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1. Introduction

The most promising among vibratory machines, such as 
screeners, vibratory tables, conveyers and mills, etc., are the 
multi-frequency, resonance and multi-frequency-resonance 
machines. 

Multi-frequency vibratory machines have better perfor-
mance [1], resonance vibratory machines are the most en-
ergy efficient [2], and multi-frequency-resonance vibratory 
machines combine advantages of both multi-frequency and 
resonance vibratory machines [3]. 

The simplest way to excite resonance dual-frequency vi-
brations employs a ball, a roller, or a pendulum auto-balancer 
as a vibration exciter [4].

Up to now, the applicability of the new method for excit-
ing dual-frequency vibrations in single-mass vibratory ma-
chines with translational rectilinear motion of the vibratory 
platform has not been theoretically studied.

2. Literature review and problem statement

In [4], it was proposed to excite dual-frequency reso-
nance vibrations of the platform by a vibration exciter in the 
form of a ball, a roller, or a pendulum auto-balancer. To do 

this, a special mode of motion of pendulum [5], balls or rollers 
[6] is used. The mode occurs at small forces of resistance to 
loads’ motion relative to the auto-balancer body. Under this 
mode, loads get together, cannot catch up with the shaft, 
onto which the auto-balancer is mounted, and get stuck at 
resonance frequency of the platform oscillations. Because 
loads get stuck, slow resonance oscillations of the platform are 
excited. That is why the new method is based on the Sommer-
feld effect [7]. It is also proposed to put the unbalanced mass 
on the auto-balancer body. The unbalanced mass rotates syn-
chronously with the rotor (auto-balancer body). In this way, 
rapid oscillations of the platform are excited. Parameters of 
dual-frequency vibrations alter by changing the rotor speed, 
the unbalanced mass, and the total mass of loads. 

A vibration exciter in the form of a passive auto-balanc-
er is supposed to be applicable for single-, two-, and three-
mass vibratory machines with different kinematics of the 
platform motion. 

The feasibility of the new method was examined for a 
screener with rectilinear translational motion of the box us-
ing 3D modeling [8] and field experiment [9]. It is relevant 
to explore analytically the workability of the new method for 
a single-mass vibratory machine.

In [10], authors developed generalized models of single-, 
two-, and three-mass vibratory machines with translational 
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motion of vibratory platforms and a vibration exciter in the 
form of a ball, a roller or a pendulum auto-balancer. Differential 
equations for the motion of vibratory machines were derived. 

Analytically, the effect of getting stuck was examined:
[11] – for a pendulum, mounted onto the shaft of a 

low-power electric motor installed on a vibratory platform; 
[12] – for a pendulum, mounted onto the shaft of an elec-

tric motor whose nominal rotation speed is slightly larger 
than the resonance frequency of a vibratory platform; 

[13] – for the wind wheel with an unbalanced mass, 
mounted on the vibratory platform;

[14] – for two pendulums, mounted onto two shafts of two 
low-power electric motors, installed on a vibratory platform; 

[15] – for two balls within a spatial model of static bal-
ancing of the rotor by a ball auto-balancer;

[16] – for two balls within a flat model of the rotor with 
a two-ball auto-balancer;

[17] – for pendulums in the auto-balancer, mounted on 
the flexible rotor for its balancing in one plane of correction; 

[18] – for pendulums in two auto-balancers, mounted 
on the rotor for its dynamic balancing (in two planes of 
correction). 

Stability of motions, corresponding to the effect of get-
ting stuck, was investigated: in [11–16], using a method of 
synchronization of dynamical systems [11]; in [17, 18], apply-
ing a method of separation of motions. 

In the course of studies, carried out in [4–18], it was 
found that balls, pendulums, etc. get stuck on one of the nat-
ural frequencies of a rotor or a vibratory platform.

The method of synchronization of dynamic systems and 
the method of separation of motions are the methods of a 
small parameter (perturbation). The results obtained using 
them can become inapplicable if there is violation of the 
ratios of smallness between parameters for which they were 
obtained. Typically, these methods simultaneously solve the 
following tasks: a search for synchronous motions; studying 
their stability.

3. The aim and objectives of the study

The purpose of present research is to explore dual-frequen-
cy modes of motion of a vibratory platform of a single-mass 
vibratory machine with translational rectilinear motion of the 
vibratory platform, excited by a passive auto-balancer.

To achieve this purpose, the following problems must be 
solved:

– under condition of loads getting stuck in the auto-bal-
ancer, to find an approximate solution to differential equa-
tions of the motion of a vibratory machine and to estimate 
the magnitudes of unconsidered (rejected) components of 
the solution; 

– to find frequencies at which loads get stuck depending 
on the rotor speed.

4. Research methods

We use differential equations of motion for a single-mass 
vibratory machine with translational rectilinear motion of 
the vibratory platform and a vibration exciter in the form of 
a ball, a roller, or a pendulum auto-balancer [10]. 

To search for the approximate solution to the system of 
differential equations and frequencies of the loads getting 

stuck, we employ methods of perturbations and the elements 
of a theory of nonlinear oscillations [19]. 

Synchronous modes of motion are sought for at different 
ratios between parameters for the cases that are relevant for 
practice:

– when forces of external and internal resistance are small; 
– mass of the loads is much smaller than the platform mass.

4. 1. Description of a generalized model of the vibra-
tory machine [10]

The vibratory machine includes (Fig. 1) a platform, 
which has mass M and a vibration exciter in the form of a 
ball, a roller (Fig. 1, b) or a pendulum (Fig. 1, c) auto-bal-
ancer. The platform can move only in a rectilinear transla-
tional way executed with two fixed guides. Direction of the 
platform motion forms angle a with a vertical. The platform 
is based on an elastic-viscous support with a rigidity coeffi-
cient k and coefficient of viscosity b. Position of the platform 
is determined by coordinate y, equal to zero in the position 
of the static equilibrium of the platform.

а
 

 

 
 

                        b                                            c

Fig. 1. Model of a single-mass vibratory machine with the 
rectilinear translational motion of vibratory platform: 	

a – motion kinematics of platform; b – motion kinematics 
of unbalanced mass, a ball or a roller; c – motion kinematics 

of unbalanced mass and pendulum

An auto-balancer body revolves around a shaft – point K 
with constant angular velocity w. 

The point unbalanced mass m is rigidly attached to the 
auto-balancer body. It is located at distance P from point K. 
Two mutually perpendicular axes X, Y originate at point K 
and form the right coordinate system. Axis X is parallel to 
the platform, and axis Y is parallel to the direction of the 
platform motion. The position of the unbalanced mass rel-
ative to the body is determined by angle wt, where t is the 
time. The angle is measured from axis X to the line segment 
that originates at point K and ends at the unbalanced mass.

The auto-balancer consists of N identical loads. The mass 
of one load is m. The center of load’s masses can move around 
a circle with radius R, centered at point K (Fig. 1, b, c). Po-
sition of load number j relative to the body is determined by 
angle jj, =/ 1, /j N . The angle is measured from axis X to 
the line segment that originates at point K and ends at the 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/7 ( 90 ) 2017

60

center of masses of load number j. The motion of the load 
relative to the auto-balancer body is prevented by the force 
of viscous resistance that has module

= = φ - w¢( ) | |,r
j W j W jF b v b R  =/ 1, /,j N  

where bW is the coefficient of force of viscous resistance, 
= φ - w¢( ) | |r

j jv R  is the module of velocity of the center of mas-
es of load number j relative to the auto-balancer body, with 
a bar by the magnitude denoting a derivative from time t.

4. 2. Differential equations of motion of a single-mass 
vibratory machine [10] 

Differential equations of the platform motion

Σ + + + = w w¢¢ ¢ ¢¢ 2 sin ,y dM y by ky S S t 	  (1)

where Σ = + + mM M Nm  is the mass of the whole system, 

=

= φ∑
1

cos ,
N

x j
j

S mR  

=

= φ∑
1

sin ,
N

y j
j

S mR  
dS P= m 	 (2)

respectively, projections of the total unbalance from loads 
on axes X, Y and the unbalance from the unbalanced mass. 

We note that this is a linear differential equation with 
constant coefficients relative to unknown y and Sy.

Differential equations for the load motion 

k φ + φ - w +¢¢ ¢

+ φ - a + φ =¢¢

2 2( )

cos( ) cos 0,
j W j

j j

mR b R

mgR mRy
 

=/ 1, /,j N
 	

(3)

where for a ball, a roller, and a pendulum, respectively, 

k =
7

,
5

 k =
3

,
2

 21 / ( )CJ mRk = +  	 (4)

and JC is the principal central axial moment of inertia of 
a pendulum. We note that for a mathematical pendulum 

= 0,CJ  k = 1.
We note that these are non-linear equations. 
We note that the form of differential equations of the 

motion of system (1) and (3) does not depend on the au-
to-balancer type. 

In the research that follows, the impact of gravity forces 
is not taken into consideration.

5. Research results

5. 1. Reducing motion equations to dimensionless form
We shall introduce dimensionless variables and time

= �/ ,v y y  = �/ ,x xs S s  = �/ ,y ys S s  t = w� ,t 	 (5)

where �,y  �,s  w�  are the characteristic scales that will be 
chosen later. 

Then,

⋅ ⋅ t ⋅ ⋅ ⋅
= = w = w

t t t
� �

2 2
2

2 2, ,
d d d d d d
dt d dt d dt d

 	 (6)

and equations of motion (1) and (3) will take the form 

Σ
w

w + w + + w = w t
w

� � ���� � � � ���
�

2 2 2 sin ,y dM yv b yv kyv ss S

k w φ + wφ - w + w φ =�� �� � � ���2 2 2 2( ) cos 0,j W j jmR b R yvmR 	 (7)

where the point above the magnitude denotes a derivative 
from t.

We shall divide the first equation in (7) by Σw� �2 ,M y  and 
the second – by k w�2 2,mR and obtain

Σ Σ Σ Σ

w w
+ + + = ⋅ t

w w w w
�

�� � ��
� � � �� �

2

2 2 sin ,d
y

Sb k s
v v v s

M M M y M y

w φ + φ - + φ =  k w w k
��� � ��

� �
cos 0.W

j j j

b y
v

m R
 	 (8)

We shall introduce new dimensionless parameters and 
characteristic scale:

Σ

=
w�

2 ,
b

h
M  

w
=

w�
,n  

Σ

=
�

� ,
s

y
M  

Σ

e = =
k k
� �

,
y s
R RM

eβ =
k w�

,Wb
m  

Σβ = =
ek w w� ��

,W Wb b RM
m sm  

Σ

w =� ,
k

M
 d =

�
.dS

s
 	 (9)

Then equations (8) will take the form:

+ + + = d t�� � �� 22 sin ,yv hv v s n n

φ + eβ φ - + e φ =�� � ��( ) cos 0,j j jn v  =/ 1, / .j N  	 (10)

Let

=� .s NmR  	 (11)

Then

=

= φ∑
1

1
cos ,

N

x j
j

s
N

 
=

= φ∑
1

1
sin ,

N

y j
j

s
N

	  (12)

Σ

=� ,
NmR

y
M

 

Σ

e =
k

,
Nm
M

 

Σβ =
w�2 ,Wb M

Nm
 m
d = = .dS P

NmR NmR
	 (13)

In this case, the form of equations (10) will be the same.

5. 2. Transformation of equations of the loads motion
We add the equations of loads motion from (10), we shall 

obtain

= = =
φ + eβ φ - + e φ =∑ ∑ ∑�� � ��

1 1 1
( ) cos 0.

N N N

j j jj j j
n v 	 (14)

We shall introduce an average angle for consideration:

=

φ = φ∑
1

1
.

N

j
jN

 	 (15)

Then, considering (12), (15) equation (14) will take the 
form
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φ + eβ φ - + e =�� � ��( ) 0.xn vs 	  (16)

We shall introduce the system of equations

+ + + = d t�� � �� 22 sin ,yv hv v s n n  

φ + eβ φ - + e =�� � ��( ) 0.xn vs  	 (17)

It is meant to search for dual-frequency modes of the 
platform motion.

5. 3. Dual-frequency motion mode in zero approximation
At e=0, system (10) takes the form:

+ + + = d t�� � �� 22 sin ,yv hv v s n n  φ =�� 0,j  =/ 1, / .j N 	 (18)

From the last N equations, we obtain 

φ = W t + y(0) ,j j j  W y -, const,j j  =/ 1, / .j N 	 (19)

Then

= =

φ = t W + y = Wt + y∑ ∑(0)

1 1

1 1
.

N N

j j
j jN N

	  (20)

Hence, we obtain 

=

W = W∑
1

1
,

N

j
jN

 

=

y = y∑
1

1
.

N

j
jN

	 (21)

Since the balls or rollers are on the same run track, then:

W = W,j  =/ 1, /;j N

= =

=

= =

= φ = Wt + y =

= Wt y - Wt y =

Wt Wt
= y - y

∑ ∑

∑

∑ ∑

1 1

1

1 1

1 1
cos cos( )

1
(cos cos sin sin )

cos sin
cos sin ;

N N

x j j
j j

N

j j
j

N N

j j
j j

s
N N

N

N N

= =

=

= =

= φ = Wt + y =

= Wt y + Wt y =

Wt Wt
= y + y

∑ ∑

∑

∑ ∑

1 1

1

1 1

1 1
sin sin( )

1
(sin cos cos sin )

sin cos
cos sin .

N N

y j j
j j

N

j j
j

N N

j j
j j

s
N N

N

N N

	  

(22)

We shall demand that:

= Wt + g = Wt g - Wt g0 0 0cos( ) (cos cos sin sin );xs A A

= Wt + g = Wt g + Wt g0 0 0sin( ) (sin cos cos sin ).ys A A 	 (23)

Then

=

g = y∑0
1

1
cos cos ,

N

j
j

A
N

=

g = y∑0
1

1
sin sin ,

N

j
j

A
N

= =

    
 = y + y        

∑ ∑
2 2

2
2

1 1

1
cos sin ,

N N

j j
j j

A
N

= =

g = y y∑ ∑0
1 1

tg sin cos .
N N

j j
j j

	 (24)

From (22), we find

= - W Wt + g�� 2 sin( ).ys A

Then the first equation in system (10) takes the form

+ + = W Wt + g + d t�� � 2 2
02 sin( ) sin .v hv v A n n  	 (25)

A partial solution to this equation, corresponding to the 
steady-state mode of motion, takes the form

W
= ´

- W + W

 ´ - W Wt + g - W Wt + g + 
d  + - t - t - +

2

0 2 2 2 2

2
0 0

2
2

2 2 2 2

(1 ) 4

(1 )sin( ) 2 cos( )

(1 )sin( ) 2 cos( ) .
(1 ) 4

A
v

h

h

n
n n hn n

n h n

	

(26)

This is a dual-frequency mode of the platform motion, 
found at zero approximation (e=0). In it, the value of con-
stant parameter W is undefined.

5. 4. Dual-frequency motion mode in the first approx-
imation

We search for the steady-state motion of system (17) in 
the first approximation. We assume that W=const, and g is a 
slowly changing periodic function. Then

φ = Wt + g ,  φ = W + g� � ,  φ = g�� ��,

= W + g Wt + g�� ( )cos( ),ys A  

= g Wt + g - W + g Wt + g�� ��� 2cos( ) ( ) sin( ),ys A A 	 (27)

and system of equations (17) takes the form

+ + = W + g Wt + g -
- g Wt + g + d t

��� �

��

2

2

2 ( ) sin( )

cos( ) sin( ),

v hv v A

A n n

( )g + eβ W + g - + e Wt + g =�� � ��cos( ) 0.n v 	  (28)

We search for the first approximation of solution to sys-
tem (28) in the form (truncated series)

= + e g = g + eg0 1 0 1, .v v v  	 (29)

Substituting (29) in (28), we shall obtain

+ e + + e + + e =

= W + eg Wt + g + eg -

- eg Wt + g + eg + d t

�� �� � �

�

��

0 1 0 1 0 1

2
1 0 1

2
1 0 1

2 ( )

( ) sin( )

cos( ) sin( ),

v v h v v v v

A

A n n

( )eg + eβ W + eg - +

+e + e Wt + g + eg =

�� �

�� ��
1 1

0 1 0 1( )cos( ) 0.

n

v v
	

 (30)
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Expand into series of sin and cos:

Wt + g + eg =
= Wt + g + eg Wt + g

0 1

0 1 0

sin( )

sin( ) cos( ),

Wt + g + eg =
= Wt + g - eg Wt + g

0 1

0 1 0

cos( )

cos( ) sin( ).
	  

(31)

Substituting (31) in (30), we shall obtain

+ e + + e + + e =

= W + eg Wt + g + eg Wt + g -

- eg Wt + g - eg Wt + g + d t

�� �� � �

�

��

0 1 0 1 0 1

2
1 0 1 0

2
1 0 1 0

2 ( )

( ) [sin( ) cos( )]

[cos( ) sin( )] sin( ),

v v h v v v v

A

A n n

( )eg + eβ W + eg - +

+e + e Wt + g - eg Wt + g =

�� �

�� ��
1 1

0 1 0 1 0( )[cos( ) sin( )] 0.

n

v v
 	

(32)

Collecting in (32) components at the same powers e and 
equating them to zero, we shall obtain:

e + + =

= W Wt + g + d t

�� �0
0 0 0

2 2
0

: 2

sin( ) sin( ),

v hv v

A n n

( )e g + β W - + Wt + g =�� ��1
1 0 0: cos( ) 0,n v

e + + =

= Wg Wt + g + W g Wt + g -
- g Wt + g =

= - g Wt + g
t

�� �

�

��

1
1 1 1

2
1 0 1 0

1 0

2

1 02

: 2

2 sin( ) cos( )

cos( )

[ cos( )].

v hv v

A A

A

d
A

d

	

(33)

In zero approximation, v0 is determined from the first 
equation in system (33). It was found previously and takes 
the form (26). We shall find the second derivative

W
= - ´

- W + W

 ´ - W Wt + g - W Wt + g - 
d  - - t - t - +

��
4

0 2 2 2 2

2
0 0

4
2

2 2 2 2

(1 ) 4

(1 )sin( ) 2 cos( )

(1 )sin( ) 2 cos( ) .
(1 ) 4

A
v

h

h

n
n n hn n

n h n

	

(34)

Substituting it in the second equation in (33), we shall obtain

( ) W
g + β W - - ´

- W + W
´ - W Wt + g Wt + g -

d
- W Wt + g - ´

- +
=´ - t Wt + g - t Wt + g

��
4

1 2 2 2 2

2
0 0

4
2

0 2 2 2 2

2
0 0

(1 ) 4

[(1 )sin( )cos( )

2 cos ( )]
(1 ) 4

[(1 )sin cos( ) 2 cos cos( ) 0.]

A
n

h

n
h

n h n

n n hn n

We shall transform this equation:

( ) W
g = -β W - + ⋅ ´

- W + W
´ - W W + g - W + W + g +

d
+ ⋅ - + W t + g +

- +
+ - W t - g - + W t + g +
+ - W t - g =

��
4

1 2 2 2 2

2
0 0

4
2

02 2 2 2

0 0

0

1
2 (1 ) 4

(1 )sin[2( )] 2 {1 cos[2( )]}

1
(1 ){sin[( ) ]

2 (1 ) 4

sin[( ) ]} 2 {cos[( ) ]

cos[( ) ]} 0.

A
n

h

t h t

n
n n

n h n

n hn n

n

	

(35)

A condition for the existence of periodic solution: 

( ) W
-β - W + =

- W + W

5

2 2 2 2 0.
(1 ) 4

Ah
n

h

This condition is equivalent to the following

( )W = cW - - W - W + W =

= W + W + W + W + W + =

5 2 2 2 2

5 4 3 2
0 1 2 3 4 5

( ) [(1 ) 4 ]

0,

P n h

a a a a a a

 

	 (36)

where

0 1

2 2
2 3 4 5

/ , 1 , ,

2(1 2 ), 2 (1 2 ), 1, .

Ah a a n

a h a n h a a n

c = β = + c = -

= - - = - = = -
	

(37)

From (36), frequencies of the loads that get stuck are 
determined. This condition will be explored below. 

When condition (36) is satisfied, we obtain from (35) the 
following equation in order to search for g1:

W
g = ⋅ - W W + g -
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Hence, we shall find a periodic component 
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From the last equation in (33), it is possible to find v1. 
Correction for v0 will be of order e. For actual vibratory ma-
chines, e<50 and that is why correction will not exceed 2 % 
of the found dual-frequency mode of motion. That is why this 
correction is not determined below. 

Estimation of the magnitudes of discarded (unconsidered) 
components shows that, despite a strong asymmetry of sup-
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ports, the platform performs almost perfect dual-frequency 
oscillations.

5. 5. Search for the frequencies at which loads can get 
stuck 

We shall find approximately the roots of polynomial (36). 
We note that 

P(0)=-n<0, P(n)=cn5>0, P(1)=c-4h2(n-1)>0

and 

∀W£0 P(W)<0, ∀W³n P(W)>0. 

Hence, it follows that:
all real roots of polynomial (36) are located in the open 

interval (0, n); 
– ∀n>0 there exists at least one real positive root 

W1Î(0, n) is the frequency at which loads get stuck. 
It follows from the Descartes theorem (Descartes rules 

of signs) that polynomial (36) may have:
– ∀ < 1/ 2h  – 1 or 3 real roots;
– ∀ > 1/ 2h  – 1, 3 or 5 real roots. 
Let us find approximately the roots of polynomial (36) 

depending on rotor speed n. To do this, we shall expand the 
roots by powers of small parameters and leave only positive 
real roots.

1. In the case of small rotor speeds n<<1 (n~e), polyno-
mial (36) has the only real root, close to n:

W ≈ - c 4
1 (1 ).n n  	 (39)

2. In the case when the rotor rotates rapidly n>>1 (n~1/e), 
polynomial (36) has the only real root, close to n:

c -
W ≈ -

+ c

2

1

2 (1 2 )
.

1
n h

n
 	 (40)

3. Consider the case when the rotor speeds are equivalent 
to 1 (n~1). In this case, we additionally assume the smallness 
of parameters h, c (smallness of the force of viscous friction 
in supports, smallness of the ratio of loads mass to the mass 
of the system, smallness of the force of viscous resistance to 
loads motion, etc.).

3. 1. In the case when c~e, h~e and n~1 (angular velocity 
of rotor rotation is equivalent to unity), polynomial (36) has 
three real roots

c c -
W ≈ +

- -
∓1/2 2

1 (4 3)
1 ,

2 1 8( 1)
n

n n

c
W ≈ -

-

5

3 2 2 .
( 1)

n
n

n
	  (41)

It is evident that real W1/2 exist only at the above-reso-
nance of the rotor speeds (n>1) and expansions are appli-
cable at some distance from resonance frequency -| 1 |~1.n

Given the results of point 1 and point 2, it is necessary 
to determine at which characteristic rotor speed the two fre-
quencies of the loads getting stuck occur and at which speed 
the two frequencies disappear.

3. 2. In the case when - e3| 1 |~ ,n  c,  e~h , the rotor 
rotates at about-resonance velocity, polynomial (36) has one 
or three real roots, equivalent to 1:

W ≈ + eW�31 ,i i  =/ 1,2,3/,i

W ≈ + eW�31 ,i i  =/ 1,2,3/,i  = + en31 ,n 	  (42)

where n is the parameter, equivalent to 1, and W�  are the 
roots of cubic equation.

3 2
0 1 2 3( ) 0,f c c c cW = W + W + W + =� � � �

=0 1,c  = -n1 ,c  =2 0,c  = c3 / 4.c 	  (43)

Cubic equation (43) will have three real roots when the 
following condition is satisfied [6, 19]

∆ = - + + - + <2 2 3 2 2 3
1 2 1 3 0 3 0 1 2 3 0 24 27 18 4 0.c c c c c c c c c c c c

Substituting coefficients from (43) in it, we shall obtain 

c
∆ = - n - c <3(16 27 ) 0.

16

This condition will be satisfied if 

n > c3
3

4 ,
4

  > + c  
3

3
1 4 .

4
n

Let us introduce for consideration the first characteristic 
rotor speed

≈ + c� 3
1

3
1 4 .

4
n 	  (44)

Then if < �1,n n  the platform has one dual-frequency mode 
of motion, and if > �1,n n  it has three modes of motion.

If = �1,n n  the roots of cubic equation (43) are determined 
by equalities 

W = - c� 3
1

1
4 ,

4
 W = c� 3

2,3

1
4 .

2

Then, taking (42) into consideration, frequencies of 
the loads getting stuck are approximately determined from 
equalities

W ≈ - c3
1

1
1 4 ,

4
 W ≈ + c3

2,3

1
1 4 .

2
 	 (45)

Given the form of cubic equation (43), we conclude that 
for n~1 it always has a negative root and when n increases, 
two more positive roots appear. That is why at any n~1, 
the platform always has one dual-frequency motion mode 
with frequency of the loads getting stuck less than 1. With 
increasing angular velocity, there appear two more dual-fre-
quency motion modes with frequencies of the loads getting 
stuck larger than 1. 

We shall replace parameter n and variable W�  in (43):

n = c +3
3

4 (1 ),
4

w  W = c� 3 4 .
2
z 	 (46)

Then cubic equation in (45), with an accuracy to a con-
stant multiplier, takes the form

= - + + =� 3 2( ) 2 3 (1 ) 1 0.f z z z w  	 (47)
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Its roots have the following expansion for w:

≈ - -1

1
(1 / 3),

2
z w  = +∓2/3

2
1 .

3
z w w

Finally, in the parametric form, we find approximately 
the following frequencies of the loads getting stuck 
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where w is the parameter. For this purpose, to obtain solu-
tion in the obvious form, it is necessary to substitute in (48) 

-
= -

c3

4 ( 1)
1.

3 4

n
w  	 (49)

3. 3. We shall find characteristic velocity above which 
frequencies of the loads getting stuck will be above-reso-
nance (exceeding 1). 

Condition for the existence of below-resonance frequen-
cy of the loads getting stuck is P(1)>0. We shall find from it

c > -24 ( 1),h n  c
> -2 1,

4
n

h
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< + 21 .
4

n
h

Let us introduce for consideration the second character-
istic rotor speed

c
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β
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2 21 1 .
4 4

A
n

h h
	  (50)

At < �2,n n  at least one root of polynomial (36) will be 
less than 1 and loads will get stuck at the below-resonance 
rotor speed. 

Let us consider limit case ≈ �2.n n  We introduce a new 
variable and a parameter. 

W = + = + n�
21 , .w n n  	 (51)

Then polynomial (36) will be transformed to the form 
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(52)

From (52), for small n, we find 

≈ n c + - n2 24 /[3 4 (1 2 )].w h h 	  (53)

When speed n overpasses value �2n  (n overpasses 0), pa-
rameter w overpasses 0 and root W overpasses 1. This case is 
not special because roots do not become multiple or complex. 

Two characteristic speeds �1,n  �2n  will exist under condi-
tion that <� �

1 2.n n  Using (44) and (50), we find the condition 
under which it is possible:
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Considering the ratios of smallness between parameters, 
we conclude that this condition is satisfied if the loads create 
imbalance equivalent to 1 (A~1) and the forces of external 
and internal resistance are small (b, h<<1). These conditions 
are met in nearly all important practical cases. That is why, 
within a certain range of angular rotational speed of the 
rotor, the platform theoretically may have three dual-fre-
quency modes of motion. 

3. 4. In the case when the rotor rotates rapidly n~1/e2, 
and the forces of resistance to loads motion are small h~e, 
polynomial (36) has one or three real roots:

c -
W ≈ ∓

2

1/2

4
1 ,

4
h n

n

 c
W ≈ -

+ c3

2
,

1
n

n

	  (55)

in this case, W1,2 are real when the following condition is 
satisfied 

c
< ≈� �

3 3 2, .
4

n n n
h

 	 (56)

It is evident that >>�
3 1,n  and ≈� �

3 2.n n
To refine critical speed �3,n  at exceeding of which the two 

first frequencies of the loads getting stuck W1,2 cease to exist, 
we shall search for it and the related critical root in the form

c
= + + +� �3 0 12 ,

4
n r r h

h
 

W = + w + w +� �3/2 2
1,2 3/2 21 ( ) ,h h  	 (57)

where ri, wi are the expansion coefficients. As a result, we 
obtain critical speed and critical roots, corresponding to it, 
in the form of 

c  ≈ + + c + + c  
� 2

3 2

9 3 27
1 1 ,

4 16 2 32
n h

h
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1 .

2
h 	 (58)

In the vicinity of critical speed

c
≈ + + c + s 2

2

9
1 ,

4 16
n h

h

+ c - s
W ≈ +

c
∓2 3

1/2 2

3 96 81 64
1 ,

2 16
h h

	  (59)

where s is the real parameter, equivalent to 1.
One can see that critical roots are somewhat larger 

than 1 and disappear at speed �3,n  slightly exceeding �2n
4. In the case when c<<1 (c~e, e<<1) (the load’s mass is 

much smaller than the rotor’s mass and the forces of internal 
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resistance are finite), polynomial (36) has the only real root 
close to n:

c
W ≈ -

- +

5

1 2 2 2 2 .
( 1) 4

n
n

n h n
 	 (60)

5. In the case when c>>1 (c~1/e, e<<1) (small forces of 
external resistance b~e), polynomial (36) has the only real 
root (at n~1) smaller than 1: 

W ≈ c5
1 / .n  	 (61)

Results of the research conducted are given in Table 1. 

Table 1 

Frequencies of the loads getting stuck (Wi) for 	
different rotor speeds (n)

No. of 
entry

Smallness ratios of 
parameters 

Frequencies of the loads 
 getting stuck – expansion of roots of 

polynomial (36)

1 n~e W ≈ - c 4
1 (1 )n n

2 n~1/e
c -W ≈ -

+ c

2

1

2 (1 2 )
1

n h
n

3. 1 |n-1|~1, c~e, h~e
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cW ≈ -

+ c3

2
1

n
n

4 c e e <<~ , 1 cW ≈ -
- +

5

1 2 2 2 2( 1) 4
n

n
n h n

5 c e e <<~1/ , 1 W ≈ c5
1 /n

Table 1 might be used for approximate calculation of fre-
quencies of the loads getting stuck depending on the ratios of 
smallness between parameters of the system. 

6. Discussion of results of research into dual-frequency 
modes of motion of single-mass vibratory machines

Conducted theoretical study proves that a single-mass 
vibratory machine with rectilinear translational motion 
of the platform and a vibration exciter in the form of a 
passive auto-balancer has the steady-state motion modes, 
close to dual-frequency modes. At these motions, loads in 
the auto-balancer create constant imbalance, cannot catch 
up with the rotor and get stuck at a certain frequency. 

These loads operate as the first vibration exciter, exciting 
vibrations with frequency of the loads getting stuck. The 
second vibration exciter is formed by unbalanced mass on 
the auto-balancer body. The mass rotates at rotor rotation 
frequency and excites more rapid vibrations.

Despite a strong asymmetry of supports, the auto-bal-
ancer excites almost perfect dual-frequency vibrations. De-
viations from the dual-frequency law are proportional to the 
ratio of loads’ mass to the mass of the entire machine. That is 
why for real machines, they do not exceed 2 %. 

In important, from the practical point of view, cases, in 
particular, when h, c<<1 (small forces of external and inter-
nal resistance, the loads’ mass is much smaller than the plat-
form’s mass, etc.), there are three characteristic rotor speeds 
�

1,n  �2,n  �3.n  In this case, < << < <<� � �
1 2 31 n n n n  and:

– at the rotor speeds smaller than �1n  ( < < �10 n n ), there 
exists a single frequency of the loads getting stuck W1, in this 
case 0<W1<1;

– at the above-resonance speeds, exceeding �1n , but small-
er than �2n  ( < <� �

1 2n n n ), there exist such three frequencies of 
the loads getting stuck W1,2,3, that 0<W1<1<W2<W3<n;

– at the above-resonance speeds, exceeding �2n , but small-
er than �3n  ( < <� �

2 3n n n ), there exist such three frequencies of 
the loads getting stuck W1,2,3, that 1<W1<W2<<W3<n;

– at the above-resonance speeds, exceeding �3n  ( > �3n n ), 
there is such single frequency of the loads getting stuck W1, 
that 1<<W1<n.

There is only one below-resonant frequency of loads’ get-
ting stuck W1 (0<W1<1), in this case, only at speeds, smaller 
than �2n  ( < �2n n ), but at any parameters of the system.

It should be noted that the studied differential equations 
of motion of the vibratory machine have solutions, corre-
sponding to the onset of auto-balancing. However, these 
solutions have not been studied. 

Of all theoretically possible steady-state modes of 
motion of the vibratory machine, only stable steady-state 
motions will be implemented in practice. That is why 
in the future we plan to explore stability of the found 
dual-frequency modes of motion and to conduct computa-
tional experiments.

7. Conclusions

1. A single-mass vibratory machine with rectilinear 
translational motion of the platform and a vibration excit-
er in the form of a passive auto-balancer has the steady-
state motion modes, equal to dual-frequency modes. At 
these motions, loads in the auto-balancer create constant 
imbalance, cannot catch up with the rotor and get stuck at 
a certain frequency. In this way, loads operate as the first 
vibration exciter, exciting vibrations at frequency of the 
loads getting stuck. The second vibration exciter is formed 
by unbalanced mass on the auto-balancer body. The mass 
rotates at rotor speed and excites more rapid vibrations 
with this frequency.

Despite a strong asymmetry of supports, the auto-bal-
ancer excites almost perfect dual-frequency vibrations. De-
viations from the dual-frequency law are proportional to the 
ratio of loads’ mass to the mass of the entire machine. That is 
why for real machines they do not exceed 2 %. 

2. When the forces of external and internal resistance 
are small, when the mass of loads is much smaller than the 
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mass of the platform, etc., there are three characteristic rotor 
speeds. These speeds are larger than the resonance frequen-
cy of platform oscillations. In this case:

– at rotor speeds smaller than the first characteristic 
speed, there is only one frequency of the loads getting stuck, 
in this case, it is smaller than the resonance velocity of plat-
form oscillations;

– at the above-resonance rotor speeds, located between 
the first and the second characteristic speeds, there are three 
frequencies of the loads getting stuck, among which only one 
is below-resonance;

– at the above-resonance rotor speeds, located between 
the second and the third characteristic speed, there are three 
frequencies of the loads getting stuck, in this case, they are 
all above-resonance;

– at the above-resonance rotor speeds, exceeding the 
third characteristic speed, there exists only one frequency of 
the loads getting stuck, in addition, it is above-resonance and 
close to the rotor speed. 

Only at the rotor speeds smaller than the second charac-
teristic speed there is always one, and only one, below-reso-
nance frequency of the loads getting stuck. 




