Рис. 3 – Спрощений алгоритм роботи системи простежуваності.

Розроблене програмне забезпечення охоплює всі етапи виробництва олії на олієпереробних заводах, дає підприємству змогу вести автоматизований облік сировини та готової продукції, а головне – виконує функцію простежуваності, формуючи інформативні звіти.

Література
1. ODware © 2012 «PHP.RU - Сообщество РНР-Программистов». Москва.
Web: http://www.php.ru/
2. Влад Мержевич © 2002-2012 «Для тех, кто делает сайты.». Москва.
Web: http://htmlbook.ru/
3. Асоціація "ДжіЕс1 Україна" - Простежуваність. [Електронний ресурс].
Web: http://www.gs1ua.org/uk/practice/traceability.csp

УДК 621.18:66.096:502.33

УПРАВЛЕННЯ ЕКОЛОГИЧНОСТЮ КОТЛОВ – ПРИОРИТЕТНАЯ ЗАДАЧА РАЗВИТИЯ КОТЛОСТРОЕНИЯ В УКРАИНЕ

Воинов А.П., докт. техн. наук, профессор,
Одеський національний політехнічний університет,
Воинова С. А., канд. техн. наук, доцент,
Одеська національна академія пищевих технологій

Рассмотрена задача прямого управления экологичностью котельно-тепличных систем, показано ее приоритетное положение.
The problem of a direct control by ecological efficiency of boiler-furnace systems is considered, its priority is shown.

Ключевые слова: управление, экологичность, котел.

Энергетика мира – главный источник вредного воздействия на природную среду.
Среди элементов стационарной энергетической установки на органическом топливе основным источником вредного воздействия на природную среду, особенно живую природу, является котельная установка, а в ее составе – паровой или водогрейный котел (Кт) [1, 2].
В послевоенный период в производстве, в частности в энергетике, предпринимают меры повышения уровня экологичности Кт в виде мероприятий по защите окружающей среды (ОС). Однако, они имеют пассивный характер и оказались малоэффективными. Ныне следует принимать активные по характеру и экстраординарные по силе и эффективности меры спасения ОС – меры СОС.
Как известно, основными составляющими указанного воздействия Кт на ОС являются:
- выброс (выделение в атмосферу) вредных газов, парниковых газов, частиц (взвеси) золы, сажи, теплоты,
- сброс (выделение в грунт и в гидросферу) воды, загрязненной содержащимися в ней вредными химическими примесями, нефтепродуктами, частицами золы, а также сброс нагретой воды.
Уровень вредного воздействия Кт на ОС тем ниже, чем выше уровень ее экологичности, то есть уровень экологической эффективности (Ei).
Эффективность (E) – степень совершенства технического объекта (ТО) – выражается набором, сведений, информацией большого объема о свойствах, показателях, отражающих особенности ТО разного рода. В целом, E – это информационная система данных, сведений о ТО, его информационный портрет.
В процессе изучения ТО множество элементов информации о нем классифицируют, разделяют на группы, характерные общими определенными признаками – крупные информационные группы первого (I) информационного уровня.
Далее, в каждой группе I уровня составляющие ее элементы разделяют по другим признакам на группы второго (II) информационного уровня.
Далее, аналогично выделяют группы третьего (III), затем группы четвертого (IV) и, при необходимости, последующих информационных уровней.
В итоге, исходное множество элементов информации образует стройную многоуровневую информационную систему, условно представляющую собой – информационную пирамиду свойств, признаков, параметров ТО.
Она является информационной моделью множества элементов, строго разделенных по свойствам и выстроенных в иерархическую систему их общих и частных свойств, которые четко логически взаимосвязаны в группах, между группами разного уровня и в их множестве в целом. В итоге получают информмодель свойств рассматриваемого ТО, в частности, Кт, его информационный портрет.
На рисунке приведена структурно-логическая схема четырехуровневой информмодели ТО общего назначения, в частности, Кт. Анализ подобной схемы позволяет проследить последовательность процесса формирования E ТО, в частности, его экологической эффективности.
На схеме, в качестве примера, показаны составляющие фактора (III уровня) экологической эффективности Кт – удельного выброса. Это факторы IV уровня: удельный выброс CO, NOx, SO2 и др.
Формирование E, ТО состоит из трех этапов [3]:
- стратегического, состоящего в выборе технологии создаваемого ТО, обладающей необходимыми технологическими возможностями,
- тактического, состоящего в выборе конструкции (конструктивной схемы) создаваемого ТО, обладающей необходимыми технологическими возможностями (рис. 1),
- оперативного, состоящего в выборе и поддержании надлежащего режима функционирования ТО,

Управление этим процессом на всех этапах позволяет обеспечивать заданный уровень Еn на всем пути создания и последующего использования ТО, в частности, Кт.

Уровень Еn Кт зависит от уровня каждой из трех его составляющих: экологической (Е3), экономической (Е2) и общетехнической (Еобщ) эффективности (рис. 4). Уровень каждой из этих составляющих зависит от уровня объединяемых его факторов, в первую очередь от уровня базового фактора, выбранного в каждой группе.

Рассмотрим процесс формирования текущего уровня Ен, действующего Кт (рис.). Из изложенного следует, что экологические свойства созданного, нового Кт сформированы экологическими возможностями используемой в нем котельно-топочной технологии и экологическими возможностями созданных конструкций этого агрегата [5].

Пущенный в работу новый Кт обладает исходным уровнем Енн; (Е3н). В процессе эксплуатации, под действием естественного износа агрегата, уровень его Еn непрерывно снижается до текущего потенциального значения (Енп).

Далее, реализуемый практически фактический уровень – (Е3ф) – формируется под действием режима работы Кт, которым (режимом) управляет система автоматического управления (САУ) агрегатом. При этом, (Е3ф) – ниже уровня (Е3н). Он в процессе работы Кт продолжает снижаться вплоть до минимально допустимого уровня. Достижение последнего знаменует окончание расходования агрегатом своего ресурса работоспособности.

Таким образом, текущий уровень Ен зависит от ее исходного уровня, режима работы Кт, которым управляет САУ, и времени.

Все ухудшающееся состояние ОС придало проблеме ее защиты приоритетный характер. Важной задачей этой проблемы является всестороннее сокращение интенсивности вредного воздействия энергетики, прежде всего – парка Кт.

Анализ показывает, что арсенал методов, путей и средств повышения уровня Еn парка Кт обширен и доступен для использования. Определенный интерес представляет краткое рассмотрение указанных возможностей, основная часть которых известна, но, в силу различных обстоятельств, не становится предметом пристального интереса и объектом применения. Подобное положение вещей характерно как для отечественных, так и для зарубежных производственных условий, особенно для условий промышленной энергетики, прежде всего, Кт малой единичной мощности.

Способление внимания персонала котельной к Е3 оборудования в высокой степени зависит от уровня грамотности и технической культуры персонала котельной. Имеющиеся резервы повышения Е3 часто не используют, так как либо их не замечают, либо не располагают возможною их использовать.

Однако, обостряющаяся экологическая обстановка в энергетике заставляет вводить в действие все имеющиеся резервы.

Коснемся ряд некоторых существенных резервных возможностей повышения экологичности действующих Кт. Назовем технически доступные пути и средства повышения их Е3. Эти же возможности неизбежно подлежат применению при создании новой котельно-топочной техники.
Задача снижения потеря теплоты с уходящими газами (q_2) доступна решению несколькими известными путями, прежде всего следующими:
- снижение до целесообразного доступного минимума уровня коэффициента избытка воздуха при его вводе в топку – α_t;
- сокращение присосов воздуха по газовому тракту Кт и перетока воздуха в газовый тракт через неплотности воздухоподогревателя,
- вывод в атмосферу влаги топлива, удаляемой из него при сушке в мельнице, путем применения разомкнутых схем пылеприготовления,
- снижение степени загрязнения поверхностей нагрева Кт наружными отложениями доступными профилактическими и оперативными средствами,
- применение хвостовых поверхностей глубокого охлаждения дымовых газов.

Задача снижения α_t доступна решению, в частности, следующими путями:
- увеличение дисперсности потока вводимого в топку топлива,
- минимизация погрешности в поддержании заданных соотношений «нагрузка-топливо» и «нагрузка-воздух»,
- интенсификация процесса образования смеси топлива и воздуха аэродинамическими и термическими средствами,
- усиление в реализуемом принципе смесеобразования кинетической составляющей,
- уменьшение единичной мощности горелочных устройств и соответствующее увеличение их числа (использование масштабного фактора),
- применение прогрессивных схем расположения горелок в топке,
- применение САУ процессом горения, алгоритм которой учитывает реально доступную динамику изменения расхода топлива и расхода воздуха.

Задача снижения уровня максимальной температуры топочной среды доступна решению, в частности, следующими путями:
- применение объемного охлаждения топки,
- растягивание вдоль оси факела зоны высоких температур известными средствами,
- применение многоступенчатого сжигания топлива.

Задача связывания в топочном процессе некоторых вредных для ОС составляющих топочной среды состоит в введение в соответствующие места ее объема твердых, жидких или газообразных присадок.

Задача обработки дымовых газов за пределами Кт в системе газоочистки доступна решению в широком диапазоне известных возможностей.

Приведенный комплекс путей и средств воздействия на ход топочного процесса и на очистку газов за Кт способен в каждом конкретном случае способствовать решительному повышению экологичности Кт.

Итак, управление уровнем E_2 Кт осуществляется, как указано выше, в три этапа. Стратегический и тактический определяют исходный (максимальный) уровень – (E_2)_h – свойственный созданному новому Кт. По мере износа и движения Кт по траектории расходования ресурса E_2 снижается до уровня потенциального – (E_2)_n.

На третьем, оперативном этапе управления формирование фактического уровня – (E_2)_f – завершается под действием режима работы Кт, который (режим) задает САУ Кт. Таким образом, САУ Кт определяет уровень (E_2)_f, как часть уровня (E_2)_h. То есть, (E_2)_f является регулируемой величиной (параметром), поддерживаемой, то есть непосредственно управляемой САУ котельным агрегатом [6].

При создании новых Кт и пуске их в действие необходимо последовательно использовать три этапа формирования их технологической эффективности, в том числе ее экологической составляющей.

Частичное обновление существующих Кт, отработавших часть ресурса, может состоять, как известно, либо в модернизации, либо в реконструкции, либо в техническом перевооружении. В каждом из этих вариантов обновления степень (глубина) изменений, вносимых в технологию, конструкцию и режим работы обновляемых Кт, будет разной.

При частичном обновлении целесообразно использовать некоторые (доступные) элементы стратегического и тактического этапов, а возможности оперативного этапа использовать с возможно большей (доступной) полнотой.

Существенное значение имеет расчетное определение ресурса Кт по каждой из составляющих E_2, прежде всего, ресурса по E_2 агрегата.
Для осуществления регулярного расчетного прогнозирования составляющих E_2, Kt и его ресурса по этим составляющим, необходимо располагать развернутой многоуровневой системой информации о свойствах Kt и о заданных, проектных условиях его использования.

Проблему повышения E_2 Kt приходится решать в обширном многофакторном пространстве. В нем содержится значительное число путей повышения E_2. По каждому из них можно пройти разное расстояние. Все это свидетельствует о высокой степени сложности выбора задач, принимаемых к разработке и решению в каждом конкретном случае формирования структуры САУ Kt, формирования той ее части, которая управляется уровнем E_2.

Выбор упомянутых конкретных задач, их ранжирование по важности и по очередности решения требует от исполнителей высокой компетентности и надлежащего профессионального опыта. Подобные задания должны выполнять специализированные организации или специализированные группы разработчиков. В Украине предстоит существенно развить наиболее сложную отрасль энергомашиностроения - котлостроение - и организовать производство Котла нового поколения, инновационно насыщенных. Уровень их E_2 должен быть не ниже мирового уровня в ближайшие 20-30 лет.

Выводы

1. Среди задач управления параметрами технологической эффективности Kt задача непосредственного управления их E_2 приобрела приоритетное положение. Она относится к активным мерам повышения экологичности энергетических установок.
2. Программа создания новых Kt и обновления парка существующих агрегатов в качестве важнейшей задачи должна включать переход к прямому управлению их E_2.
3. Высокое качество процесса управления уровнем $E_2 Kt$ должно быть характерной чертой новых Kt и действующих котельных агрегатов, прошедших обновление.
4. Ресурс Kt по E_2 должен превосходить их ресурс по E_2 и по $E_{обш}$. Это условие исключит возможность несанкционированного использования Kt при недостаточной их экологичности.
5. Создание САУ уровнем $E_2 Kt$ должно опереться на системный подход во всех его аспектах.
6. Программа обновления Kt призвана повысить их технологическую эффективность до уровня, соответствующего предстоящему инновационному периоду развития в Украине энергомашиностроения и энергетики.

Литература