Profile Image

Hari Mohan Srivastava

Hari Mohan Srivastava Mail
University of Victoria, Canada

Professor

Department of Mathematics and Statistics

 

Scopus profile: link

ID ORCID: https://orcid.org/0000-0002-9277-8092

 

Selected Publications:

1. Yang, X.-J., Gao, F., Srivastava, H. M. (2018). A new computational approach for solving nonlinear local fractional PDEs. Journal of Computational and Applied Mathematics, 339, 285–296. doi: http://doi.org/10.1016/j.cam.2017.10.007 

2. Srivastava, H. M., Jena, B. B., Paikray, S. K., Misra, U. K. (2018). Deferred weighted A-statistical convergence based upon the (p,q)-Lagrange polynomials and its applications to approximation theorems. Journal of Applied Analysis, 24 (1), 1–16. doi: http://doi.org/10.1515/jaa-2018-0001 

3. Srivastava, H. M., Prajapati, A., Gochhayat, P. (2018). Third-Order Differential Subordination and Differential Superordination Results for Analytic Functions Involving the Srivastava-Attiya Operator. Applied Mathematics & Information Sciences, 12 (3), 469–481. doi: http://doi.org/10.18576/amis/120301 

4. Chung, K.-J., Liao, J.-J., Ting, P.-S., Lin, S.-D., Srivastava, H. M. (2017). A unified presentation of inventory models under quantity discounts, trade credits and cash discounts in the supply chain management. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 112 (2), 509–538. doi: http://doi.org/10.1007/s13398-017-0394-7 

5. Srivastava, H. M., Abbas, S., Tyagi, S., Lassoued, D. (2018). Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Mathematical Methods in the Applied Sciences, 41 (5), 2095–2104. doi: http://doi.org/10.1002/mma.4736 

6. Srivastava, H. M., Mehrez, K., Tomovski, Ž. (2018). New inequalities for some generalized Mathieu type series and the Riemann zeta function. Journal of Mathematical Inequalities, 1, 163–174. doi: http://doi.org/10.7153/jmi-2018-12-13 

7. Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M. (2018). Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator. Bulletin of the Iranian Mathematical Society, 44 (1), 149–157. doi: http://doi.org/10.1007/s41980-018-0011-3