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PoGomy npucesueno odocnioxcennio edexmuenoc-
mi Kaacugikamopa Ha 0CHOBI IMOBIPHICHOI HelPOHHOT
Mepedxci 0aa Oazamoxnacosoi Odiaznocmuxu 00 ‘ekma
3a HaseHocmi 0Gazamoocepedx06020 NOWKOOIHCEHHS.
Buxopucmano 6azamosumipnuii 6exmop 0iaznocmurnux
osnakx, wo micmumo 5 eaemenmis. Cpopmosano mmo-
HCUHU HABUATILHUX MA MECMOBUX BXIOHUX 6eKmopis,
BGUKOHANO HABUAHHA Ma mecmyeanHns Kaacudixamopa.
IIpoananizosano epexmuenicmo 6azamoxnacosozo pos-
ni3HABAHHA 6 3ANeNCHOCMI 610 XapaKmepucmux Kaiacu-
dixamopa ma mMHoMCUHU HABUATILHUX BEKMOPIE

Kniouoei croea: bazamoxnacoee posnisnaeanns, neti-
pomepedxcesutl kaacudixamop, eexmop 0iazHoCMUMHUX
03HAaK, IMOGIPHICMb NPABUNBLHOL Kaacuixauii
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Paéoma mnoceawena uccnedogeanuto 3pdexmus-
Hocmu Kaaccuguxamopa Ha 0CHOBE GePOIMHOCMHOL
HeUpoOHHOU cemu 0N MHOZOKAACCOGOU OUAZHOCTMU-
Ku o0vexma npu HATUMUU MHO2004A208020 NOBPEIHC-
denus. Hcnonvzosan muozomepnoui éexmop ouazuo-
CMuMecKux npu3Haxos, cooepicawuil 5 3aemenmos.
Copmuposanvt mHoicecmea yueOHbLIX U MeECMOBHIX
6X00HBIX 8EKMOPOB, GLINOIHEHO 00YUeHUe U MeCMUpO-
sanue xaaccuuxamopa. Ilpoananuszuposana 3 pex-
MUBHOCMb MHOZOKJIACCO8020 PACNO3HABAHUA 6 3A6U-
cumocmu om xapaxkmepucmux kaaccuduxamopa u
MHOJICECMEA 00YHAOUWUX 86KMOPOB

Kmouegvie cnosa: mmnozoxnaccoeoe pacnosnasanue,
Helipocemesoll Kaaccuguxamop, 6exmop ouazHocmu-
YeCKUX NPUIHAK08, 6ePOAIMHOCMb NPAGUNLHOU KIAACCU-
durayuu
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Ensuring the reliability and efficiency of operation of
complex spatial objects is a topical issue in the aviation,
power, oil and gas indries, as well as for special-purpose engi-
neering structures. In general, such objects are characterized
by large dimensions, non-stationarity of processes, distribu-
tion of parameters, nonlinearity, incomparteness of control
of external factors, conditions and modes of functioning.
Design of structural elements of such objects is based on the
principle of safe damage, which allows for a microdefect, but
such that does not lead to efficiency loss and object destruc-
tion [1-3]. However, the presence of welded or rivet joints of
structural elements of complex spatial objects poses a threat
of the emergence and development of multi-site damages.
This may lead to destruction characterized by a sudden and
rapid propagation due to combining among themselves and
absorbing small-size cracks. Such a nature of damage devel-

opment, difficult operating conditions, limited information
about the actual technical condition lead to the multi-class-
ing of objects in both time and space. In order to ensure safe
and effective operation of such objects, it is necessary to
provide multi-class diagnostics for timely detection of dam-
age, assessment of its extent, monitoring of its development
and interaction on large-sized surfaces of complex spatial
objects. This will contribute to ensuring the reliability and
efficiency of operation, preventing the destruction of com-
plex spatial objects and averting catastrophic consequences.

2. Literature review and problem statement

Continuous monitoring of the technical condition (TC)
of structures in operation, development control of damage,
operational loads can be implemented in monitoring sys-
tems based on the concept of Structural Health Monitoring




(SHM) [4, 5]. SHM systems are developed as extensive
information networks that are similar to the human ner-
vous system. The systems provide measurement, recording,
conversion, transmission and complex analysis of data from
a finite set of spatially distributed sensors of primary infor-
mation. The sensors are constructed according to a variety
of physical principles, permanently attached or built in a
design and provide structural integrity. The synthesis of
such systems is based on the optimum combination of mod-
ularity and multi-channeling principles, taking into account
information aspects of diagnostic processes. The modular
principle is implemented by a set of sensors for obtaining
information sufficient for a comprehensive assessment of the
operational load and current TC of one or more structural
units of a controlled object. The principle of multi-channel-
ing is realized both within one module (when implementing
one physical principle and control method), and by combin-
ing several modules for solving the diagnostic problem in
relation to one structural unit of an object. Methods of signal
processing are selected separately for each module, depend-
ing on the information content of the physical quantities or
characteristics used as diagnostic information. These can be
determination of higher-order statistical and spectral char-
acteristics, evaluation of distribution laws of informative
parameters, time-scale analysis, fractal analysis.

Modern diagnostic and monitoring systems are charac-
terized by the use of information technology based on artifi-
cial intelligence, which ensures the processing, comparison,
image classification operations unavailable in traditional
mathematics, the possibility of self-learning and self-organi-
zation. In particular, in [6], artificial neural networks (NN)
are used in problems of acoustic emission signal classifica-
tion, and in [7], the authors used a family of models of mul-
tidimensional classifiers based on the Bayesian network for
multidimensional classification. The use of neural networks
for the two-class diagnostics of rotor elements of aircraft gas
turbine engines based on the analysis of vibration and acous-
tic signals in stationary and non-stationary modes is justi-
fied in [8]. Integrated approaches and classification methods
based on artificial neural networks and genetic algorithms
are proposed for the diagnostics of concrete structures [9]. In
[10], the use of a multilayer perceptron in the SHM systems
is proposed. The practical implementation of such a neural
network for damage recognition in airframe components is
presented in [11]. Classification of the structural component
condition is performed according to the extent of damage,
which throughout the study took discrete values (increased
from a certain minimum value to the one that characterizes
the maximum damage). In [12—14], the Probabilistic Neural
Network (PNN) was used for the condition classification
and damage identification. The PNN provides nonlinear
division into classes, has high sensitivity to small changes in
diagnostic features, is capable of distinguishing among con-
ditions according to changes in the number of diagnostic fea-
tures. In [12], the PNN is used to identify the damage in the
aircraft wing structure according to changes in the natural
frequency of the structural element. And in [13], the possi-
bility of identification, localization and classification of two
types of damage (crack and loss of rivets) is investigated. For
classification, signals from eight built-in piezoceramic sen-
sors were used, each signal being an input signal of a certain
neural network. Thus, eight PNNs of the same architecture
were built, each being designed for damage classification ac-
cording to changes in the signal of the corresponding sensor.

In general, the above works deal with solving the prob-
lem of two-class diagnostics, when the fact of absence or
presence of damage is established, or the type of damage
among two possible ones is determined. However, the studies
do not solve the problem of multi-class recognition of the
condition of complex spatial objects in the event of emer-
gence and development of multi-site damage.

In [14], the development of the PNN-based classifier
for the multi-class recognition of the TC of the tank with
environmentally hazardous substances was performed. The
classifier is a part of a complex monitoring system based on
the SHM concept.

Elements of such classifier (Fig. 1) are:

—a training set of images or diagnostic features (P vector);

— a set of target classes (T vector);

— a connectivity matrix T;, which establishes the member-
ship of the input vectors with the corresponding classes Si;

—a neural network that performs classification and rec-
ognition of the object TC;

— a test set of images (P vector).

During functioning, the latter is replaced with a set of
actual data coming from the array of sensitive elements.

Training Class Connectivity Neural S
vector P :> vector 1’ :> matrix Tc:> network :>
Test
vector Py

Fig. 1. General scheme of the condition classifier based
on the neural network

The PNN is based on the architecture of a radial basis
network, which consists of two layers. Neurons of the first
layer have radial basis activation functions, and the second
layer is called a competition layer. It estimates the proba-
bility of membership of the input vector with a particular
class and compares the input vector with that class, the
probability of membership with which is higher [8]. Each
input vector of the NN corresponds to a certain initial or
target value, and an “input/target” membership vector is
formed for a set of input and output values. The training
set contains Q pairs of “input/target” vectors. There are
Z classes of possible membership of the input vector. As
a result, the connectivity matrix 7, with the dimension
ZxQ, which consists of zeros and units, can be formed. The
rows of this matrix correspond to the membership classes,
and the columns — to the input vectors. Thus, if the T.(i, j)
element of the connectivity matrix is equal to 1, this means
that the j-th input vector belongs to the i class. The num-
ber of neurons in the first layer is formed by the number of
Q pairs of “input/target” vectors of the training set. The
initial competition layer contains Z neurons, according to
Z classes.

In general, the column diagnostic feature vector Ay, used
for the condition recognition, may consist of any number of
elements — diagnostic features

A=l ®



Diagnostic features a, may include spectral, correlation,
fractal, statistical characteristics of the measured signals.
The number of features may vary depending on the number
of measuring channels, the diagnostic value of features and
the number of classes of the technical condition. However, it
is desirable that the vector had at least 3 features for reliable
classification.

We will consider the problem of multi-class diagnostics
using the diagnostic feature vector Aj, which, for example,
contains n=>5 elements. Then we write down the vector (1)
in the form:

0
a1

0
a,

A=a | @)
a

0
as

We denote the diagnostic features that characterize the
defect-free condition through a!, where n=15, and let
the nominal values of diagnostic features lie in the range of
[1,0; 10.0], which is characteristic of dimensionless or nor-
malized diagnostic features [8]. In addition, we will take into
account, as in [10], the permissible deviation Ag=%5 % from
the values of the parameters of a’, with which the object
technical condition will be considered defect-free. That is,
the values of the elements @) with the deviation can be tak-
en in the range of [0.95; 1.05] of their nominal values. Given
the latter, the diagnostic feature vector (2) takes the form:

[0,95,1,05] @’
[0,95,1,05] a)
A =[10,95;1,05]-af |. (3)
[0,95;1,05]
[0,95;1,05]-a)

Let the proposed vector, containing 5 diagnostic fea-
tures, in general, describe 6 classes of technical condition of
the control object:

— the S0 class corresponds to the defect-free condition of
the control object; this class includes all input sets, for which
deviations of diagnostic feature values do not exceed the
aforementioned permissible deviation A;

— the S1 class includes input vectors, in which deviations
of values of any of the features exceed the permissible devi-
ation Ag;

— the S2 class includes input vectors, in which deviations
of values of simultaneously two any features exceed the per-
missible deviation Ag;

— the §3 class includes input vectors, in which deviations
of values of simultaneously three any features exceed the
permissible deviation Ay;

— the 54 class includes input vectors, in which deviations
of values of simultaneously four any features exceed the per-
missible deviation Ag;

— the S5 class includes input vectors, in which deviations
of values of simultaneously of all the features exceed the
permissible deviation A,.

Thus, the SO class characterizes the defect-free
condition of the control object, and the §1-55 classes
characterize the object condition after the appearance
and development of damage. Among the identified TC

Si—
Pir=

classes, consideration of the latter two (54 and S5) provides
a certain theoretical synthesis of the research results. In
practice, these classes can characterize rather serious opera-
tional irregularities and partial or complete loss of function-
ality of the control object.

Based on the above, we can formulate the problem of
multi-class recognition of the object TC by the developed
neural network classifier. In general, the problem lies in the
error-free recognition of the S0-55 classes of the technical
condition according to the multidimensional diagnostic fea-
ture vector (3).

3. The aim and objectives of the study

The aim of the work is to analyze the efficiency and to en-
sure error-free multi-class recognition of the object technical
condition by the developed neural network classifier.

To achieve this aim, the following objectives were ac-
complished:

— to form a set of training diagnostic feature vectors that
characterize the S0—S5 classes of the technical condition, to
perform training of the neural network classifier;

—to form sets of test diagnostic feature vectors for the
S0-S55 classes and to check the classifier efficiency;

— to perform an efficiency study of multi-class recogni-
tion, depending on the value of the NN influence parameter
and dimension of the set of training vectors.

4. Efficiency study of multi-class recognition by classifier
based on probabilistic neural network

4. 1. Formation of a set of training vectors

An important stage in the development and efficiency
study of the neural network classifier is the formation of
sets of training and test images (multidimensional vectors).
First, for each of the above classes of TC, we form a set of
training vectors according to the above conditions for deter-
mining the S0-S55 classes.

Training vectors of the S0 class are:

— the diagnostic feature vector Ay (2) without taking
into account possible deviations of diagnostic feature values
(A0=0 %);

—two vectors with maximum permissible deviations
(+Ao-Ap) and (—Ap-Ap);

— various combinations of deviations of elements A, in
the permissible range of [0.95; 1.05].

For the set of training vectors of each defective con-
dition corresponding to the $1-55 classes, the following
maximum deviations of diagnostic feature values Ay, for
training were selected and set: +5.5%; +10 %; *£15 %;
+20 %; +25 %; +50 %. Taking into account features and
values of possible deviations, each set of training vectors for
the §1-S55 classes will consist of all possible combinations
of deviations and diagnostic features by classes.

Then, to determine the TC, which is characterized by
the 51 class, we train the NN on the following set of vectors:

(1+4,)-a a @
0 0 0
1£A,)-
S L Rl 2 I X
aj al (1+A,)-al



From the expression (4) we form a single training input
vector for the §1 class:

Si. pSi . . DS
P5| :[P1Mv YT PnM:l’
which can be written in the matrix form as:

PS‘ =Ai}~A0, ®)

where Al is the matrix with the dimension mxn (n — the
number of elements of the column vector Ag; my — the num-
ber of possible combinations of deviations and diagnostic
features corresponding to the condition S7):

1+A, 1 1
1 1£4, 1

Ay =l . ) ®)
1 1 1A,

For the S1 class in the matrix A3, the diagonal elements
correspond to the deviations 1£A,,. All other elements of
the matrix are equal to 1, indicating the invariance of the
corresponding elements of the vector Ay. Taking into ac-
count possible deviations of diagnostic feature values for the
defect-free condition [0.95; 1.05], individual elements of the
matrix A% will take any value in the range of [0.95; 1.05].

To determine the TC, characterized by the S2 class, we
train the NN on the following set of vectors:

(1iAM)'aiJ (1iAM).a?
(1iAM)'a3 612
Bi=| d [ Bh=|aEa)a)
a; a;
a; as
ay a)

(1£4,)-a, a,
SB=lAxA)al Py = al . (7
a) (1£A,)-al
al (1A,)-al

The set of vectors (7) shows that training takes place on
all possible combinations with deviations 1+A,,. As in the
previous case, from (7) a single input vector for the S2 class
is formed:

_ Sy. DSy . . DSy
Py =[Py P i Py ),

which can be written in the matrix form as:
P =Aj-A, (8)

where A}? is the matrix with the dimension myxn (n — the
number of elements of the column vector Ag; my — the num-
ber of possible combinations of deviations and diagnostic
features corresponding to the $2 condition):

1£A,, 1%A, 1 1 1
1£A,, 1 1£A,, 1 1
A= 1 1%A, 1A, 1A, 1 [.9
1 1 1 1 1xA,
1 1 1 - A%A, 1xA,

Individual elements of the matrix A for the $2 condi-
tion can take values in the range of [0.95; 1.05], as well as for
the matrix Aj..

Similarly, to the described method, we form training
vectors for the §3-54 classes taking into account the above
conditions for the class definition.

For the S5 class, there is the only possible option of defi-
nition of the matrix A3

1A,
1A,
Ay =|1£A,, |
1A,
1A,

(10)

Thus, in general, each diagnostic class §1-S55, for which
simultaneously one or more any features in the training vec-
tors exceed the permissible deviation Ay, corresponds to the
combination matrix: Af\;, where k=1,..., 5.

Training vectors for the $1-55 classes in the matrix form
have a generalized view:

Py =Ay-A, k=15

The general set of training images for the six diagnostic
classes S0—S5 can be written in the matrix form:

P=[Py; Py; Py; Pys Pys Py . (1)

The rows of the matrix P correspond to the number of
diagnostic features, and the number of columns is equal to
the number R of input training vectors. Based on the results
of the given conditions, R=378 training vectors were formed
according to the specified classes. The S0 class is trained on
Ry=6 vectors, the S1 and 54 classes — on R{=R;=60, the 52
and S3 classes —on Ry=R3=120, the S5 class — on R5=12 vec-
tors. On the formed set of training vectors for the six diag-
nostic classes S0—S5, the classifier training was conducted

based on the probabilistic neural network according to the
method described in [10].

4. 2. Formation of a set of test vectors

After the training, it is necessary to check the perfor-
mance of the developed classifier, for which the following
3 sets of test vectors were formed:

— for the first set of test vectors, the deviation of di-
agnostic features does not exceed the permissible value
(Ap=%5%) of £2.5%; this means that testing is per-
formed only for the defect-free condition of an object
(class S0);

— for the second set of test vectors, deviations of the
elements of all input vectors for the S0 class are within A,
and diagnostic features of vectors for the S1-55 classes
have a deviation of +9 % from the values of Ay. So, for 51,
any element of the test vector has a deviation of £9 %, while
others do not differ from the diagnostic feature vector Ay
by more than £5 %. For the §2—55 classes, the number of
the elements different from Ay by +9 % is two, three, etc.,
according to the class;

— the third set of test vectors for the S0-S5 classes is
formed according to the algorithm of forming the second set
of test vectors with an increased value of the deviation of the
elements up to £12 %.



For each of the sets, 84 test vectors that characterize the
S50—-S5 classes of the technical condition of an object were
formed. The total number of test vectors is 252. The devel-
oped classifier trained on the general set of training images
(11) has performed correct recognition of all test vectors
from the above three sets.

4. 3. Analysis of multi-class recognition efficiency

For the developed neural network classifier and the
formed sets of training and test vectors that characterize the
multi-classing of the object TC, we will analyze the classifi-
cation efficiency. Such a study is important for justifying the
classifier characteristics, which provide error-free recogni-
tion of the condition.

The analysis of recognition efficiency of the object tech-
nical condition by the developed classifier will be carried out
in 2 stages. The first step is classification, that is, the proce-
dure of assigning the test vectors submitted to the classifier
input, to the defined classes S0—S5, which characterize the
object condition. In the second stage, we will evaluate the
correct classification of test vectors, depending on the char-
acteristics of the classifier and the set of training vectors.

The efficiency of multi-class recognition will be evalu-
ated by the indicator K, which is determined in percentage
as the ratio of the number of correctly classified vectors Ny
to the total number of input vectors Ny. The indicator K is
a percentage of the probability of correct classification [8]:

K=£-100 %.
N,

0

(12)

Let us study the influence of the factors associated with
the NN characteristics and training process on the efficiency
indicator K.

Study of the influence of the probabilistic neural network
parameter spread. As noted in [8, 10], the probabilistic neural
network parameter spread imposes functional conditions on
classification accuracy. In the software implementation of NN,
this parameter is related to the mean square deviation of the
Gaussian function, which specifies the width of the activation
functions of neurons and determines their influence on the es-
timation of the total probability density. Therefore, the spread
parameter affects the result of classification, it can take any
value in the range of [0; 1], during the network training this
value is taken without additional justification. The optimum
value of the spread parameter is determined experimentally
during the network testing and directly in the process of
classification of test vectors as such that provides error-free
(K=100 %) recognition or with minimum possible errors.

In the previous testing of the NN, spread=0.05 was tak-
en. Let us study the dependence of the efficiency indicator
K on the value of the influence parameter. In this study, we
will change the value of the spread parameter in the range of
values from 0.01 to 0.1 with an increment of 0.01, and in the
range of values from 0.1 to 1 — with an increment of 0.1. As
the minimum value, we take spread=0.005. For the study,
a new set of test vectors with the following deviations of
diagnostic feature values & was formed: +2.5 %; £6 %; +9 %;
+10 %; £12 %; £15 %. Some of them (6=%10 %; +15 %) coin-
cide with the previously taken deviations A, of features for a
set of training vectors, which is done to check the reproduc-
ibility of classification results by training vectors. According
to such test vectors, recognition and determination of the
indicator K are performed.

Study of the influence of the number of training vectors.
The size of the radial-basis layer of the PNN depends on the
number of images of the training set. On the one hand, the
larger the NN size, the longer the network training, which
negatively affects the classifier performance in real time.
On the other hand, reduction of the number of training
vectors can lead to a decrease in the recognition efficiency.
Therefore, when developing neural network classifiers, it is
important to analyze the effect of the dimension of the set
of training diagnostic feature vectors on the classification
accuracy in order to determine the possibility of error-free
multi-class recognition at a certain minimum number of
training vectors.

We will use the value of the influence parameter
spread=0.05, for which error-free class recognition was
provided in the previous test. As described above in
paragraph 4.1, first, R=378 training vectors were formed
that characterize the classes S0-S55 of the object TC with
the following deviations of diagnostic feature values Ay
+5.5 %; +10 %; £15 %; £20 %; £25 %; £50 %.

We will reduce the number of training vectors for the
S51-85 classes relative to the above value R by removing the
values of the set deviations Ay according to the following
procedure:

—remove Ay=150 %; the NN is trained on the set of
training vectors with the following deviations of feature val-
ues A: £5.5 %; £10 %; £15 %; £20 %; £25 %; the total number
of training vectors R has decreased to 316;

—remove Ay=150 % and Ay=%25 %; the NN is trained
on the set of vectors with the deviations of feature values A:
5.5 %; =10 %; =15 %; £20 %; the total number of training
vectors is R=254;

— remove Ay=%50 %, Ay=%25 % and Ay=%20 %; the
NN is trained on the set of vectors with the following devi-
ations of feature values A: +5.5 %, £10 %, £15 %; the total
number of training vectors is R=192;

—remove Ay=150 %, Ay=%25 %, Ay=%20 % and Ay=
=+15 %; the NN is trained on the set of vectors with the de-
viations of feature values A: +5.5 %, +10 %; the total number
of training vectors is R=130;

— for the NN training, we use training vectors only with
one deviation value A=%5.5 %, the rest of the values of the
set deviations A, are removed; the total number of training
vectors R is only 68.

We will conduct testing of the trained neuron network
classifier on the set of test vectors with the modified and
extended range of diagnostic feature deviations §: £2.5 %;
+10 %; +15 %; +17 %; £20 %; £25 %; +30 %; +35 %. Such
changes allow examining the classifier efficiency for a wider
range of possible deviations of diagnostic feature values for
each class of the object technical condition.

5. Results of the study of multi-class recognition
efficiency

Fig. 2 shows the graphs of the dependence of the recogni-
tion efficiency indicator K on the value of the NN parameter
spread, obtained by the expression (12) with different devi-
ations 3 of test vectors.

As can be seen from the following results:

—with the deviation 8=%2.5%, the neural network
classifier provides error-free classification (K=100 %) in
the range of spread values from 0.005 to 0.07. At the val-



ue of the influence parameter of 0.08, the coefficient K is
89.29 %, and further increase in spread leads to a decrease in
the efficiency indicator;

— with the deviation 3=%6 %, the classifier efficiency
is 100 % in the range of values of the influence parameter
spread from 0.005 to 0.1;

—with the deviation §=%9 %, the classifier provides
error-free recognition at the spread values in the range
from 0.01 to 0.1. Reduction of the influence parameter
value negatively affects the classification quality and when
spread=0.005, a decrease in the coefficient K to 92.86 % is
observed;

— the deviation 6=%10 % coincides with one of the
training values of the deviation Ay; error-free classification
is provided with the spread values in the range from 0.005
to 0.1;

— with the deviation §=%12 %, the coefficient K is equal
to 100 % at the influence parameter values in the range from
0.02 to 0.1, and starting with the value of spread=0.01, the
classifier efficiency significantly deteriorates;

— the deviation of elements of the test set §=%15 % also
coincides with one of the training values A,y; error-free clas-
sification is achieved at the spread values in the range from
0.005 to 0.1.
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Fig. 2. Graphs of the dependence of the multi-class
recognition efficiency indicator K on the probabilistic neural
network parameter spread for the following values of
deviations: a — 8=2.5 %; b— 6=6 %; ¢ — 6=9 %;
d—8=2.5%; e—3=2.5%; F—5=2.5%

The results of the study of the dependence of the efficien-
cy indicator K on the dimension of the set of training vectors,
conducted using the classifier testing results, have shown:

— for test vectors with deviations of diagnostic feature
values 6<17 %, the efficiency of recognition of the technical
condition according to the S0-S5 classes is provided at the
level of 100 % for all the considered values of R. The indica-

tor K is not decreased even at close diagnostic feature values
for defect-free and defective conditions (the difference be-
tween the diagnostic feature values of the S0 class and §1-55
classes did not exceed 0.5 %);

— for test vectors with deviations of diagnostic feature
values 8>17 %, there is a decrease in the recognition ef-
ficiency with reduction of the number of vectors R in the
training set.

The latter case is illustrated in Fig. 3 for the following
values of diagnostic feature deviation &: 20 %; =25 %;

+30 %; +35 %.
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Fig. 3. Graphs of the dependence of the multi-class
recognition efficiency indicator K on the number of training
vectors for the following deviations:
a—56=20 %; b—6=25 %; c—5=30 %; d—5=35%

As can be seen from the results presented, the error-free
recognition (K=100 %) for the entire considered range of de-
viations & is provided only when the NN is trained on the set
that includes R=316 training vectors. Reduction of the num-
ber of training vectors R leads to a decrease in the efficiency
indicator (K<100 %) at the following values of diagnostic
feature deviations &:

— for the number of training vectors R=254 with devia-
tions 6>30 %;

— for the number of training vectors R=192 with devia-
tions §>25 %;

— for the number of training vectors R=130 with devia-
tions §>20 %;

— for the number of training vectors R=68 with devia-
tions 8>17 %.

6. Discussion of the results of the study of multi-class
recognition efficiency

The results of the study of the influence of the probabilistic
neural network parameter spread on the efficiency indicator K
(Fig. 2) have shown the possibility of error-free multi-class
recognition of the object condition by the developed classi-
fier. This result is obtained for the entire set of input vectors
with different values of diagnostic feature deviation provided
that the value of the spread parameter lies in the range of
[0.02; 0.07]. In general, when the spread parameter is in-
creased, the probabilistic neural network will take into ac-
count the influence of adjacent neighboring conditions. At



very small values of the spread parameter, the Gaussian
distribution function covers a small number of influences,
which affects the classification quality. The limitation of the
range of the spread parameter values, obtained in the study is
associated with the complex influence of the following factors:

— the number of the recognized classes (for the two-class
diagnostics, the range of the spread parameter values is sig-
nificantly expanded [8]);

— the dimension of diagnostic feature vectors;

— the differences in the diagnostic feature deviation val-
ues within the defined classes for training and test vectors.

The range of the spread parameter values that provides
error-free recognition is significantly expanded if the devia-
tions of diagnostic feature values in training and test vectors
are the same. This is confirmed by the results of the studies,
for example, for =£10 % and 8=%15 %. However, even in the
case of the complex influence of these factors, the obtained
results have shown the possibility of error-free multi-class
recognition of the object TC by the developed classifier.
This is important for monitoring the TC of complex spatial
objects with multi-site damage.

The analysis of the obtained results of the influence of
the dimension of the set of training vectors on the multi-
class recognition efficiency has shown their dependence on
the value of deviation 3. The greater the diagnostic feature
deviation & in test vectors, the greater the influence of the
dimension of the set of training vectors on the multi-class
recognition efficiency. Therefore, in order to ensure er-
ror-free (K=100 %) multi-class recognition by input vectors,
in which deviations of diagnostic values exceed 17 %, it is
necessary to expand the NN training. On the other hand,
reduction of the number of training vectors does not lead
to a decrease in the multi-class recognition efficiency in
case of minimum differences in diagnostic feature values
for defect-free (50 class) and defective (S1-55 classes) con-
ditions of control objects. This indicates a high sensitivity
of the probabilistic neural network when performing image
comparison and classification. Such a classifier can provide

high efficiency of recognition of changes in the TC of control
objects at early stages of multi-site damage development in
cases of incomplete information about the recognized images
and a limited number of training images.

7. Conclusions

1. For recognition, multidimensional diagnostic feature
vectors that characterize the defect-free (S0 class) and defec-
tive (§1-55 classes) object conditions are used. Division into
classes is carried out depending on the diagnostic feature
deviation value and the number of features in the vector, the
deviation of which exceeds the permissible value Ag=%5 %.
Formation of a set of training diagnostic feature vectors with
a wide-range feature value deviations is carried out. The
formed training vectors correspond to the six classes S0—-.55,
followed by the neural network “training” for setting the
network parameters.

2. Three sets of test vectors, in which the maximum di-
agnostic feature deviation value does not exceed £5 %, £9 %
and +12 %, respectively, are formed. The developed classifier,
trained on the general set of training images has correctly
performed recognition of all test vectors.

3. The study of the multi-class recognition efficiency,
depending on the characteristics of the neural network and
the set of training vectors, is conducted. It is found that the
developed classifier provides error-free multi-class recog-
nition of test vectors, if the value of the network influence
parameter spread is in the range of [0.02; 0.07]. The mini-
mum sizes of the set of training vectors and limit values of
diagnostic feature deviations in test vectors, which provide
error-free multi-class recognition, are determined. It is
revealed that reduction of the number of training vectors
does not lead to a decrease in the multi-class recognition
efficiency in case of small (less than 0.5 %) differences in
diagnostic feature values for defect-free and defective con-
ditions of control objects.
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3anpononosano mooudikauilo memooy po3e’s-
3anna 3adaui sabesneuenns :pynoeoi amnonimmnocmi
HA 0CHOBI MIMEMUUHO20 ANIZOPUMMY, AKA He nepeo-
O0auae yuwacmi excnepma na emani OUiNIOBAMHHS
Po36°a3kie 3adaui. Aemomamuszauis OUiHI06AHHS
P036’°a3Kie nideuwye eexmusnicmv npouecy zpy-
noegoi anonimizauii danux. Moougpixauiro memooy
NPOIIOCMPOBAHO WAAXOM PO36 I3AHHS 3a0aui AHO-
HiMizauii Ha 0CHOGI peanbHUX 0anHux

Knrouosi cnosa: mimemuunuii anzopumm, epyno-
6a anomimmuicmv, Mikpodaiin, euxud, moougdikoea-
Huil memood may Tomncona
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Ipeonoscena mooudurxayus memooa pewenus
3adauu obecnevenus pynnoeoli aHOHUMHOCMU HA
0CHOBE MeMemu4ecKoz0 anzopumma, Komopas He
npedycmampueaem yuacmus 3Kcnepma Ha mane
oueHusanus peuwenull 3adavu. Aemomamuzauus
oueHusanus peuwleHull nosviwmaem 3IPpexmus-
HOCMb npouecca epynnosoll aAHOHUMUIAUUU OaH-
Hotx. Mooduguxauus memooda npouniocmpuposana
nymem peuleHuss 3a0a4u AHOHUMUIAUUU HA OCHOBE
PeanvHbIx 0aHHBIX

Knrouesvte caosa: mememuueckuii anzopumm,
2pynnosas aHOHUMHOCMb, MUKpodaiin, eviopoc,

Moouuyuposannwviii memoo may Tomncona
u| o

1. Introduction

Around the world, amounts of digital data keep increas-
ing with each year. A great share of these data are published
in open access in their primary, non-aggregated form. Such
data sets are called microdata. Microdata can be used for
numerous purposes, including:

— dissemination of clinical data to facilitate medical
research. E. g, in the U.S,, this is regulated by the corre-
sponding bills [1, 2];

— enforcing transparency of public policy. E. g., in the
EU, protection of personal data is subject to the corre-
sponding law [3];

—sharing census and other statistical research data to
enable conducting economic, demographic, and other kinds
of research.

At the same time, there is a certain risk that providing
public access to the data in their unchanged form will not

UDC 004.62:004.023
DOI: 10.15587/1729-4061.2017.113046

IMPROVING
EFFICIENCY OF
PROVIDING DATA
GROUP ANONYMITY
BY AUTOMATING
DATA MODIFICATION
QUALITY EVALUATION

O. Chertov

Doctor of Technical Sciences, Associate Professor®
E-mail: chertov@i.ua

D. Tavrov

PhD*

E-mail: dan.tavrov@i.ua

*Department of Applied Mathematics

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”
Peremohy ave., 37, Kyiv, Ukraine, 03056

only achieve its primary goal but also lead to disclosing con-
fidential information about an individual or a group thereof.
E.g., open access to clinical data facilitates medical research.
At the same time, publishing medical records can enable
unique identification of a patient. Moreover, outliers in a
regional distribution of patients might point to areas with
exceeded sickness rate threshold.

Therefore, it is important to provide data anonymity at
the stage of creating the content for open information re-
sources. Anonymity of a subject can be seen as its property of
being not identifiable (uniquely characterized) within a set
of subjects [4]. Anonymity comes in two variants:

— individual anonymity concerns information about sin-
gle respondents (persons, households, enterprises);

— group anonymity concerns distribution of information
about a group of respondents.

Methods for providing individual anonymity have been a
subject of research for more than 20 years and are developed




