillins and early cephalosporins, as well as the STX-M group responsible for resistance to broad-spectrum cephalosporins and monobactams.

According to a number of researchers, the main groups of the β-lactamase family, represented by plasmid-mediated narrow-spectrum (NSBL) and extended-spectrum (ESBL) beta-lactamases, as well as AmpC cephalosporinases and carbapenemases, are spread throughout the world, however, predominance of specific beta-lactamases in certain geographical regions is observed. For example, while CTX-M enzymes are spread in all regions, serine carbapenemases are most often found in China, in the countries of North and South America and the Mediterranean, and metallo-betalactamases - in the Indonesian region and in the countries of Eastern Europe. In the countries of the Baltic region, the leading mechanism of resistance of enterobacteria to cephalosporins is the prevalence of extended-spectrum beta-lactamases (ESBLs) of the CTX-M class. Similar patterns of beta-lactamase genes distribution among clinical strains of enterobacteria were found in Spain, where the share of strains carrying the blaCTX-M gene was 93,3%.

Significant spread of clinical strains of enterobacteria with resistance to beta-lactam antibiotics, especially ESBL-producing strains, necessitates constant monitoring of beta-lactam resistance and investigation of regional features of its distribution.

Key words: Enterobacteriaceae family, Еnterobacteria, antibiotic resistance, formation mechanisms, beta-lactamases.


Sawa T., Kooguchi K., Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J intensive care. 2020. 8(13). 020-0429-6

Bisekenova A. L., Ramazanova B. A., Adambekov D. A., Bekbolatova K. A. Molecular mechanisms of resistance of gram-negative microorganisms - infectious agents to beta-lactam antibiotics. Bulletin of KazNMU. 2015. N 3. С. 223–227.

Lazareva I. V., Ageevets V. A., Sidorenko S. V. Antibiotic resistance; the role of carbaenemases. Medicine of extreme situations. 2018. N 2 (3). Р. 322–328.

Grigorenko V. G., Rubtsova M. Yu., Uporov I. V., Ishtubaev I. V., AndreevaI.P., ShcherbininD.S., VeselovskyA.V., & EgorovA.M. Bacterial TEM-typeserinebeta-lactamases: structureandanalysisofmutations. Biomeditsinskaya Khimiya. 2017. 63(6). 499507.

Niu S., Chavda K. D., Wei J., Zou C., & Marshall S. H. et al. A ceftazidime-avibactamresistant and carbapenem-susceptible Klebsiella pneumoniae strain harboring blaKPC-14 isolated in New York City. ASM Journals. 2020. 5(4). e00775-20.

Brouwer M. M., Tehrani K. M., Rapallini M., et al. Novel carbapenemases FLC-1 and IMI-2 encoded by an Enterobacter cloacae complex isolated from food products. Antimicrobial Agents and Chemotherapy. 2019. 63(6). Р. 1–6.

Yakovlev S. V., Suvorova M. P. Cefotaxime/sulbactam; an important addition to the arsenal of inhibitor-protected beta-lactam antibiotics. Antibiotics and chemotherapy. 2019. 64 (3-4). Р. 7–8. DOI : 1/24411/235-299-219-119

Ulyashova M. M., Presnova G. V., Pobolelova Yu. I., Filippova A. A., Egorov A. M., Rubtsova M. Yu. Screening of bacterial genes responsible for resistance to beta-lactam antibiotics, using microchips with enzymatic detection. Vestn. Moscow University. Ser. 2. Chemistry. 2016. 57(4). Р.245–252.

Pimenta A.C., FernandesR., Moreira I.S. Bacterial TEM-Type Serine Beta-Lactamases: Structure and Analysis of Mutations. Mini Rev. Med. Chem. 2014. Vol. 14. Р. 111–122.

Salverda M. L., De Visser J. A., Barlow M. Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. 2010. Rev.3. Р.1015–1036.

Bush K, Jacoby G. A, Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 2009. Vol. 39. Р. 1211–1233.

Pitout J. D. Infections with extended-spectrum beta-lactamaseproducing enterobacteriaceae: changing epidemiology and drug treatment choises. Drugs. 2010. Vol. 70. P. 313–333.

Stepanova M. N. Mutational variability of CTX-M β-lactamases and the formation of resistance to ceftazidime in clinical and laboratory strains of Escherichia coli : author. dis. for the sake of science. degree of candidate of biol. Sciences: 03.02.03. Moscow. 2011. 23 р.

Potron A., Poirel L., Croizé J., Chanteperdrix V., Nordmann P. Genetic and Biochemical Characterization of the First Extended-Spectrum CARB-Type ß-Lactamase, RTG-4, from Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009. Р. 3010–3016.

Bush K., Jacoby G. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010. Р. 969–976. doi: 10.1128/AAC. 01009-09

Walther-Rasmussen J., Høiby N. OXA-type carbapenemases. Journal of Antimicrobial Chemotherapy. 2006. Vol. 57. Р. 373–383.

Miriagou V., Cornaglia G., Edelstein M., Galani I. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin. Microbiol. 2010, Vol. 16. Р. 112–122.

Lagun L. V. Extended-spectrum beta-lactamases and their significance in the formation of resistance of pathogens of urinary tract infections to antibacterial drugs. Problems of health and ecology. 2012. № 3 (33). Р. 82–88.

Duda O. K., Horbal N. B., Masalitina O. V. The role of beta-lactamases in the formation of antibiotic resistance. Medicines of Ukraine. 2015. № 5(191). Р. 4–8.

Polishko T. M., Sklyar T. V., Krysenko O. V., Vinnikov A. I., Kudryavtseva V. E. β-lactamases of clinical isolates of the Enterobacteriaceae family Microbiol. Journal. 2011. 73. 2. Р. 20–25.

Moskalenko V. F. Current issues of the global spread of resistance to antimicrobial drugs. East European Journal of Public Health. 2011. № 1. Р. 10–14.

Egorova S. A., Kaftyreva L. A., Lipskaya L. V. Enterobacteria strains producing extended-spectrum beta-lactamase and metallo-β-lactamase NDM-1 isolated in hospitals in the countries of the Baltic region. Infection and immunity. 2013. 3. 1. Р. 29–36.

Bush K., Bradford P. A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020. Vol 33.

Kiiru J., Kariuki S., Goddeeris B., Butaye P. Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. BMC Microbiology. 2012. Vol. 12. doi: 10.1186/1471-2180-12-155

Amany E., Raghdaa A. Molecular detection of TEM-Type β-lactamase producing Escherichia coli from diarrheic Egyptian children. Archives of Clinical Microbiology. 2012. Vol. 3(5). DOI: 10.3823/261

Samyyia Abrar, Noor Ul Ain, Huma Liaqat, Shahida Hussain, Farhan Rasheed, Saba Riaz. Distribution of blaCTX − M, blaTEM, blaSHV and blaOXA genes in Extended-spectrum-β-lactamase-producing Clinical isolates: A three-year multi-center study from Lahore. Pakistan Antimicrob Resist Infect Control. 2019. Vol. 8(80). doi: 10.1186/s13756-019-0536-0.

Arijit Bora, Naba Kumar Hazarika, Sanket Kumar Shukla, Kashi N. Prasad, Jayanta Biswa Sarma, Giasuddin Ahmed. Prevalence of blaTEM , blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol. 2014. Vol. 57(2). Р. 249–54. doi: 10.4103/0377-4929.134698.

Radvan Ali M., Mehlef Qahdim M. Detection of bla SHV, bla TEM and bla CTX-M among urinary tract infection Escherichia coli isolates. Journal of the University of Babylon. 2017. Vol. 25. N. 5. Р. 1700–1707.

Guzmán M., Salaza E., Cordero V., Castro A., Villanueva А, Rodulfo H., Marcos De Donato. Multidrug resistance and risk factors associated with community-acquired urinary tract infections caused by Escherichia coli in Venezuela. Biomédica. 2019. Vol. 39. P. 96–107. http://

González-Mesa L., González-Leyva M., Zayas- Tamayo A., Curbelo -Álvarez M., Garrido- Nicot Y. Relación genética de aislados clínicos de Escherichia coli productores de Beta-Lactamasas de Espectro Extendido (BLEE) en un hospital de la Habana, Cuba. Revista CENIC Ciencias Biológicas. 2017. Vol. 48. No. 3. P. 107–111.

Brinas L., Zarazaga M., Sáenz Y., Ruiz-Larrea F., Torres C. β-Lactamases in Ampicillin-Resistant Escherichia coli Isolates from Foods, Humans, and Healthy Animals. Antimicrob. Agents Chemother. 2002. Vol. 46. No. 10. P. 3156–3163. DOI: 10.1128/AAC.46.10.3156-3163.2002

Mironov A. Yu., Krapivina I. V., Mudrak D. E., Ivanov D. V. Molecular mechanisms of resistance to β-lactams in pathogens of nosocomial infections. Clinical laboratory diagnostics. 2012. 1. Р. 39–43.

Khrulnova S. A., Korobova A. G., Fedorova A. V., Frolova I. N., Klyasova G. A. Molecular characteristics of Enterobacterales isolates with the production of extended-spectrum beta-lactamases isolated from the blood culture of patients with tumors of the blood system . Clinical microbiology and antimicrobial chemotherapy. 2018. Vol. 20. 4. Р. 375–380.

Krasiy N. I. Klymnyuk S. I., Oliynyk O. V., Pokryshko O. V. Antibiotic sensitivity monitoring of microorganisms isolated from patients at the Ternopil University Hospital in 2012. Hospital surgery. 2013. 3. Р. 25–28.

Shevchenko L. V., Strokan A. M., Lytvyn B. S., Azymtseva O. A. Resistance of gram-negative bacteria producing extended-spectrum ß-lactamases, the role of "antimicrobial stewardship" in the fight against resistance. Actual problems of clinical and preventive medicine. 2015. Vol. 3. 3–4. Р. 68–72.

Zhoraeva S. K., Goncharenko V. V., Shchogoleva O. V., Ivantsova O. K., Sobol N. V., Babuta A. R., Pugacheva O. V. Microbiological monitoring of the dynamics of antibiotic resistance of clinical isolates of E .coli. Dermatology and venereology. 2019. 2. P. 40–45.

Bylchenko A. V., Chub O .I. Prevalence of BLRS types TEM, SHV, CTX-M among causative agents of chronic pyelonephritis. Antibiotics and chemotherapy. 2014. Vol. 59. 11-12. Р. 24–26.



How to Cite

Peretyatko, O., Yagniuk, Y. ., Sklyar, N., Bolshakova, G., & Holodna, T. (2022). Beta-lactamases of enterobacteria: general characteristics, mechanisms and regional features of distribution. Annals of Mechnikov’s Institute, (3), 7–12.