3asdanns nepedasapiiinozo iHmeneKmyaibHozo Kepy-
6aHHA PodOMA ABMOHOMHUX MPAHCROPMHUX 3AC0018
€ Oysice CKA0HOI0 NPoOIEMOI0, 0COONUBO nepedasapiii-
Hi YMOBU Mpancnopmuux 3acobis i 6 moukax nepemuny
8 YM08ax peanvHoz0 1acy.

Memoro danozo odocaidxncenns € po3pooka 106020
WMYHHO20 IHMENEKMYANbHOZ0 AOANMUBHO20 Pezyas-
mopa 05 cucmemu nepedasapiiinoi beznexu aemorom-
HUX Mpancnopmuux 3acodié, a maxoxc Mooyus pos-
Ni3HABAHHA MPAHCNOPMHUX 3AC00I6 Ma mecmyeanus
6 MATLAB, exniouaiouu Oesixi demanizoeani mooy.ui.
Byau nocmagaeni nacmynui 3ag0anus: nowyx 06’cx-
mie 3a danumu damuuxie (Jlidap, Paoap), xoumpoo
weudxocmi ma pyabo6020 Ynpasainnsi, Po3nizHAGAHHS
MPAHCNOPMHUX 3AC00I6 3 BUKOPUCMAHHAM 320PMK OG0T
Heuponnoi mepesci ma Alexnet.

Y oaniii docaionuypkiii pooomi Gyao peanizosa-
HO 00po6KY 306padcens ma aidapnux 0anux 6 pexncu-
Mi peanvnozo uacy. Cnouamky 6yna npedcmasnena
cucmema peanvHoz0 4acy, KA CKAA0AEMbCS 3 KOMN-
JIeKCHUX MOOYJIi8, a came: MOOYJ 6USBIICHH S MPUCUMID -
Hux 00’cxmie, spynyeanns ma nowyxy o6’ckmie, suda-
JIeHHSL 3eMTli, 2TUOUHHO20 HABUAHHS 3 BUKOPUCMAHHAM
320pmrosux Hetiponnux mepesc. Ilouunatouu 3 moody-
A HAUOTIUNCHO20 MPAHCNOPMHO20 3AC00Y, 3A80AHHAM
Oyno — 3natimu HaubAUNCHUL nonepedy ABMOMOBLIL
1 66axcamu 1020 0CHOBHOI0 NEPewK00oo.

Y cmammi npedcmaenena adanmuena nepedasapiii-
Ha cucmema KepyseanHs weUOKicmio ma po3nizHA6aHHs
mpancnopmnux 3acodie. Mooyav adanmuenoi nepeoa-
eapiiinoi cucmemu KepyeanHs wWeUOKICMIO 3aneHcums
610 danux nubUNI020 HABUANHA Mma Ai0apHo20 damyu-
Ka, AKi npuznHaueHni 0N YnpasuiHHa 0e3po3cyonoro
n06edinKot0 600is HA 00PO3L WAAXOM PeYt08aHHA
WEUOKOCMI MPAHCNOPMHO20 3ACO0Y OAL NIOMPUMKU
Oe3neunoi eiocmani 6id 06’cxmie nonepedy (maxux ax
asmomooini, a00u, eéenocuned aéo O0yov-axuil iHwUl
00’exkm), Koau 600ill Hamazaemvca NiOGUWUMU WEUO-
xicmo. Hapa3zi, modyav posniznasawns mpamcnopm-
HUX 3ac00i6 6UABNAE i PO3NIZHAE MPAHCROPMHL 3ACOOU
HABK0JI0 ABMOMODINA

Kniouosi cnoga: enubunne naguanus, Haoip oanux
nidapnozo odamuuxa, aneopummu K-mipnozo oepesa,
xmapa mouox, Mooyab Po3nNiZHA6AHHSI MPAHCNOPMHUX
3acobis

|DOI: 10.15587/1729—4061.2018.141298|

A HYBRID
LIAR/RADAR-BASED
DEEP LEARNING

AND VEHICLE
RECOGNITION ENGINE
FOR AUTONOMOUS
VEHICLE PRECRASH
CONTROL

Bassant Mohamed Elbagoury
PhD

Department of Artificial

Intelligence and Robotics

Humboldt University in Berlin

Unter den Linden, 6, Berlin, Germany, 10099
E-mail: bassantai@yahoo.com

Rytis Maskeliunas

Professor

Department of Multimedia Engineering
Faculty of Informatics

Kaunas University of Technology

K. Donelaicio str., 73, Kaunas,

Lithuania, 44249

Abdel Badeeh

Mohamed M. Salem

PhD, Professor

University of Economics — Varna

Research Institute of the University

of Economics — Varna

Knyaz Boris | blvd., 77, Varna, Bulgaria, 9002

E-mail: abmsalem@yahoo.com

| =,

1. Introduction

How many accidents we see every day due to car acci-
dents? There are many causes to these accidents such as:
Driver’s inattention or poor insight about certain spots
around the vehicles (i.e. blind spots) or what attracts us
the most, the drivers with visual disorders such as, night
blindness, color blindness and so on. Egypt loses about
12,000 lives due to road traffic crashes every year. It has
a road traffic fatality rate of 42 deaths per 100,000 popu-
lations. This huge percentage was an inspiration behind

the proposed system, where we hope that the following
objectives to be met, to save as much lives on the road as we
can. In this paper, we propose an intelligent system aiming
at reducing the driver’s workload by assisting the driver
through interpreting the environment autonomously and
hence supporting the driver. The proposed system features
two main modules that have our concerns which are: Adap-
tive cruise pre-crash system and vehicle recognition each of
which will be discussed in the upcoming sections. The goal
of this research is to develop a complete intelligent adap-
tive controller for autonomous vehicle Pre-Crash system.

The coming section describes the main modules and experi-
mental results of the presented research.

2. Literature review and problem statement

Currently, a collision avoidance system is a system of
sensors that is placed within a car to warn its driver of any
dangers that may lie ahead on the road. However, Recent
Research is still missing Pre-Crash Planning, which needs In-
telligent (Adaptive) Controller to be embedded for complete
Car Safety and path-planning. The main research problem is
focused on two main goals, which are path planning and some
cases of intersection safety. Intersection safety covers applica-
tions related to approaching or passing intersections, with em-
phasis on the cooperation between vehicles, while Path plan-
ning problem usually exists in an environment which has many
obstacles and constraints. The problem has been proven to be
NP-Hard problem [1-6]. The path planning technology is an
important aspect of Al and robotics. A star algorithm is a kind
of path planning method which is applicable to the situation
that the global environmental information is already known.

The frequency of vehicle crashes caused due to human
errors (such as driver inattention or fatigue or the poor in-
sight for the blind spots) can be decreased with the aid of an
automatic system providing some mechanisms to avoid such
accidents (Fig. 1).

Fig. 1. Truck Accident

An autonomous car (driverless car, self-driving car, robo-
tic car) is a vehicle that is capable of sensing its environment,
and navigating without human input. Autonomous vehicles
detect surroundings using radar, GPS and computer vision.
It is fundamentally defined as a passenger vehicle that drives
by itself. It is also referred to as an autopilot, driverless car,
auto-drive car, most prototypes that have been built so far
performed automatic steering that were based on sensing the
painted lines in the road. Today’s researchers are using sensors
and advanced software together with other custom-made
hardware in order to assemble autonomous cars [7—10].

Although the prototypes seem to be very successful, a ful-
ly autonomous car that is reliable enough to be on the streets
has not been constructed yet. This is mostly because of the
difficulties involved in controlling a vehicle in the unpredict-
able traffic conditions of urban areas. While better hardware
is being developed there are important limitations on the
artificial intelligence side of the research. It would be fair to
say that the future of the autonomous cars mostly depends
on the development of better artificial intelligence software.
On the other hand, most hardware that is being used on the

cars seems to be doing well in terms of reliability, response
time and accuracy.

Intelligent or Driverless cars/vehicles will be an inevita-
ble thing in the future, thus we should focus our efforts in re-
vitalizing the technologies and methodologies used to bring
their deployment on a sooner timeline than anticipated.

Not only Fortune 500 Companies like Google and Tesla
are undergoing research in this field, but they continuously
find new ways every day to make cars fully autonomous and
self-reliant.

Two main debacles set in this field are related to A)
Path & Trajectory Planning and Calculations & B) Sensory
and Environmental Awareness of surroundings. These two are
the two main things we are going to focus on in our research.

Few of the most notable developers of autonomous vehi-
cles and their systems are:

— Ford [11-15];

— Tesla;

— KITTI (German Research — University Based) [14].

Both Ford & KITTI [14] are still in the early stages of
development as tests are inducte each and every other day to
ensue optimizations are applied to their algorithms properly
and that they would be able to push and scale their metho-
dologies for the greater good of autonomous driving.

Tesla is ahead in the sense that they have been investing
more resources and time into this field for a long time now;
we see them as one of the first to bring Level 1 Autonomy to
the table of driverless cars. Because not only they develop
and patent their hardware that will eventually lead them to
full autonomy, they also think how would they make it safe
for every human riding a car that they develop. A car that
they would eventually sell to the average end-consumers
which means they will be the first to tackle this field in a way
appropriate to real life application.

So, without further ado, we will tackle both the issues we
aforementioned at the start. And that is the path planning al-
gorithm and the environment sensory subsidiaries. We will be
implementing a LIiDAR based Path Planning Algorithm and
alongside this we will implemented Deep Learning for Vehicle
Recognition. Other algorithms are required for Environment
mapping and localization like SLAM [9] and EKF [16].

3. The aim and objectives of the study

This research paper aims at presenting a new artificial
intelligent adaptive controller for autonomous vehicle Pre-
Crash system along with vehicle recognition module and
tested in MATLAB including some detailed modules.

To achieve the objective, the following tasks were set:

1. Finding Objects in sensor Data (LiDAR. RADAR).

2. Speed and Steering control.

3. Vehicle Recognition using convolution neural network
and Alexnet.

4. Proposed System Architecture and Modules Engines

Regarding to our presented research paper, we are mostly
interested in the implementation of the autonomous vehicles
modules (Vehicle Detection and Recognition, Speed and
Steering control).

How we do it scientifically? We use LIDAR and came-
ras with wide-angle lens that captures frames of high speed

videos, and then we analyze each frame by applying different
algorithms. Main system architecture is shown in Fig. 2, each
will be described in details in coming sections.

Vehicle
Recognition

ALEXNET CNN LiDAR

Images Classification

SVM Vehicle PreCrash
Controller

Fig. 2. Artificial Intelligent Engine for Vehicle PreCrash

4.1. LIDAR Odometry Algorithm: Processing data
from LIDAR dataset

Lidar Odometry Algorithms is shown in Fig. 3, it is based
on LOAM algorithm presented by Zhang [ref.]. This algo-
rithm took the point cloud from the last Scan as inputs, Lm, Is
the growing point cloud of the present Scan, Lm+1, and con-
stitute a shift from the last recursion, Pk I+1. If a new sweep
is started, Pk I+1 sets to zero (line 4—6). Then, the algorithm
works on feature extraction from Lm+1 to construct Nm+1
and Im+1 in line 7. For each feature point, its coincidence
is found in Lm (line 9-19). The motion estimation is being
adapted to a strong fitting [27]. In line 15, the algorithm
assigns a bisquare weight for each feature point. The feature
points that have larger distances to their coincidences which
are designated with more small weights and points of land-
marks with greater distances than the threshold are consi-
dered extreme values and are assigned zero weights. Then, in
line 16, the pose transform is updated for one repetition. The
nonlinear optimization process ends if convergence is reached
or the maximum repetition no. is met. If the algorithm reaches
the end of the scanning process, Lm+1 is reestablishment to
new time stamp Lm+2 using the predestined motion during
the scan. Further, only the transform Pk 1+1 is returned for

Soeed Conrl

the new next round of The recursion. LIDAR processing re-
sults are presented in coming sections.

4. 2. LiDAR Sensor Dataset and Preprocessing

Regarding to our presented research paper, we
are mostly interested in the implementation of the
autonomous vehicles modules (Vehicle Detection
and Recognition, Speed and Steering control).

How we do it scientifically? We use Light De-
tection and Ranging (LIDAR) and cameras with
wide-angle lens that captures frames of high speed
videos, and then we analyze each frame by applying
different algorithms that will be described in details
later on (Fig. 4).

Main components of the project:

1. Setup.

2. Coordinate Systems.

The coordinate systems are defined the following
way, where directions are informally given from the
driver’s view, when looking forward onto the road:

— Camera: x: right, y: down, z: forward;

— Velodyne: x: forward, y: left, z: up;

— GPS/IMU: x: forward, y: left, z: up.

All coordinate systems are right-handed.

3. Lidar.

Lidar (also called LIDAR, LiDAR, and LADAR) is
a surveying method that measures distance to a target by
illuminating that target with a pulsed laser light, and mea-
suring the reflected pulses with a sensor. Differences in laser
return times and wavelengths can then be used to make digi-
tal representations of the target (Fig. 5).

— LiDAR stands for Light Detection and Ranging.

— LiDAR is the most reliable sensor for object detection.

— High-speed detection & processing — real-time detection.

— Measures Time of Flight (TOF), the round-trip travel
time for a laser pulse reflected of [obstacles.

LiDAR is more reliable than any existing sensing so-
lution, including:

— Radar (all types);

— Video (all types, including IR);

— Video+Radar;

— Video+Ultrasonic Sensors;

— Stereoscopic Cameras.

Step 1: Input: L, Lm+1, Pk1+1 from the last recursion

Step 2 : output: Lm+1, newly computed Pk 1+1

Step 3: hegin
Step 4 : if at the beginning ofa sweep then
StepS: Pkl+1l O; Step6: end

Step 7: Detect edge points and planar points in LM+1, put the pointsin Nm+1 and I m+1,

respectively;
Step 8 : for a number of iterations do
Step 9 : for each edge pointin N m+1 do

Step 10 : Find an edge line as the correspondence, then compute point to line distance based
on (?) and stack the equation to (11); Step 11: end

Step 12 : for each planar pointin I m+1 do

Step 13 : Find a planar patchas the correspondence, then compute point to plane distance
based on (10) and stack the equation to (11); Step 14 : end

Step 15 : Compute a bisquare weight for each row of (11);

Step 16 : Update PLM+1 for a nonlinear iteration based on (12);

Step 17 : if the nonlinear optimization converges then

Step 18 : Break; Step 19: end .5 Step 20: end

Step 21 : if at the end ofa sweep then

Step 22 : Reproject each point in L m+1 to Pk+2 and form Pk+1;

Step23: ReturnPlk +1and L m+1; Step 24 : end Step 25: else

Step 26 : Retwrm P k1+1; Step 27 : end

Fig. 3. LiIDAR Odometry Algorithm [12]

Velodyne HDL-64E Laserscanner

Point Gray Flea 2

[All heights wrt. road surface]

T All camera he\gh;s: 1.65m
Wheeiaxis Cam 1 (gray) B T 0 0 m i

(height: 0.30m) Cam 3 (color) B

Cam-to-CamRect Velodyne laserscanner

0.54 m & CamRect 5 (height: 1.73 m) i0.05 m
i -to-Image A—-——. -
0_.06 mITl é::anff’JEﬂ Y $02) IMU-to-Velo

; Velo-to-Cam GPS/IMU
§ 1.68 m H i (height: 0.93 m)

; y
0.80 m ! 0.81 m 0.48 m
0.27 m

Obstacle

Receiver | apaereneere

Fig. 5. LIDAR

Lidar applications presented in Fig. 6-9.

4. Stereo camera:

A stereo camera is a type of camera with two or more
lenses with a separate image sensor or film frame for each
lens. This allows the camera to simulate human bino-
cular vision, and therefore gives it the ability to capture
three-dimensional images, a process known as stereo pho-
tography.

Stereo cameras may be used for making stereo views
and 3D pictures for movies, or for range imaging.

The distance between the lenses in a typical stereo
camera (the intra-axial distance) is about the distance
between one’s eyes (known as the intra-ocular distance)
and is about 6.35 cm, though a longer base line (greater
inter-camera distance) produces more extreme 3-dimen-
sionality.

Industrial — Factory/Warehouse Automation

Fig. 6. Lidar applications in Industrial

Simultaneous Localization & Mapping

Fig. 7. Lidar application in Simultaneous & mapping

Safety — Monitoring, Security — Surveillance

Fig. 8. Lidar application in Safety

Automotive — Full Awareness

Fig. 9. Lidar application in Automotive — full

5. Proposed System Architecture

Proposed System modules Steps presented in Fig. 10—12.
1) Reading data from LIDAR dataset.

-

Fig. 12. Reading data sample (3)

2) Removing ground from the LIDAR dataset (Fig. 13—15). ‘ —

60

Fig. 14. Removing ground sample (2)

Fig. 15. Removing ground sample (3)

3) Clustering data based on nearest group points.
4) Projecting 3d points on camera and display 2d boun-
ding boxes around them (Fig. 16—18).

Fig. 18. Projecting sample (3)

5) Cropping object images.

6) Classifying cropped images between vehicles and
non-vehicles using deep convolutional neural network with
a support vector machine classifier.

7) Displaying only vehicles along with their distances
from camera (Fig. 19-21).

e

Fig. 21. Display vehicles sample (3)

6. Proposed Algorithms

6. 1. Ransac algorithm

Random sample consensus (RANSAC) is an iterative
method to estimate parameters of a mathematical model from
a set of observed data that contains outliers, when outliers
are to be accorded no influence on the values of the estimates.
Therefore, it also can be interpreted as an outlier detection
method. It is a non-deterministic algorithm in the sense that
it produces a reasonable result only with a certain probabi-
lity, with this probability increasing as more iterations are
allowed. The algorithm was first published by Fischer and
Boles at SRI International in 1981. They used RANSAC to
solve the Location Determination Problem (LDP), where
the goal is to determine the points in the space that project
onto an image into a set of landmarks with known locations.

A simple example is fitting of a line in two dimensions to
a set of observations. Assuming that this set contains both
inliers, i.e., points which approximately can be fitted to
a line, and outliers, points which cannot be fitted to this line,
a simple least squares method for line fitting will generally
produce a line with a bad fit to the inliers. The reason is
that it is optimally fitted to all points, including the outliers.
RANSAC, on the other hand, can produce a model which is
only computed from the inliers, provided that the probability
of choosing only inliers in the selection of data is sufficiently
high. There is no guarantee for this situation, [citation needed |
[clarification needed] however, and there are a number of
algorithm parameters which must be carefully chosen to keep
the level of probability reasonably high (Fig. 22).

Fig. 22. Ransac algorithm

6. 2. k-d tree algorithm:
In computer science, a k-d tree (short for k-dimensional
tree) is a space-partitioning data structure for organizing

points in a k-dimensional space. k-d trees are a useful data
structure for several applications, such as searches involving
a multidimensional search key (e. g. range searches and nea-
rest neighbor searches). k-d trees are a special case of binary
space partitioning trees

The k-d tree is a binary tree in which every node is a k-di-
mensional point. Every non-leaf node can be thought of as
implicitly generating a splitting hyperplane that divides the
space into two parts, known as half-spaces. Points to the left
of this hyperplane are represented by the left subtree of that
node and points right of the hyperplane are represented by
the right subtree. The hyperplane direction is chosen in the
following way: every node in the tree is associated with one
of the k-dimensions, with the hyperplane perpendicular to
that dimension’s axis. So, for example, if for a particular split
the «x» axis is chosen, all points in the subtree with a smaller
«x» value than the node will appear in the left subtree and all
points with larger «x» value will be in the right subtree. In
such a case, the hyperplane would be set by the x-value of the
point, and its normal would be the unit x-axis

A 3-dimensional k-d tree. The first split (the red vertical
plane) cuts the root cell (white) into two sub cells, each of
which is then split (by the green horizontal planes) into two
sub cells. Finally, those four cells are split (by the four blue
vertical planes) into two sub cells. Since there is no more
splitting, the final eight are called leaf cells.

7. Vehicle Recognition Module

This module consists of 2 parts:

— Extracting features from input image.

— Classifying those features between 2 categories vehic-
les and nonvehicle.

The training dataset contains more than 80,000 images
categorized into 8 categories as following:

—Car’;

— "Person (sitting)’;

—Cyclist’;

—’Van’;

—"Tram’;

—"Truck’;

—'Misc.’;

— "Pedestrian’.

We are interested only into the car category so we classify
images into cars and non-cars.

Sample input images for vehicles (Fig. 23).

Sample input images for Non-vehicles (Fig. 24).

Fig. 24. Non-vehicles sample

8. Speed Planning

In trajectory generation for unstructured environment,
or even structured with lake of speed information we need
another step predict speeds on different parts of the path.
some planning algorithm optimize for speed and position
in the same step as in DARPA Urban challenge winner
BOSS [5] also in some situation like intersections and city
streets tight curves speed profiling will be useful for smoother
and safer autonomous drive.

This step is executed after smoothing first step and si-
mulation step.

The main idea is simple: we analyze the curvature along
the generated trajectory when curvature is small so it is
a tight turn and speed should be small and vice versa.

Parameter of this algorithm:

Smax: Maximum speed limit.

Nuee: Number of points used for curvature calculation.
By default we use 3, but according to how many points is
generated in the smoothing step, this could produce mislea-
ding results, that why we check if all N, does not cover
more than the cat wheel base length.

w: smoothness weight, to control how driving style how
smooth driving through curves will be. If we can collect a lot
of data with different driving style we can define high level
parameter to control this weight (race, sports, comfort, super
comfort). By applying polynomial regression this could be
easily predicted.

9. Deep Learning:
Convolutional Neural
Networks ALEXNET

pooling layers, and two globally connected layers with a final
1000-way SoftMax (Fig. 25).

We use alexnet only to extract features from input images.

We take the output from layer number 23 which has
output of 4096 values then we use these values as input to
a support vector machine to classify those features.

What is a Support vector machine?

In machine learning, support vector machines (SVMs,
also support vector networks) are supervised learning mo-
dels with associated learning algorithms that analyze data
used for classification and regression analysis. Given a set
of training examples, each marked as belonging to one or
the other of two categories, an SVM training algorithm
builds a model that assigns new examples to one cate-
gory or the other, making it a non-probabilistic binary
linear classifier (although methods such as Platt scaling
exist to use SVM in a probabilistic classification setting).
An SVM model is a representation of the examples as
points in space, mapped so that the examples of the se-
parate categories are divided by a clear gap that is as wide
as possible.

New examples are then mapped into that same space
and predicted to belong to a category based on which side
of the gap they fall.

In addition to performing linear classification, SVMs can
efficiently perform a non-linear classification using what is
called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.

When data are not labeled, supervised learning is not
possible, and an unsupervised learning approach is required,
which attempts to find natural clustering of the data to
groups, and then map new data to these formed groups.
The clustering algorithm which provides an improvement
to the support vector machines is called support vector
clustering and is often [citation needed] used in indust-
rial applications either when data are not labeled or when
only some data are labeled as a preprocessing for a classi-
fication pass.

More formally, a support vector machine constructs
a hyperplane or set of hyperplanes in a high- or infi-
nite-dimensional space, which can be used for classifica-
tion, regression, or other tasks. Intuitively, a good sepa-
ration is achieved by the hyperplane that has the largest
distance to the nearest training-data point of any class
(so-called functional margin), since in general the lar-
ger the margin the lower the generalization error of the
classifier (Fig. 26).

Alexnet is a convolutional
neural network, it was trained

over 1.3 million images and can
classify between 1000 catego-

ries.

Max 128
pooling

5 Convolutional Layers 1000 ways
Softmax
. v - -
.
ne .
138 Ot Joag \dense
13 ’7
) ;3 dense dense
1600
128 Max L
Max pooling LiEE: :nda o«
pooling »

The neural network, which
has 60 million parameters and
500,000 neurons, consists of five
convolutional layers, some of
which are followed by max-

3Fully-Connected
Layers

Fig. 25. Convolutional neural network Alexnet

Fig. 26. Support vector machines (SVM)

10. Discussion

10. 1. System Implementation and Experimental Re-
sults

We have used MATLAB to implement our functions
which consist of modules:

— Reading dataset from (Lidar/camera);

— Remove ground from Lidar;

— Cluster 3d points into objects based on Euclidean
distance;

— Project each object on camera and draw a boun-
ding box;

function
pc = pointCloud (ptCloud) ;

— Crop each object and extract its features using ALEXNET:

— Classify features using SVM.

«Remove ground>»

This function removes ground from a LIDAR frame
(Fig. 27).

«Cluster 3d>»

This function divides 3d points from LIDAR into objects
based on distance between points.

«Nearest object»>

This function gets the nearest heading car.

«Training images preparations

This function crops labeled images and prepare them to
be the same size as AlexNet input size (Fig. 28).

«Train neural network»

This function trains the SVM classifier on the features
obtained from ALexNet.

«Detect cars

This function detects heading car to get its distance and
velocity (Fig. 29).

«Speed limit detectors

This function calculates self-speed to estimate the Bra-
king distance (Fig. 30).

«Vehicle recognition»

This function detects and recognizes cars in the scene
(Fig. 31).

[out,in] = gp_removeGround (ptCloud, maxDistance)

% Crop the point cloud to only contain points within the specified region.

Fit the ground plane.
% maxDistance = 0.2; % in meters
referenceVector = [0, 0, 1];
[~, inPlanePointIndices, outliers] =
referenceVector) ;

% colorLabels (inPlanePointIndices) =

pcWithoutGround = select (pc,
out = pcWithoutGround.Location;

in = select (pc, inPlanePointIndices);
in = in.Location;
end

outliers);

pcfitplane (pc, maxDistance,

greenldx;

Fig. 27. Function «Remove ground»

function prepare_ training_images ()

root_dir = 'E:\FCIS\4th\Second Term\1GP\Training dataset';
data_set = 'training';

tic;

% get sub-directories

cam = 2; % 2 = left color camera

image_dir = fullfile(root_dir, [data_set '/image ' num2str(cam)]);
label dir = fullfile(root_dir, [data_set '/label ' num2str(cam)]);

indices = zeros(2);
for i = 0:7480

objects = readLabels (label dir,i);

img = imread(sprintf ('

for obj_idx=1:numel (objects)
% plot 2D bounding box

object = objects(obj_idx);

:s/%06d.png', image_dir,1i));

pos = [object.x1l,object.yl,object.x2-object.x1+1,o0bject.y2-
object.yl+1];

imgToSave = imcrop (img,pos);

imgToSave = imresize (imgToSave, [227 227]);

filename = '';

if strcmp(object.type, 'Car')

== 1 && object.occlusion <=1

filename = sprintf ('E:\\FCIS\\4th\\Second Term\\1GP\\Training

dataset\\training\\cropped2\\%s\\%010d.png"', 'Car"',

indices (1)) ;

indices (1) = indices(1)+1;

elseif strcmp(object.type, 'Car')

=0

filename = sprintf ('E:\\FCIS\\4th\\Second Term\\1GP\\Training

dataset\\training\\cropped2\\%s\\%010d.png"', 'DontCare’,

indices (2));

indices (2) = indices(2)+1;
else
continue;
end
imwrite (imgToSave, filename) ;
end
fprintf('sd ',1i);
toc;
end

function detect_car (base_dir,calib_dir)
frame = 0; % O-based index
fid =

fopen (sprintf ('%$s/velodyne points/data/%$010d.bin',base_dir, frame), 'rb');

$frame i
velo = fread(fid, [4 inf], 'single')';
fclose (£fid) ;
velo(:,4) = [1;
ptCloud = velo;
ptCloud = cut (ptCloud,50,1,1.5);
idx = ptCloud(:,1)>-2 & ptCloud(:,1)<2.6;

ptCloud (idx, :) = [];
idx = ptCloud(:,1)<0;
ptCloud (idx, :) = []:
[m,i] = min(ptCloud) ;

nearestCar = ptCloud(i(1l),:);
idx = ptCloud(:,1)>nearestCar (1) +1;
ptCloud (idx, :) = []1;
pcshow (ptCloud) ;
% options (modify this to select your seguence)

if nargin<1l

base_dir =

'/mn/karlsruhe_dataset/2011_09_26/2011_09_26_drive_0009_sync';

end
if nargin<2
calib_dir = '/mnt/karlsruhe_dataset/2011_09_26"';
end
cam = 2; % O-based index

% load calibration
calib =

loadCalibrationCamToCam(fullfile(calib_dir, 'calib_ cam_to cam.txt'));

Tr_velo_ to_cam =
loadCalibrationRigid (fullfile(calib_dir, 'calib velo to cam.txt'));

% compute projection matrix velodyne->image plane

R_cam_to_rect = eye(4);
R_cam_to_rect(1:3,1:3) = calib.R_rect{1l};
P velo to img = calib.P rect{cam+l}*R cam to rect*Tr velo to cam;

% load and display image
velo_img = project (ptCloud(:,1:3),P_velo_ to_img) ;

img = imread (sprintf ('%s/image %02d/data/%010d.png',base_dir,cam, frame)) ;

fig = figure ('Position', [20 100 size (img,2) size (img,1)1);
axes ('Position', [0 O 1 11);
text_str = cell(1l,1);
[m, ind] = min (ptCloud) ;

nearestCar = ptCloud(ind(1l),:);% #modify //distance from Lidar not

camera
text_str = ['distance: ' num2str (nearestCar(l),'%0.2f"')];%
//distance from Lidar not camera

#modify

%nearestCar(:,1) = [1; % #modify //distance from Lidar not camera

[m, ind] = max(velo_img) ;
position(l,1) = m(1l);
[m,ind] = min(velo_img) ;
position (1, 2) m(2);

Fig. 29. Function «Detect car»

function gp_play(in)

ticy
base_dir = '';
calib_dir Ty
if (in == 1)
base_dir = 'E:\FCIsS\4th\Second
Term\1GP\2011_09_26\2011_09_26_drive 0052_sync';
calib_dir = 'E:\FCIs\4th\Second
Term\1GP\2011_09_26\2011_09_26_drive_ 0052_sync\2011_09 26';
else
base_dir = 'E:\FCIs\4th\sSecond
Term\1GP\2011 10 03\2011 10 03 drive 0047 _sync';
calib dir = 'E:\FCIS\4th\Second
Term\1GP\2011_ 10_03\2011_10_03_drive 0047_sync\2011_10_03';
end
writerObj = VideoWriter ('E:\FCIS\4th\Second
Term\1GP\videos\myVideo.avi') ;
writerObj.FrameRate = 9.8;
open (writerObj) ;
calib =

loadCalibrationCamToCam(fullfile(calib_dir, 'calib cam_ to_cam.txt'));

Tr_velo_to_cam =
loadCalibrationRigid(fullfile(calib_dir, 'calib velo to cam.txt'));

cam = 2; % O-based index

R _cam_to_rect = eye(4);

R_cam_to_rect(1:3,1:3) = calib.R _rect{l};

P_velo_to_img = calib.P_rect{cam+l}*R_cam_to_rect*Tr_velo_ to_cam;

set (0, 'DefaultFigureVisible', 'off');
set (0, 'DefaultAxesVisible', 'off'):;

distanceIndex = 0;

distances = 0;

meanDistance = 0;

for i = 0:836
fid =

fopen (sprintf ('%s/velodyne points/data/%$010d.bin"',base_dir,i), 'rb'); %frame i

ptCloud = fread(fid, [4 inf], 'single')';
fclose (£fid) ;
ptCloud(:,4) = [];

idx = ptCloud(:,1)<2.6;

ptCloud (idx, :) [1z
idx = ptCloud 2)<-1;
ptCloud (idx, :) [1;
idx = ptCloud(:,2)>2;
ptCloud (idx, :) 1z

idx = ptCloud
ptCloud (idx, :
idx = ptCloud
ptCloud (idx, :) = []1;

% Find the points corresponding to obstacles
ptCloudObsatcles = gp_ removeGround (ptCloud,0.2) ;
[objects,objCount] = gp_cluster3d(ptCloudObsatcles) ;
ptCloudObsatcles =

gp_nearestClusteredObject (objects, objCount, ptCloudObsatcles) ;
[m, ind] = min(ptCloudObsatcles) ;

Fig. 30. Function «Speed limit detector»

function gp_play2 (in)

tic;

cnnMatFile = 'E:\GP\Data Sets\imagenet-caffe-alex.mat';

net = helperImportMatConvNet (cnnMatFile) ;

load ('E:\GP\Data Sets\classifierO.mat");

featurelLayer 'fc7';

writerObj = VideoWriter ('C:\Users\Ismail Samir\Desktop\v\myVideo.avi');
writerObj.FrameRate = 9.8;%9.8;

open (writerObj) ;

base_dir = '';

calib_dir = '';

if (in == 1)
base_dir = 'E:\GP\Data
calib_dir = 'E:\GP\Da

else
base dir '"E:\FCIS\4th\Second

Term\1GP\2011 10_03\2011_10_03 drive 0047 _sync';

5\2011_10_03_drive_0047_sync';
ets\2011_09_26_drive_0052_sync\2011_09_26"';

=)

calib_dir = 'E:\FCIS
Term\1GP\2011 10 03\2011 10 10 _03";
end
calib =

loadCalibrationCamToCam(fullfile (calib_dir, 'calib cam to_ cam.txt'));
Tr_velo_to_cam =
loadCalibrationRigid (fullfile (calib dir, 'calib velo to cam.txt'));
set (0, 'DefaultFigureVisible', 'off');
set (0, 'DefaultAxesVisible', 'off');
cam = 2; % O-based index
R_cam_to_rect = eye(4);
R_cam_to_rect(1:3,1:3) = calib.R_rect{l};
P velo to img = calib.P rect{cam+l}*R _cam to rect*Tr velo to cam;
for frameNumber = 0:836
fid =
fopen (sprintf ('%s/velodyne points/data/%010d.bin',base_dir, frameNumber), "rb')
$frame i
ptCloud = fread(fid, [4 inf]l, 'single')';
fclose (fid);
ptCloud(:,4) = [1;
idx = ptCloud(:,1)<2.6;
ptCloud(idx, :) = [1;
idx = ptCloud(:,2)<-5;
ptCloud (idx, :) = [];
idx = ptCloud(:,2)>10;
ptCloud(idx, :) = [1;
idx = ptCloud(:,3)<-2;
ptCloud(idx, :) = [1;
idx = ptCloud(:,3)>3;
ptCloud(idx, :) = [1;

[ptCloud,inliers] = gp_removeGround (ptCloud,0.2);
[objects,objCount] = gp_cluster3d(ptCloud) ;
objectsClustered = cell (1,objCount) ;
for k = l:size (objects,1)
if (isempty (objectsClustered{objects(k)}))
objectsClustered{objects (k) } = k;
else
objectsClustered{objects (k) } =
[objectsClustered{objects (k) }, k] ;

Fig. 31. Function «Vehicle recognition»

10. 2. System Testing and Deployment Each dataset contains 6 folders:
The used datasets are acquired from the following link:
http://www.cvlibs.net/datasets/kitti/raw_data.php image_00
Select [synced rectified data] option (Fig. 32). image_01
image_02
image_03

2011_09_26_drive_0009 (1.8 GB)
Length: 453 frames (00:45 minutes))
Image resolution: 1352 x 512 pixels velodyne_points
Labels: 89 Cars, 3 Yans, 2 Trucks, 3 Padestrians, 0 Sitters, 0 Cyclists, 0 Trams, 1 Misc

B Dovwnloads: [unsynced+unrectified data] [syncedsrectified data] [calibration] [tracklets]

oxts

Here:

4 2011_09_26_drive_0011 (0.9 GB) —’image_00’: left rectified gray-

Length: 238 fr.ames (00:23 mingtes] scale image sequence;

Image resolution: 1392 x 512 pixels)) o

Labels: 15 Cars, 1 vans, 1 Trucks, 1 Padestrians, 0 Sitters, 1 Cyclists, 0 Trams, 1 Misc - lmage,(n . I'lght I’eCtlfled gray-
§ Downloads: [unsynced+unrectified data] [synced+rectified data] [calibration] [tracklets] scale image sequence;

" r. v £

2011_09_26_drive_0013 (0.6 GB) . image 02" left rectified color
| Length: 150 frames (00:15 minutes) Image sequence;

Image resolution: 1392 512 pixels —’image_03: right rectified color

Labels: & Cars, 1Vans, O Trucks, 0 Pedestrians, O Sitters, 0 Cyclists, 0 Trams, O Mise . . .
Downloads: [unsynced+unrectified data] [synced+rectified data] [calibration] [tracklets] lmage sequence;

—'velodyne_points”: Lidar 3d data
2011_09_26_drive_0014 (1.2 GB)

Length: 320 f) (00232 | points;

ngth: rames [00:32 minutes y).

Image resolution: 1392 » 512 pixels — Oxts®: GPS/IMU data etc...
Labels: 26 Cars, 4 Yans, 1 Trucks, 5 Pedestrians, 0 Sitters, 4 Cyclists, 1Trams, 0 Misc Steps:

Downloads: [unsynced+unrectified data] [svnced+rectified data] [calibration] [tracklets]

1. Consider «gp_play2» function;
| 2011_09_26_drive_0017 (0.5 GB) 2. Set base_dir = the folder which
Length: 120 frames (00112 rinutes) contains the dataset;

Image resolution: 1392 x 512 pixals : —
Labels: 4 Cars, 0 Vans, 0 Trucks, 0 Padestrians, 0 Sitters, 0 Cyclists, 0 Trams, 0 Misc 3 Set CDDM&tFlle the aleXNet

Downloads: [unsyncedsunractifiad data] [synced+rectified data] [calibration] [tracklets] DAt ﬁle;

4. Set the SVM classifier path in
Fig. 32. KITTI used Dataset [14] the load function;

5. Set the video path of your choice;

6. Run «gp play2» function;

7. It will go through each frame in the dataset
you have downloaded,;

8. Wait until the program finishes executing;

9. The result video is in the path you specified.

10. 3. Future Work

In this paper, we implemented a real-time
image/Lidar processing.

At the beginning, we presented a real-time system which
is composed of comprehensive modules, these modules are 3d
object detection, object clustering and search, ground removal,
deep learning using convolutional neural networks. Starting
with nearest vehicle module our target is to find the nearest
ahead car and consider it as our primary obstacle (Fig. 33).

Detecting all objects in the scene after removing ground
presented in Fig. 34.

Recognizing only vehicles (filtering out non-vehicles)
presented in Fig. 35, 36.

Fig. 35. Result. Recognizing only vehicles (filtering out non-vehicles) (3)

Fig. 36. Result. Calculating distances from each vehicle (4)

11. Conclusions

In this research paper, we implemented a real-time
image/Lidar processing. At the beginning, we presented
a real-time system which is composed of comprehensive
modules, these modules are 3d object detection, object
clustering and search, ground removal, deep learning using
convolutional neural networks. Starting with nearest vehicle
module our target is to find the nearest ahead car and con-
sider it as our primary obstacle.

Presented an Adaptive cruise pre-crash sys-
tem and vehicle recognition. The Adaptive
cruise pre-crash system module depends on
Deep Learning and LiDAR sensor data, which
meant to control the driver reckless behavior
on the road by adjusting the vehicle speed to
maintain a safe distance from objects ahead
(such as cars, humans, bicycle or whatever the
object) when the driver tries to raise speed.
At the very moment the vehicle recognition
module, detects and recognizes the vehicles
surrounding to the car.

The effectiveness of the results obtained is
confirmed for the following test cases:

— detecting all objects in the scene after
removing groun;

— recognizing only vehicles (filtering out
non-vehicles);

— calculating distances from each vehicle.

Acknowledgments

Thanks to student Yasmine Bakr and her
colleague, our graduate students for some data-
set programming which are supervised by
Dr. Bassant Elbagoury at Faculty of Computer
and information sciences, ain shams university,
cairo, Egypt.

References

1. Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC / Hsu C. W,, Liang C.N., Ke L. Y., Huang E Y. //
World Academy of Science, Engineering and Technology. 2009. Vol. 3, Issue 7. P. 808-814.

2. Chang B. R,, Tsai H. F, Young C.-P. Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sen-
sing // Expert Systems with Applications. 2010. Vol. 37, Issue 3. P. 2439-2450. doi: https://doi.org/10.1016 /j.eswa.2009.07.036

3. Kohler M. Accurate PreCrash Detection. IBEO Automobile Sensor GmbH, System Development. Hamburg.

4. Schouten N. Pre-Crash Testing in the VeHIL Facility. TNO Automotive, Integrated Safety Department. 2008. 28 p.

5. Automotive Embedded Systems Handbook / N. Navet, F. Simonot-Lion (Eds.). CRC Press, 2009. doi: https://doi.org/

10.1201,/9780849380273

6. Jansson J., Johansson J., Gustafsson F. Decision Making for Collision Avoidance Systems // SAE Technical Paper Series. 2002.

doi: https://doi.org/10.4271,/2002-01-0403

7. Evans C. Notes on the open surf library. University of Bristol, Tech. Rep. CSTR-09-001, 2009.

8. Popirlan C., Dupac M. An Optimal Path Algorithm for Autonomous Searching Robots //Annals of University of Craiova, Math.

Comp. Sci. Ser. 2009. Vol. 36, Issue 1. P. 37—48.

9. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments / Dolgov D., Thrun S., Montemerlo M., Diebel J. //
The International Journal of Robotics Research. 2010. Vol. 29, Tssue 5. P. 485-501. doi: https://doi.org/10.1177 /0278364909359210
10. The 2005 DARPA Grand Challenge: The Great Robot Race / M. Buehler, K. Tagnemma, S. Singh (Eds.). Springer, 2007. doi: https://

doi.org/10.1007 /978-3-540-73429-1

11. Urban challenge rules, revision. DARPA. 2007. 28 p. http://archive.darpa.mil /grandchallenge/docs/Urban _Challenge Rules 102707.pdf
12. Urmson C. Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge. 2007.

13. Tavel P. Modeling and Simulation Design. AK Peters Ltd., 2007.

14. Welcome to the KITTI Vision Benchmark Suite! URL: http://www.cvlibs.net/datasets/kitti/
15. Pandey G., McBride J. R., Eustice R. M. Ford Campus Vision and Lidar Data Set. URL: http://robots.engin.umich.edu/publications/

gpandey-2010b.pdf

16. Robotics: Estimation and Learning. URL: https://www.coursera.org/learn/robotics-learning

0 =,

3anpononoeano cnocié nideuwenns zasadocmiixocmi de-
mexmopa Qazomaninyavosanux (OM) cuenanie na ocHosi
npucmporo pazoeozo0 asmoniocmporosanus uacmomu (PAITY)
WIAAXOM BUKOPUCMAHHSA 1020 MOOUixauii.

3adana nidsuwenns 3asadocmiikocmi cucmem 36’°a3xy 00
uux nip twna 6 npomupiuyi iz 3a80aHHAM 00CAHEHHA BUCOKUX
OUHAMIMHUX NOKAZHUKIE NPUCMPO10 011 eexmusHoi ma Kopex-
mnoi 06pooxu DM-cuenanie 3 éequKum iH0eKCom MOOYAAUiL.
Hoxpawenns 3asadocmiiixocmi cucmemu 03Ha1ano nozipuieH-
Ha il dunamiunoi nosedinku i nasnaxu. 3anponomnosanuii cno-
Cif dae MoHCAUGICMb 3HUUMU WYMOBULL NOPiz NPUCMPOIo, He
nozipuyrouu npu yboMy 1020 OUHAMIMHUX 6J1ACMUBOCTME.

Inimauyiiine moodentoeanns epanuunoi 3aeadocmiixocmi
Kaacuunozo ma moouixoeanozo npucmpoié npoeoouocs
onsa 060ox kpumepiie 3pusy cunxpouizauii. B o6ox eunao-
Kax 3asadocmitikicms MoOUDiK06an020 npucmpoio € Kpawo1o.
Pesynvmamu imimauiiinozo Mo0en08anns noxasyonv, uo
anomanvii cmpubku pazu onopnozo zenepamopa moougixosa-
H020 NPUCMPO1O 34 KOPOMKUI 4AC CROCmepizalomvCs 01 6inb-
wux pienie wymy, Hisc 6 xaacuunomy npucmpoi (wa 1,5-4 ob
3anexncho 6i0 napamempie npucmpoio) .

Ob6uoea eapianmu npucmpoie Oyau Qizuuno peanizosami
Ha 6a3i npozpamosanoi n02iunoi inmezpanvnoi cxemu (IIJIIC)
3 Memoro NPoeeodeHHs eKCNePUMEHMANLHUX 00CTI0NHCEeHb 3a6a-
docmitixocmi yux npucmpoie ma nepesipxu pe3yavmamis imi-
mauiiinozo mooemosanns. Excnepumenmanvui docaioscenns
AKICHO niomeepounu pesyromamu Mo0eat06anHs ma noKasy-
10mb, WO BUKOPUCMAHHA MOOUDiK068an020 a3z068020 demexmo-
pa dae suzpaw y 3asadocmivixocmi na 1-2,5 0b 3anexncno 6io
napamempie npucmpoto. JJunamiuni eracmueocmi mooudixo-
8aH020 NPUCMPOIO NPU UbOMY HE NOZIPULYIOMCSL.

Hagedeni pesyromamu demoncmpyioms Headuaxi nepcnex-
mueu suxopucmanns npucmpoie MAIIY 3 nidsuweroro 3aéado-
cmiukicmio y cucmemax 36’°sA3KYy Pi3HOMAHIMHO20 NPUIHAUEH-
H3l, W0 NPaytooms 6 CKAA0HI 3a8a006ii 00cManosyi

Kntouosi canosa: npucmpiii paszoeozo asmoniocmpoio-
eanna wacmomu (DPAIIY), mooudixosanuii gaszoeuii demex-
mop (DP/]), sysvrkocmyzosuii pinomp (BCD)

|l =,

1. Introduction

|DOI: 10.15587/1729-4061.2018.143178|

FIRMWARE
IMPLEMENTATION

AND EXPERIMENTAL

RESEARCH OF THE
PHASE-LOCKED
LOOP WITH
IMPROVED NOISE
IMMUNITY

A. Bondariev

Doctor of Technical Sciences, Professor*
E-mail: bondap@ukr.net

S. Altunin

Postgraduate student*®

E-mail: serg.alt.i@gmail.com

I. Horbatyi

Doctor of Technical Sciences,

Associate Professor*

E-mail: giv@polynet.lviv.ua

I. Maksymiv

PhD, Assistant*

E-mail: lvan.P.Maksymiv@Ipnu.ua
*Department of theoretical

radio engineering and radio measurement
Lviv Polytechnic National University

S. Bandery str., 12, Lviv, Ukraine, 79013

bile phones, GPS, etc. The emergence and development of

these technologies would be impossible without progress in

Today, it is impossible to imagine a modern society the field of radio engineering, microelectronics and digital
without such innovations as the Internet, digital TV, mo-

circuitry. However, despite their complexity, these devices

