АВТОМАТИЧНІ І АВТОМАТИЗОВАНІ СИСТЕМИ УПРАВЛІННЯ ТЕХНОЛОГІЧНИМИ ПРОЦЕСАМИ

УДК 62-933.6:004.032.26

ТЕХНОЛОГІЯ ПРОЕКТИРОВАННЯ НЕЙРОННИХ РЕГУЛЯТОРОВ

Павлов А.І., к. т. н., доцент
Одеська національна академія пищевих технологій, г. Одеса

Rассматривается последовательность проектирования регуляторов, использующих искусственные нейронные сети.

It is described the design of regulators in series exhausted artificial neural network.

Ключевые слова: система, регулятор, искусственная нейронная сеть.

Введение. Интерес к искусственным нейронным сетям (ИНС) быстро растет и в настоящее время уже поистине огромен. Но что касается их практического применения, то здесь достижения не очень значительны, особенно в решениях задач управления, и тому есть причины. Одна из них — амбивалентность, которая, впрочем, вполне объективно обусловлена. Дело в том, что ИНС (в общем случае) — "черный ящик", и не удивительно, что при первом знакомстве с ним возникает впечатление, сходное с мистическим. Создается само собой образ ИНС, как чего загадочного, непонятного, необычного и, как следствие, осторожное, если не сказать скептическое, отношение к ним в части целесообразности их практического использования. Но такого рода предубеждение, своеобразный психологический барьер, необходимо преодолеть.

Искусственный нейрон — это весьма упрощенная (если не сказать примитивная) математическая модель биологического нейрона, а ИНС, в общем случае, это система, образуемая посредством агрегирования нескольких искусственных нейронов. Но свойства любой системы не являются простой суммой свойств ее частей: она обладает такими свойствами, каких нет ни у одной из ее частей в отдельности. Такое "внезапное", "неожиданное" появление новых качеств у систем при их синтезе дало основание присвоить этому их свойству название эмерджентность (emergence (англ.) — возникновение из ничего. Оно особенно ярко проявляется в случае ИНС, но с той особенностью, что новые свойства такой системы определяются не только ее топологией, но и параметрами внутренних связей, а также структурой вектора входных сигналов.

Другая причина, тормозящая практическое использование ИНС в задачах управления ИНС имеет иное происхождение.

Научно-технический прогресс обычно развивается в соответствии со схемой: "от простого к сложному". Так в науке в целом принято разрабатывать несколько моделей какого-либо явления, процесса и т.п. Если выявляется, что более сложные модели не дают существенно лучших результатов, чем самые простые из них, то предпочтение обычно дают ей. Но, как видно из публикаций, посвященных применению ИНС для управления, их авторы используют отнюдь не самые простые сети видимо из соображений, что простейшая ИНС apterior принципиально не может дать высокого качества управления (чего это не так будет показано ниже).

Любая созданная ИНС должна быть обязательно, прежде чем ей применять на практике, обучена решению предназначенному для нее задачи. И тут возникают проблемы, тем более сложные, чем выше размерность ИНС. Даже в варианте сети, состоящей всего из нескольких десятков нейронов процесс обучения (а это время офисного компьютера) длится, как минимум, несколько часов. А в тех случаях, когда количество нейронов в сети измеряется сотнями и тысячами, её обучение представляет действительно очень сложную проблему, не разрешимую при использовании таких компьютеров.

Разработчики АСУ ТП, в части задач регулирования, в качестве базовых всё ещё используют классические ПИД-алгоритмы, для которых хорошо развита инфраструктура методической поддержки. "Очевидно, что широкое использование на практике в задачах регулирования более современных алгоритмов, альтернативных ПИД, можно ожидать только тогда, когда, во-первых, новые алгоритмы будут давать заметные преимущества в качестве разрабатываемых САУ, во-вторых, уровень развития инфраструктуры, поддерживающей разработку новых алгоритмов, будет не ниже, чем для ПИД-алгоритмов" [1].

Естественно возникает вопрос: а нельзя ли использовать (хотя бы частично) ту инфраструктуру, которая используется для ПИД-алгоритмов? А то, что использование ИНС в задачах регулирования (особенно, если
АВТОМАТИЧЕСКИЕ И АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

речь идет об автономных САР одного параметра) даёт весьма существенное ожидаемое возрастание качества управления подтверждается цифровым имитационным моделированием САР [2, 3, 4]. В этих моделях САР использовались малоразмерные НС (число промежуточных нейронов от пяти до одиннадцати); кроме того во всех моделях хорошо отражены статистические и динамические свойства реальных технологических агрегатов, исполнительных механизмов и окружающей среды. Имеются основания утверждать, что новые алгоритмы, на основе, например, ИНС, доказывают свои преимущества по сравнению с традиционными и на реальных производственных процессах. Но для этого, чтобы это нашло своё осуществление, требуется процедура разработки САР на основе ИНС упростить до уровня сложности систем регулирования с ПИД-алгоритмами. Покажем, что эта задача вполне решаема.

Основная часть. Предельно простая ИНС состоит из одного промежуточного нейрона (ядра сети), двух входных и одного выходного нейрона (рис. 1). Использование её для решения реальных задач регулирования представляется мало перспективным, хотя и заслуживающим внимания исследователей.

![Diagram](image)

Рис. 1 – Структура простейшей ИНС

На входные нейроны (в так называемый "нулевой слой" нейронов) подаются внешние сигналы, в свой совокупности образующий входной вектор; в них никакие вычислительные операции с сигналами не выполняются, за исключением функции активации, да и то не всегда. Выходной нейрон – выводящий (иногда с выполнением определения активации). В задачах регулирования требуется один выходной нейрон. Таким образом, тип нейрона определяется его расположением (местом) в ИНС. В общем случае вход ИНС надо рассматривать как выход "нулевого слоя" – выражённых нейроноподобных элементов, которые необходимы лишь в качестве распределительных точек. Именно поэтому многие авторы публикаций входные элементы ИНС обоснованно не считают нейронами.

При работе ИНС осуществляется преобразование информации входного вектора в сигнальную информацию, выдаваемую через выходной нейрон.

В задачах управления входным вектором Х – это определенное конечное множество контролируемых (измеряемых либо вычисляемых) параметров объекта регулирования, а также, что очень желательно, и окружающей среды; У – выход \(f(t) \) – сигнал управления на выходе ИНС, соответствующий (после обучения сети) всех совокупности текущих значений параметров контролируемых системы.

Одна из аксиом теории нейронных сетей гласит, что результат работы ИНС в решающей степени зависит от размерности входного вектора Х: чем больше сигналов обрабатывает сеть, тем выше результат. Однако начинать проектирование нейрогенераторов желательно с небольшого числа входных сигналов сети (сложность обучения ИНС сильно зависит от числа входных сигналов). На первых порах вполне достаточно четырёх сигналов: нейронов-стимулирующих, сигнала датчика регулируемого параметра \(x_{in}(t) \), сигнала датчика \(y_{in}(t) \), сигнала датчика \(y(t) \), динамической ошибки \(e(t) \) и основного контролируемого возмущения \(f(t) \). Затем, по-мере приобретения опыта проектирования нейрогенераторов, можно постепенно расширять список параметров входного вектора, добавив в него производные первого порядка сигнала датчика динамической ошибки (или датчика) и контролируемого возмущения; на следующем шаге целесообразно еще более расширить вектор входных сигналов, введя в него производные второго порядка и вероятно переменных. В дальнейшем целесообразно добавить сигнал датчика второго контролируемого возмущения (если это актуально для конкретного технологического процесса). Но при этом не следует забывать, что и задача обучения ИНС будет также усложняться: это вторая аксиома теории нейронных сетей.

Итак, разрешим ли имеющиеся объективное противоречие, можно ли "проплыть", между Сицилией и Харибды? А именно, реалистично ли создать нейрогенератор, который по качеству управления превосходит бы ПИД-регулятор (разумеется с оптимальными настройками всех его основных параметров \(K_p, T_1, T_2 \) и чтобы сложность работы, а также необходимое время на её выполнение были не больше, чем в альтернативном варианте ПИД-регулятора? Докажем, что это возможно на примере регулятора с одним промежуточным нейроном при четырёх входных сигналах \(x_1, x_2, x_3 \) и \(y_2 \). Структура такой элементарной ИНС показана на рис. 2.

Примеч. \(x_{in} = x_1, x_{in} = x_2, x_{in} = x_3, x_{in} = y_2 \). Структура такой элементарной ИНС показана на рис. 2.

Входные сигналы \(x_i \) "измоделируют" с весами \(k_i \) обозначают произведения

\[
P_i = k_i \cdot x_i, \quad i = 1, 2, 3, 4
\]
Эти произведения объединяются операцией суммирования, выполняемой промежуточным нейроном. Выход сумматора обозначим, как принято, net. Так как это сумма "взвешенных" входов, то:

$$net = \sum_{i=1}^{4} (k_i \cdot x_i)$$ \hspace{1cm} (2)$$

В векторных обозначениях это можно представить в виде:

$$net = k \cdot x$$ \hspace{1cm} (3)$$

Очевидно также, что

$$U = f(k_1 \cdot x + k_2 \cdot x + k_3 \cdot x + k_4 \cdot x)$$ \hspace{1cm} (4)$$

Изображенная на рис. 2 ИНС отнюдь не черный ящик, она вполне "прозрачна", поскольку представляет частный случай ИНС, а именно, простейший ее вариант: это четыре параллельно работающих пропорциональных алгоритма, сигналы которых суммируются. Основное достоинство этой сети состоит в том, что ее можно очень быстро обучить (точнее — настроить) "вручную" посредством целенаправленного изменения коэффициентов k_i.

![Diagram](image.png)

Рис. 2 — Структура элементарной ИНС с четырьмя входными сигналами

Математический процесс обучения сводится к следующему: ИНС формирует выходной сигнал U, соответствующий вектору X входных сигналов, реализуя некоторую функцию $U=G(X)$, вид которой определяется величинами синаптических весов сети и смещений (bias), если они применяются.

Решением поставленной задачи является функция $U=F(X)$, заданная парами данных "вход-выход" (x_i, y_i). Обучение ИНС состоит в нахождении функции G, близкой к F. В общем случае обучение ИНС — это многоэкстремальная невыпуклая задача оптимизации, для решения которой могут быть использованы различные итерационные вычислительные алгоритмы, в частности, программно реализованные алгоритмы глобальной оптимизации.

Поскольку количество локальных оптимумов велико, то способ "ручного" обучения простейшей ИНС вполне приемлем. Назовем это первым приближением, подготовительным этапом, основной задачей которого является более обоснованное определение пределов изменения параметров k_i. Этот этап рекомендуемый, но не обязательный: при его использовании время, необходимое для выполнения второго (основного) этапа, значительно уменьшается, а сам этап обычно не требует повторения. На втором этапе (назовем его процессом "дообучения") используется какая-либо программа оптимизации, например, реализующая алгоритм деформируемого многогранника (симплекс-метод Неллера-Мида). Этот алгоритм при небольшом количестве оптимизируемых дает хороший результат, тем более вовсе не обязательно на оптимизации выводить все весовые коэффициенты синаптических связей ИНС; например, коэффициент k_1 можно задать как константу, величина которого была определена на первом этапе обучения. Это не только допустимо, но и целесообразно делать в случае проектирования стабилизирующих САР. При этом количество оптимизируемых параметров становится равным трем, как и в варианте ПИД-регулятора, и, что особенно важно, может быть применена та
АВТОМАТИЧЕСКИЕ И АВТОМАТИЗОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

же самая компьютерная программа, которая широко используется для оптимизации параметров ПИД-регуляторов.

Разумеется, что прежде чем приступить к обучению ИНС необходимо определиться в статических и динамических свойствах других элементов проектируемой САР, в первую очередь объекта регулирования и исполнительного механизма. Но и при разработке САР с ПИД-алгоритмом эта работа также должна быть выполнена как первоочередная.

Каких-либо сложностей при реализации моделей цифрового имитационного моделирования САР с ИНС в программной среде промышленных контролеров не возникает. Например, такие модели могут быть реализованы с использованием системы программирования КОНИГРАФ для комплекса КОНТАР. Если передаточная функция модели объекта регулирования имеет, например, вид

\[W_0(p) = \frac{0,45 \cdot e^{-4p}}{(10p + 1)^2} \]

(5)

а в качестве исполнительного механизма используется пневматический мембранный механизм с позиционером, динамические свойства которого соответствуют передаточной функции

\[W_{cm}(p) = \frac{e^{-0,3p}}{(0,6p + 1)^2} \]

(6)

То при использовании в качестве ИНС структуры по рис. 2 параметры коэффициентов связей обученной сети могут быть представлены в векторной форме таким образом:

\[\text{net} = \begin{bmatrix} 0,175 \\ 0,65 \\ 4 \\ -2,12 \end{bmatrix} \]

(7)

Графические результаты моделирования представлены на рис. 3 и 4.

Рис. 3 – Графические результаты моделирования САР с ИНС в условиях действия координатного возмущения
АВТОМАТИЧНІ І АВТОМАТИЗОВАНИ СИСТЕМИ УПРАВЛІННЯ
ТЕХНОЛОГІЧНИМИ ПРОЦЕСАМИ

Рис. 4 – Графічні результати моделювання САР з ИНС в умовах дії координатного
впливу і зміни сигнала задання регульатора

Очевидно з орієнтовної недотаком алгоритма регулювання по схемі рис. 2, якщо проявляється
статистична оцінка регулювання, якщо синтезується коефіцієнт передачі об'єкта. При таких паспортермах
впливів в структурі регульатора може бути введення інтегратор. Інша варіант, не потребуючий
введення в алгоритм управління інтегральної складності. Для такого достатньо урахувати зміни
сигналу управління ИНС, пропорціонально відносні статистичні оцінки. Якщо зміни коефіцієнта
передачи об'єкта відбувається достатньо часто, то процедуру виконання сигналу управління
целесообразно оствуати за оператором технологічного процеса. Однак як сложність ету процедуру
реалізовані і програмними ресурсами промислового контролера, якщо визначена узагальнення
методиками передачі об'єкта і зазалого величини зміни (корекції) сигналу управління.
Характер зміниї статистичної величини зміни сигналу управління від зміни коефіцієнта
передачи об'єкта визначаються також під час цифрового імітационного моделювання САР. Задача це
всім для випадку, коли сигнал задання регулятора не можна. Якщо ж меняться не тільки
коефіцієнт передачі об'єкта, но, не змінюється від нього, і сигнал задання регулятору, ця задача хоча
і усложняється, то також розв'язується.

ВИВОД: Підготовленої технологія виробництва невороного регулятора показує ефективність в
варіанте використання ИНС з одним активним нейроном.

ЛІТЕРАТУРА:
1. Хобин В.А. Системы гарантировшего управления технологическими агрегатами: основы теории, практика
2. Павлов А.И. Нейросетевая система регулирования высокой динамической точности // Наукові праці
3. Павлов А.И. Нейронная система регулирования // Наукові праці Одеської національної академії харчових
СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ КОНТРОЛЛЕРОВ SIMATIC И ПАНЕЛЕЙ HMI ДЛЯ СОЗДАНИЯ СИСТЕМ УПРАВЛЕНИЯ

Левинский В.М., Левинский М.В.
ОНЛАНТ, ОНМА

Показан пример практической реализации взаимосвязи контроллера SIMATIC S7-313C-2DP и панели HMI TP 177B PN/DP, реализованный в среде Step 7 и WinCC flexible.

Show an example of practical realization of the relationship of the controller SIMATIC S7-313C-2DP and the HMI TP 177B PN/DP, is realized in Step 7 and WinCC flexible.

Ключевые слова: контроллер SIMATIC, панель HMI, STEP 7

Современные системы управления технологическими процессами строятся на базе программируемых контроллеров, которые выводят информацию на панели с жидкокристаллическим сенсорным экраном и получают обратно команды от оператора. При этом на экране отображаются мнемосхемы процесса, элементы визуализации переменных процесса и элементы управления.

Для проектирования подобных систем используют средства программирования контроллеров и панелей оператора. Следует сказать, что объем технической документации, который должен усвоить проектировщик, достаточно велик [1, 2, 3].

Цель настоящей статьи — показать пример практической реализации взаимосвязи контроллера SIMATIC S7-313C-2DP и панели HMI TP 177B PN/DP, призванный помочь начинающим пользователям в построении системы управления.

Первоначально следует выполнить электрические подключения контроллера, модуля аналогового ввода/вывода SM 334 к источникам и приемникам внешних сигналов. Панель TP 177B PN/DP и коммуникационный процессор CP 343-1 Lean соединить с помощью кабеля типа «витая пара» и разъемов RJ45 в локальную сеть с компьютером (ПК), на котором установлены системы программирования контроллеров SIMATIC и панелей HMI - пакеты программ Step 7 и WinCC flexible.

В среде программирования SIMATIC Manager создать новый проект, присвоив ему имя, например, "proba_wincc", и в меню "Insert" вставить в него станицу “Station 300”. Далее в программе конфигурирования аппаратуры "HW Config" путем "перетаскивания" из каталога в состав станции добавить контроллер S7-313C-2DP, коммуникационный процессор CP 343-1 Lean и модуль аналогового ввода/вывода SM 334. На данном этапе целесообразно физически адресом дискретных и аналоговых входов и выходов присвоить символные имена, которые будут храниться как глобальные данные в таблице символов "Symbols". Для этого в программе "HW Config" выделить соответствующие входы/выходы, нажать правую кнопку мыши и последовательно выполнить команды "Edit Symbols" и "Add to Symbols".

Далее следует присвоить IP-адрес устройства в локальной сети. В меню “Options” программы "HW Config" выполнить команду “Configure Network”. В открывшемся окне программы “NetPro” появится изображение станции "SIMATIC 300". Следует дважды щелкнуть мышкой на изображении CP343 Lean, а затем в раскрывшемся меню на кнопке “Properties”. Появятся окошки редактирования IP-адреса и маски подсети, куда можно внести, например, значения 192.168.0.1 и 255.255.255.0.

Для установки адреса панели оператора TP 177B PN/DP необходимо подать на ее напряжение питания, и в появившемся на сенсорном экране меню нажать на изображение кнопки с надписью “Control Panel”. В следующем окне нажать на изображение "Network", далее, последовательно выбрать "Network Configuration" и “Properties”, ввести IP-адрес, например, 192.168.0.2.

Если теперь в меню “Options” программы SIMATIC Manager выполнить команду “Set PG/PC Interface” и в открывшемся окне выбрать вариант обмена информацией “TCP/IP CURECOM...”, то появится возможность не только программировать контроллер и панель по локальной сети, но и наблюдать за работой системы в реальном масштабе времени.