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1. Introduction

Ensuring the reliability and efficiency of operation of 
complex spatial objects is a topical issue in the aviation, 
power, oil and gas indries, as well as for special-purpose engi-
neering structures. In general, such objects are characterized 
by large dimensions, non-stationarity of processes, distribu-
tion of parameters, nonlinearity, incomparteness of control 
of external factors, conditions and modes of functioning. 
Design of structural elements of such objects is based on the 
principle of safe damage, which allows for a microdefect, but 
such that does not lead to efficiency loss and object destruc-
tion [1–3]. However, the presence of welded or rivet joints of 
structural elements of complex spatial objects poses a threat 
of the emergence and development of multi-site damages. 
This may lead to destruction characterized by a sudden and 
rapid propagation due to combining among themselves and 
absorbing small-size cracks. Such a nature of damage devel-

opment, difficult operating conditions, limited information 
about the actual technical condition lead to the multi-class-
ing of objects in both time and space. In order to ensure safe 
and effective operation of such objects, it is necessary to 
provide multi-class diagnostics for timely detection of dam-
age, assessment of its extent, monitoring of its development 
and interaction on large-sized surfaces of complex spatial 
objects. This will contribute to ensuring the reliability and 
efficiency of operation, preventing the destruction of com-
plex spatial objects and averting catastrophic consequences.

2. Literature review and problem statement

Continuous monitoring of the technical condition (TC) 
of structures in operation, development control of damage, 
operational loads can be implemented in monitoring sys-
tems based on the concept of Structural Health Monitoring 
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(SHM) [4, 5]. SHM systems are developed as extensive 
information networks that are similar to the human ner-
vous system. The systems provide measurement, recording, 
conversion, transmission and complex analysis of data from 
a finite set of spatially distributed sensors of primary infor-
mation. The sensors are constructed according to a variety 
of physical principles, permanently attached or built in a 
design and provide structural integrity. The synthesis of 
such systems is based on the optimum combination of mod-
ularity and multi-channeling principles, taking into account 
information aspects of diagnostic processes. The modular 
principle is implemented by a set of sensors for obtaining 
information sufficient for a comprehensive assessment of the 
operational load and current TC of one or more structural 
units of a controlled object. The principle of multi-channel-
ing is realized both within one module (when implementing 
one physical principle and control method), and by combin-
ing several modules for solving the diagnostic problem in 
relation to one structural unit of an object. Methods of signal 
processing are selected separately for each module, depend-
ing on the information content of the physical quantities or 
characteristics used as diagnostic information. These can be 
determination of higher-order statistical and spectral char-
acteristics, evaluation of distribution laws of informative 
parameters, time-scale analysis, fractal analysis.

Modern diagnostic and monitoring systems are charac-
terized by the use of information technology based on artifi-
cial intelligence, which ensures the processing, comparison, 
image classification operations unavailable in traditional 
mathematics, the possibility of self-learning and self-organi-
zation. In particular, in [6], artificial neural networks (NN) 
are used in problems of acoustic emission signal classifica-
tion, and in [7], the authors used a family of models of mul-
tidimensional classifiers based on the Bayesian network for 
multidimensional classification. The use of neural networks 
for the two-class diagnostics of rotor elements of aircraft gas 
turbine engines based on the analysis of vibration and acous-
tic signals in stationary and non-stationary modes is justi-
fied in [8]. Integrated approaches and classification methods 
based on artificial neural networks and genetic algorithms 
are proposed for the diagnostics of concrete structures [9]. In 
[10], the use of a multilayer perceptron in the SHM systems 
is proposed. The practical implementation of such a neural 
network for damage recognition in airframe components is 
presented in [11]. Classification of the structural component 
condition is performed according to the extent of damage, 
which throughout the study took discrete values (increased 
from a certain minimum value to the one that characterizes 
the maximum damage). In [12–14], the Probabilistic Neural 
Network (PNN) was used for the condition classification 
and damage identification. The PNN provides nonlinear 
division into classes, has high sensitivity to small changes in 
diagnostic features, is capable of distinguishing among con-
ditions according to changes in the number of diagnostic fea-
tures. In [12], the PNN is used to identify the damage in the 
aircraft wing structure according to changes in the natural 
frequency of the structural element. And in [13], the possi-
bility of identification, localization and classification of two 
types of damage (crack and loss of rivets) is investigated. For 
classification, signals from eight built-in piezoceramic sen-
sors were used, each signal being an input signal of a certain 
neural network. Thus, eight PNNs of the same architecture 
were built, each being designed for damage classification ac-
cording to changes in the signal of the corresponding sensor.

In general, the above works deal with solving the prob-
lem of two-class diagnostics, when the fact of absence or 
presence of damage is established, or the type of damage 
among two possible ones is determined. However, the studies 
do not solve the problem of multi-class recognition of the 
condition of complex spatial objects in the event of emer-
gence and development of multi-site damage.

In [14], the development of the PNN-based classifier 
for the multi-class recognition of the TC of the tank with 
environmentally hazardous substances was performed. The 
classifier is a part of a complex monitoring system based on 
the SHM concept.

Elements of such classifier (Fig. 1) are:
– a training set of images or diagnostic features (P vector);
– a set of target classes (T vector);
– a connectivity matrix Tc, which establishes the member-

ship of the input vectors with the corresponding classes Sk;
– a neural network that performs classification and rec-

ognition of the object TC;
– a test set of images (Ptest vector).
During functioning, the latter is replaced with a set of 

actual data coming from the array of sensitive elements.

Fig. 1. General scheme of the condition classifier based  
on the neural network

The PNN is based on the architecture of a radial basis 
network, which consists of two layers. Neurons of the first 
layer have radial basis activation functions, and the second 
layer is called a competition layer. It estimates the proba-
bility of membership of the input vector with a particular 
class and compares the input vector with that class, the 
probability of membership with which is higher [8]. Each 
input vector of the NN corresponds to a certain initial or 
target value, and an “input/target” membership vector is 
formed for a set of input and output values. The training 
set contains Q pairs of “input/target” vectors. There are 
Z classes of possible membership of the input vector. As 
a result, the connectivity matrix Tс with the dimension 
ZхQ, which consists of zeros and units, can be formed. The 
rows of this matrix correspond to the membership classes, 
and the columns – to the input vectors. Thus, if the Tс(i, j) 
element of the connectivity matrix is equal to 1, this means 
that the j-th input vector belongs to the i class. The num-
ber of neurons in the first layer is formed by the number of 
Q pairs of “input/target” vectors of the training set. The 
initial competition layer contains Z neurons, according to 
Z classes.

In general, the column diagnostic feature vector А0, used 
for the condition recognition, may consist of any number of 
elements – diagnostic features
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Diagnostic features an may include spectral, correlation, 
fractal, statistical characteristics of the measured signals. 
The number of features may vary depending on the number 
of measuring channels, the diagnostic value of features and 
the number of classes of the technical condition. However, it 
is desirable that the vector had at least 3 features for reliable 
classification.

We will consider the problem of multi-class diagnostics 
using the diagnostic feature vector А0, which, for example, 
contains n=5 elements. Then we write down the vector (1) 
in the form:

0
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0
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0
5
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We denote the diagnostic features that characterize the 
defect-free condition through 0,na  where 1,5,=n  and let 
the nominal values of diagnostic features lie in the range of  
[1,0; 10.0], which is characteristic of dimensionless or nor-
malized diagnostic features [8]. In addition, we will take into 
account, as in [10], the permissible deviation Δ0=±5 % from 
the values of the parameters of 0,na  with which the object 
technical condition will be considered defect-free. That is, 
the values of the elements 0

na  with the deviation can be tak-
en in the range of [0.95; 1.05] of their nominal values. Given 
the latter, the diagnostic feature vector (2) takes the form:
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Let the proposed vector, containing 5 diagnostic fea-
tures, in general, describe 6 classes of technical condition of 
the control object:

– the S0 class corresponds to the defect-free condition of 
the control object; this class includes all input sets, for which 
deviations of diagnostic feature values do not exceed the 
aforementioned permissible deviation Δ0; 

– the S1 class includes input vectors, in which deviations 
of values of any of the features exceed the permissible devi-
ation Δ0;

– the S2 class includes input vectors, in which deviations 
of values of simultaneously two any features exceed the per-
missible deviation Δ0;

– the S3 class includes input vectors, in which deviations 
of values of simultaneously three any features exceed the 
permissible deviation Δ0;

– the S4 class includes input vectors, in which deviations 
of values of simultaneously four any features exceed the per-
missible deviation Δ0;

– the S5 class includes input vectors, in which deviations 
of values of simultaneously of all the features exceed the 
permissible deviation Δ0.

Thus, the S0 class characterizes the defect-free 
condition of the control object, and the S1−S5 classes 
characterize the object condition after the appearance 
and development of damage. Among the identified TC 

classes, consideration of the latter two (S4 and S5) provides 
a certain theoretical synthesis of the research results. In 
practice, these classes can characterize rather serious opera-
tional irregularities and partial or complete loss of function-
ality of the control object.

Based on the above, we can formulate the problem of 
multi-class recognition of the object TC by the developed 
neural network classifier. In general, the problem lies in the 
error-free recognition of the S0–S5 classes of the technical 
condition according to the multidimensional diagnostic fea-
ture vector (3).

3. The aim and objectives of the study

The aim of the work is to analyze the efficiency and to en-
sure error-free multi-class recognition of the object technical 
condition by the developed neural network classifier.

To achieve this aim, the following objectives were ac-
complished:

– to form a set of training diagnostic feature vectors that 
characterize the S0–S5 classes of the technical condition, to 
perform training of the neural network classifier;

– to form sets of test diagnostic feature vectors for the 
S0–S5 classes and to check the classifier efficiency;

– to perform an efficiency study of multi-class recogni-
tion, depending on the value of the NN influence parameter 
and dimension of the set of training vectors.

4. Efficiency study of multi-class recognition by classifier 
based on probabilistic neural network

4. 1. Formation of a set of training vectors
An important stage in the development and efficiency 

study of the neural network classifier is the formation of 
sets of training and test images (multidimensional vectors). 
First, for each of the above classes of TC, we form a set of 
training vectors according to the above conditions for deter-
mining the S0–S5 classes.

Training vectors of the S0 class are:
– the diagnostic feature vector A0 (2) without taking 

into account possible deviations of diagnostic feature values 
(Δ0=0 %); 

– two vectors with maximum permissible deviations 
(+Δ0∙A0) and (–Δ0∙A0); 

– various combinations of deviations of elements A0 in 
the permissible range of [0.95; 1.05].

For the set of training vectors of each defective con-
dition corresponding to the S1−S5 classes, the following 
maximum deviations of diagnostic feature values ΔM for 
training were selected and set: ±5.5 %; ±10 %; ±15 %; 
±20 %; ±25 %; ±50 %. Taking into account features and 
values of possible deviations, each set of training vectors for 
the S1−S5 classes will consist of all possible combinations 
of deviations and diagnostic features by classes.

Then, to determine the TC, which is characterized by 
the S1 class, we train the NN on the following set of vectors:

     ± ∆ ⋅
     ± ∆ ⋅     = = =
     
     ± ∆ ⋅     



  

1 1 1

0 0 0
1 1 1

0 0 0
2 2 2

1 2

0 0 0
5 5 5

(1 )

(1 )
; ; . (4)

(1 )

M

S S SM
M M nM

M

a a a

a a a
P P P

a a a



Mathematics and cybernetics – applied aspects

27

From the expression (4) we form a single training input 
vector for the S1 class:

1 1 1

1 1 2;  ;  ; , =  

S S S
S M M nMP P P P 		

which can be written in the matrix form as:

= ∆ ⋅1

1 0 ,S
S MP A 				    (5)

where 1∆S
M  is the matrix with the dimension m1×n (n – the 

number of elements of the column vector А0; m1 – the num-
ber of possible combinations of deviations and diagnostic 
features corresponding to the condition S1):

1
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For the S1 class in the matrix 1∆S
M , the diagonal elements 

correspond to the deviations 1 M± ∆ . All other elements of 
the matrix are equal to 1, indicating the invariance of the 
corresponding elements of the vector А0. Taking into ac-
count possible deviations of diagnostic feature values for the 
defect-free condition [0.95; 1.05], individual elements of the 
matrix 1∆S

M  will take any value in the range of [0.95; 1.05].
To determine the TC, characterized by the S2 class, we 

train the NN on the following set of vectors:
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The set of vectors (7) shows that training takes place on 
all possible combinations with deviations 1 M± ∆ . As in the 
previous case, from (7) a single input vector for the S2 class 
is formed:

2 2 2

2 1 2;  ;  ; , =  

S S S
S M M nMP P P P

which can be written in the matrix form as:

2

2 0,= ∆ ⋅S
S MP A 					     (8)

where 2∆S
M  is the matrix with the dimension m2×n (n – the 

number of elements of the column vector А0; m2 – the num-
ber of possible combinations of deviations and diagnostic 
features corresponding to the S2 condition):

Individual elements of the matrix 2∆S
M  for the S2 condi-

tion can take values in the range of [0.95; 1.05], as well as for 
the matrix 1 .∆S

M

Similarly, to the described method, we form training 
vectors for the S3–S4 classes taking into account the above 
conditions for the class definition.

For the S5 class, there is the only possible option of defi-
nition of the matrix 5 :∆S

M :
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Thus, in general, each diagnostic class S1–S5, for which 
simultaneously one or more any features in the training vec-
tors exceed the permissible deviation Δ0, corresponds to the 
combination matrix: ,∆ kS

M  where k=1,…, 5.
Training vectors for the S1−S5 classes in the matrix form 

have a generalized view:

0,= ∆ ⋅k

k

S
S MP A  1 5.=k , 

The general set of training images for the six diagnostic 
classes S0–S5 can be written in the matrix form:

0 1 2 3 4 5
;  ;  ;  ;  ;  . =  S S S S S SP P P P P P P 			   (11)

The rows of the matrix P correspond to the number of 
diagnostic features, and the number of columns is equal to 
the number R of input training vectors. Based on the results 
of the given conditions, R=378 training vectors were formed 
according to the specified classes. The S0 class is trained on 
R0=6 vectors, the S1 and S4 classes – on R1=R4=60, the S2 
and S3 classes –on R2=R3=120, the S5 class – on R5=12 vec-
tors. On the formed set of training vectors for the six diag-
nostic classes S0–S5, the classifier training was conducted 
based on the probabilistic neural network according to the 
method described in [10].

4. 2. Formation of a set of test vectors
After the training, it is necessary to check the perfor-

mance of the developed classifier, for which the following  
3 sets of test vectors were formed:

– for the first set of test vectors, the deviation of di-
agnostic features does not exceed the permissible value 
(Δ0=±5 %) of ±2.5 %; this means that testing is per-
formed only for the defect-free condition of an object  
(class S0);

– for the second set of test vectors, deviations of the 
elements of all input vectors for the S0 class are within Δ0, 
and diagnostic features of vectors for the S1−S5 classes 
have a deviation of ±9 % from the values of А0. So, for S1, 
any element of the test vector has a deviation of ±9 %, while 
others do not differ from the diagnostic feature vector А0 

by more than ±5 %. For the S2–S5 classes, the number of 
the elements different from А0 by ±9 % is two, three, etc., 
according to the class;

– the third set of test vectors for the S0–S5 classes is 
formed according to the algorithm of forming the second set 
of test vectors with an increased value of the deviation of the 
elements up to ±12 %.
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For each of the sets, 84 test vectors that characterize the 
S0−S5 classes of the technical condition of an object were 
formed. The total number of test vectors is 252. The devel-
oped classifier trained on the general set of training images 
(11) has performed correct recognition of all test vectors 
from the above three sets.

4. 3. Analysis of multi-class recognition efficiency
For the developed neural network classifier and the 

formed sets of training and test vectors that characterize the 
multi-classing of the object TC, we will analyze the classifi-
cation efficiency. Such a study is important for justifying the 
classifier characteristics, which provide error-free recogni-
tion of the condition.

The analysis of recognition efficiency of the object tech-
nical condition by the developed classifier will be carried out 
in 2 stages. The first step is classification, that is, the proce-
dure of assigning the test vectors submitted to the classifier 
input, to the defined classes S0−S5, which characterize the 
object condition. In the second stage, we will evaluate the 
correct classification of test vectors, depending on the char-
acteristics of the classifier and the set of training vectors.

The efficiency of multi-class recognition will be evalu-
ated by the indicator K, which is determined in percentage 
as the ratio of the number of correctly classified vectors N1 

to the total number of input vectors N0. The indicator K is 
a percentage of the probability of correct classification [8]:

1

0

100 %.= ⋅
N

K
N

 	 (12)

Let us study the influence of the factors associated with 
the NN characteristics and training process on the efficiency 
indicator K.

Study of the influence of the probabilistic neural network 
parameter spread. As noted in [8, 10], the probabilistic neural 
network parameter spread imposes functional conditions on 
classification accuracy. In the software implementation of NN, 
this parameter is related to the mean square deviation of the 
Gaussian function, which specifies the width of the activation 
functions of neurons and determines their influence on the es-
timation of the total probability density. Therefore, the spread 
parameter affects the result of classification, it can take any 
value in the range of [0; 1], during the network training this 
value is taken without additional justification. The optimum 
value of the spread parameter is determined experimentally 
during the network testing and directly in the process of 
classification of test vectors as such that provides error-free 
(K=100 %) recognition or with minimum possible errors.

In the previous testing of the NN, spread=0.05 was tak-
en. Let us study the dependence of the efficiency indicator 
K on the value of the influence parameter. In this study, we 
will change the value of the spread parameter in the range of 
values from 0.01 to 0.1 with an increment of 0.01, and in the 
range of values from 0.1 to 1 – with an increment of 0.1. As 
the minimum value, we take spread=0.005. For the study, 
a new set of test vectors with the following deviations of 
diagnostic feature values δ was formed: ±2.5 %; ±6 %; ±9 %;  
±10 %; ±12 %; ±15 %. Some of them (δ=±10 %; ±15 %) coin-
cide with the previously taken deviations ΔM of features for a 
set of training vectors, which is done to check the reproduc-
ibility of classification results by training vectors. According 
to such test vectors, recognition and determination of the 
indicator K are performed.

Study of the influence of the number of training vectors. 
The size of the radial-basis layer of the PNN depends on the 
number of images of the training set. On the one hand, the 
larger the NN size, the longer the network training, which 
negatively affects the classifier performance in real time. 
On the other hand, reduction of the number of training 
vectors can lead to a decrease in the recognition efficiency. 
Therefore, when developing neural network classifiers, it is 
important to analyze the effect of the dimension of the set 
of training diagnostic feature vectors on the classification 
accuracy in order to determine the possibility of error-free 
multi-class recognition at a certain minimum number of 
training vectors.

We will use the value of the influence parameter 
spread=0.05, for which error-free class recognition was 
provided in the previous test. As described above in 
paragraph 4.1, first, R=378 training vectors were formed 
that characterize the classes S0−S5 of the object TC with 
the following deviations of diagnostic feature values ΔM:  
±5.5 %; ±10 %; ±15 %; ±20 %; ±25 %; ±50 %.

We will reduce the number of training vectors for the 
S1−S5 classes relative to the above value R by removing the 
values of the set deviations ΔM according to the following 
procedure:

– remove ΔM=±50 %; the NN is trained on the set of 
training vectors with the following deviations of feature val-
ues Δ: ±5.5 %; ±10 %; ±15 %; ±20 %; ±25 %; the total number 
of training vectors R has decreased to 316;

– remove ΔM=±50 % and ΔM=±25 %; the NN is trained 
on the set of vectors with the deviations of feature values Δ: 
±5.5 %; ±10 %; ±15 %; ±20 %; the total number of training 
vectors is R=254;

–  remove ΔM=±50 %, ΔM=±25 % and ΔM=±20 %; the 
NN is trained on the set of vectors with the following devi-
ations of feature values Δ: ±5.5 %, ±10 %, ±15 %; the total 
number of training vectors is R=192;

– remove ΔM=±50 %, ΔM=±25 %, ΔM=±20 % and ΔM= 
=±15 %; the NN is trained on the set of vectors with the de-
viations of feature values Δ: ±5.5 %, ±10 %; the total number 
of training vectors is R=130;

– for the NN training, we use training vectors only with 
one deviation value Δ=±5.5 %, the rest of the values of the 
set deviations ΔM are removed; the total number of training 
vectors R is only 68.

We will conduct testing of the trained neuron network 
classifier on the set of test vectors with the modified and 
extended range of diagnostic feature deviations δ: ±2.5 %;  
±10 %; ±15 %; ±17 %; ±20 %; ±25 %; ±30 %; ±35 %. Such 
changes allow examining the classifier efficiency for a wider 
range of possible deviations of diagnostic feature values for 
each class of the object technical condition.

5. Results of the study of multi-class recognition 
efficiency

Fig. 2 shows the graphs of the dependence of the recogni-
tion efficiency indicator K on the value of the NN parameter 
spread, obtained by the expression (12) with different devi-
ations δ of test vectors.

As can be seen from the following results:
– with the deviation δ=±2.5 %, the neural network 

classifier provides error-free classification (K=100 %) in 
the range of spread values from 0.005 to 0.07. At the val-
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ue of the influence parameter of 0.08, the coefficient K is  
89.29 %, and further increase in spread leads to a decrease in 
the efficiency indicator;

– with the deviation δ=±6 %, the classifier efficiency 
is 100 % in the range of values of the influence parameter 
spread from 0.005 to 0.1;

– with the deviation δ=±9 %, the classifier provides 
error-free recognition at the spread values in the range 
from 0.01 to 0.1. Reduction of the influence parameter 
value negatively affects the classification quality and when 
spread=0.005, a decrease in the coefficient K to 92.86 % is 
observed;

– the deviation δ=±10 % coincides with one of the 
training values of the deviation ΔM; error-free classification 
is provided with the spread values in the range from 0.005 
to 0.1;

– with the deviation δ=±12 %, the coefficient K is equal 
to 100 % at the influence parameter values in the range from 
0.02 to 0.1, and starting with the value of spread=0.01, the 
classifier efficiency significantly deteriorates;

– the deviation of elements of the test set δ=±15 % also 
coincides with one of the training values ΔM; error-free clas-
sification is achieved at the spread values in the range from 
0.005 to 0.1.

a                                                b 

c                                                d 

e                                                f 

Fig. 2. Graphs of the dependence of the multi-class 
recognition efficiency indicator K on the probabilistic neural 

network parameter spread for the following values of 
deviations: а – δ=2.5 %; b – δ=6 %; c – δ=9 %;  

d – δ=2.5 %; e – δ=2.5 %; f – δ=2.5 %

The results of the study of the dependence of the efficien-
cy indicator K on the dimension of the set of training vectors, 
conducted using the classifier testing results, have shown:

– for test vectors with deviations of diagnostic feature 
values δ≤17 %, the efficiency of recognition of the technical 
condition according to the S0−S5 classes is provided at the 
level of 100 % for all the considered values of R. The indica-

tor K is not decreased even at close diagnostic feature values 
for defect-free and defective conditions (the difference be-
tween the diagnostic feature values of the S0 class and S1−S5 
classes did not exceed 0.5 %);

– for test vectors with deviations of diagnostic feature 
values δ>17 %, there is a decrease in the recognition ef-
ficiency with reduction of the number of vectors R in the 
training set.

The latter case is illustrated in Fig. 3 for the following 
values of diagnostic feature deviation δ: ±20 %; ±25 %; 
±30 %; ±35 %.

a                                                b 

c                                                d 

Fig. 3. Graphs of the dependence of the multi-class 
recognition efficiency indicator K on the number of training 

vectors for the following deviations:  
а – δ=20 %; b – δ=25 %; c – δ=30 %; d – δ=35 %

As can be seen from the results presented, the error-free 
recognition (K=100 %) for the entire considered range of de-
viations δ is provided only when the NN is trained on the set 
that includes R=316 training vectors. Reduction of the num-
ber of training vectors R leads to a decrease in the efficiency 
indicator (K<100 %) at the following values of diagnostic 
feature deviations δ:

– for the number of training vectors R=254 with devia-
tions δ≥30 %;

– for the number of training vectors R=192 with devia-
tions δ≥25 %;

– for the number of training vectors R=130 with devia-
tions δ≥20 %;

– for the number of training vectors R=68 with devia-
tions δ>17 %.

6. Discussion of the results of the study of multi-class 
recognition efficiency

The results of the study of the influence of the probabilistic 
neural network parameter spread on the efficiency indicator K 
(Fig. 2) have shown the possibility of error-free multi-class 
recognition of the object condition by the developed classi-
fier. This result is obtained for the entire set of input vectors 
with different values of diagnostic feature deviation provided 
that the value of the spread parameter lies in the range of  
[0.02; 0.07]. In general, when the spread parameter is in-
creased, the probabilistic neural network will take into ac-
count the influence of adjacent neighboring conditions. At 
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very small values of the spread parameter, the Gaussian 
distribution function covers a small number of influences, 
which affects the classification quality. The limitation of the 
range of the spread parameter values, obtained in the study is 
associated with the complex influence of the following factors:

– the number of the recognized classes (for the two-class 
diagnostics, the range of the spread parameter values is sig-
nificantly expanded [8]);

– the dimension of diagnostic feature vectors;
– the differences in the diagnostic feature deviation val-

ues within the defined classes for training and test vectors.
The range of the spread parameter values that provides 

error-free recognition is significantly expanded if the devia-
tions of diagnostic feature values in training and test vectors 
are the same. This is confirmed by the results of the studies, 
for example, for δ=±10 % and δ=±15 %. However, even in the 
case of the complex influence of these factors, the obtained 
results have shown the possibility of error-free multi-class 
recognition of the object TC by the developed classifier. 
This is important for monitoring the TC of complex spatial 
objects with multi-site damage.

The analysis of the obtained results of the influence of 
the dimension of the set of training vectors on the multi-
class recognition efficiency has shown their dependence on 
the value of deviation δ. The greater the diagnostic feature 
deviation δ in test vectors, the greater the influence of the 
dimension of the set of training vectors on the multi-class 
recognition efficiency. Therefore, in order to ensure er-
ror-free (K=100 %) multi-class recognition by input vectors, 
in which deviations of diagnostic values exceed 17 %, it is 
necessary to expand the NN training. On the other hand, 
reduction of the number of training vectors does not lead 
to a decrease in the multi-class recognition efficiency in 
case of minimum differences in diagnostic feature values 
for defect-free (S0 class) and defective (S1−S5 classes) con-
ditions of control objects. This indicates a high sensitivity 
of the probabilistic neural network when performing image 
comparison and classification. Such a classifier can provide 

high efficiency of recognition of changes in the TC of control 
objects at early stages of multi-site damage development in 
cases of incomplete information about the recognized images 
and a limited number of training images.

7. Conclusions

1. For recognition, multidimensional diagnostic feature 
vectors that characterize the defect-free (S0 class) and defec-
tive (S1−S5 classes) object conditions are used. Division into 
classes is carried out depending on the diagnostic feature 
deviation value and the number of features in the vector, the 
deviation of which exceeds the permissible value Δ0=±5 %. 
Formation of a set of training diagnostic feature vectors with 
a wide-range feature value deviations is carried out. The 
formed training vectors correspond to the six classes S0–S5, 
followed by the neural network “training” for setting the 
network parameters.

2. Three sets of test vectors, in which the maximum di-
agnostic feature deviation value does not exceed ±5 %, ±9 % 
and ±12 %, respectively, are formed. The developed classifier, 
trained on the general set of training images has correctly 
performed recognition of all test vectors.

3. The study of the multi-class recognition efficiency, 
depending on the characteristics of the neural network and 
the set of training vectors, is conducted. It is found that the 
developed classifier provides error-free multi-class recog-
nition of test vectors, if the value of the network influence 
parameter spread is in the range of [0.02; 0.07]. The mini-
mum sizes of the set of training vectors and limit values of 
diagnostic feature deviations in test vectors, which provide 
error-free multi-class recognition, are determined. It is 
revealed that reduction of the number of training vectors 
does not lead to a decrease in the multi-class recognition 
efficiency in case of small (less than 0.5 %) differences in 
diagnostic feature values for defect-free and defective con-
ditions of control objects.
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1. Introduction

Around the world, amounts of digital data keep increas-
ing with each year. A great share of these data are published 
in open access in their primary, non-aggregated form. Such 
data sets are called microdata. Microdata can be used for 
numerous purposes, including:

– dissemination of clinical data to facilitate medical 
research. E. g., in the U.S., this is regulated by the corre-
sponding bills [1, 2];

– enforcing transparency of public policy. E. g., in the 
EU, protection of personal data is subject to the corre-
sponding law [3];

– sharing census and other statistical research data to 
enable conducting economic, demographic, and other kinds 
of research.

At the same time, there is a certain risk that providing 
public access to the data in their unchanged form will not 

only achieve its primary goal but also lead to disclosing con-
fidential information about an individual or a group thereof. 
E.g., open access to clinical data facilitates medical research. 
At the same time, publishing medical records can enable 
unique identification of a patient. Moreover, outliers in a 
regional distribution of patients might point to areas with 
exceeded sickness rate threshold.

Therefore, it is important to provide data anonymity at 
the stage of creating the content for open information re-
sources. Anonymity of a subject can be seen as its property of 
being not identifiable (uniquely characterized) within a set 
of subjects [4]. Anonymity comes in two variants:

– individual anonymity concerns information about sin-
gle respondents (persons, households, enterprises);

– group anonymity concerns distribution of information 
about a group of respondents.

Methods for providing individual anonymity have been a 
subject of research for more than 20 years and are developed 
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Запропоновано модифікацію методу розв’я-
зання задачі забезпечення групової анонімності 
на основі міметичного алгоритму, яка не перед-
бачає участі експерта на етапі оцінювання 
розв’язків задачі. Автоматизація оцінювання 
розв’язків підвищує ефективність процесу гру-
пової анонімізації даних. Модифікацію методу 
проілюстровано шляхом розв’язання задачі ано-
німізації на основі реальних даних

Ключові слова: міметичний алгоритм, групо-
ва анонімність, мікрофайл, викид, модифікова-
ний метод тау Томпсона

Предложена модификация метода решения 
задачи обеспечения групповой анонимности на 
основе меметического алгоритма, которая не 
предусматривает участия эксперта на этапе 
оценивания решений задачи. Автоматизация 
оценивания решений повышает эффектив-
ность процесса групповой анонимизации дан-
ных. Модификация метода проиллюстрирована 
путем решения задачи анонимизации на основе 
реальных данных

Ключевые слова: меметический алгоритм, 
групповая анонимность, микрофайл, выброс, 
модифицированный метод тау Томпсона
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