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Copmosano MHOMCUNY BUHAUATILHUX napame-
mpi6 0151 MOOeNI08AHHS emanié Po36UMKY NOEPXHEB0-
20 Oepexmy Ha 306HIWMHINL NOBEPXHI MemAane6020 mpy-
00npo600yY 3 YpaxyeanHam 6momHoi Miyrocmi.

s Oinsmxu mpy6onposody 3 nosepxmesum dedex-
mMoOM 3anponoHOAHO 3ACMOCYEAMU ATIZOPUMM NPO-
2HO3YBAHHS NONAPUIAUIUHO20 NOMEHUIANY 3 BUKOPU-
cmannam 3aco6ie neiiponnoi mepeci. Chopmosano
Memoouxy PYHKUIOHYEAHHS MeCmy1010i MHONCUHU 0151
OUiHIOBAHHA ehexmusHOCmi HeUpoOHHOT Mepedici, o
eKIt0Mac 6i0n06IOHI Memoou naeuanns. 3a pe3yiv-
mamamu ananizy 63aemo38’a3anux oedopmauiiinux
ma KoposiuHUX NPouecie po3poodeHo ejemenmu memo-
donoeii opmyeanns indopmauiiinozo 3abesnevenns
NPOZHO3YEAHHA PecypCy NIHIHOT HACMUHU NiIO3eMH020
Memaneozo mpyoonposody 3 YpaxyeanHHam KOpo3ii-
HOi 6momu.

Bidomi pesyavmamu ouinroganns pecypcy niozem-
H020 Memaneeozo mpyoonpoeody (IIMT) nepedéaua-
Ju MiHTUHUY Xapaxmep weuoxocmi kopo3ii. Bionogiona
ingpopmauin npedcmasiena 6 MirsCHAPOOHUX MA HAUTO-
HanvHux cmanoapmax. Ilposedeni 6 ocmanniii wac exc-
nepumenmanvhi 00CAIONHCEHH NOKA3AAU, WO OOULTLHO
8paxosysamu HeJHIUHUL Xapakmep weuoKocmi Kopo3ii
Ha 306Hiwnil noeepxni IIMT.

IIposedeno oocmencenns dinsanxu IIMT 3a dono-
MO02010 BUMIPIOBAUA NONAPU3AUIIHO20 NOMEHUIaNYy
(BIIII) y xomnaexci 3 Ge3xonmaxmuum euMipioea-
uem cmpymy (BBC) i cpopmynvosano npunyunu
BUKOPUCMANHSA HEUPOHHOT Mepedci 0 Onpauroean-
Hs pe3yavmamié excnepumenmy. Pozensnymo ron-
xpemnuil npuxaad ons IIMT, 6 pesyavmami ananizy
AK020 3 00NOMO2010 HEUPOHHOT Mepedci 0N niozemHoi
mpy6u (3i cmani 17I'1C) 3 xopositinum dedpexmom na
306HIWNIU NOBEPXHI NPOBEOEHO OUIHIOBAHHS pecyp-
cy Memany i 6UAGNEHO HENTHIUHICMb, GeNUUUNHY AKOT
xapaxmepu3sye gionowenns 5=1,136.

3anpononosano memoo KOHMpPoOI0 i MemoouKu oui-
HI0BAHHS NOJAPUIAUILHO20 NOMEHUIANY 3 OONOMOZ0I0
Hetiponnoi mepesci. Bonu dozeonsiomo Qisunno oorpyn-
mogano ma mamemamuuno Oibw KOpeKMHO HA 6i0-
Miny 6i0 cmanoapmuux onucamu npoueoypy nowupen-
HA Koposiinux depexmis y enubumny mpyou.

Biosnauena ingpopmauis € 8axcausoro 0as yoocko-
HANleHHsT Memo0i8 KOHMPOMI NiOIEMHUX MEMALe6Ux
mpy6 nagpmozazosux nionpuemcme, 30kpema, mMemooux
KOPEKmMHO020 UMIPIOGAHHS MA OUIHIOBAHHS NOAAPUIA-
uiiHUX nomenyianie ma anooHux cmpymis y depexmax
1301AUIUHUX NOKPUMb 3 YPAXYBAHHAM HEJIHIUHOCMI
inpopmamusnux napamempie

Kmouosi caosa: nidzemmi mpy6onpoeodu, nagpmo-
2a306i nionpuemcmea, nosepxuesuil dedpexm, nons-
pusauitinuii nomenuyian, Kopo3iina emoma, HeupoHHA
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1. Introduction

3) cathodic protection systems (CPS). The LS-CS-CPS

Assessment of quality of monitoring underground metal
pipelines (BMP) in oil and gas industry relates to quality of

functioning of their three defining components:
1) linear section (LS) (pipe metal);
2) compressor station (CS);

system is rather complicated and it is expedient to use
intelligent monitoring systems capable of processing large
volumes of information for its control.

In the process of analysis of the LS-CS-CPS system, it is
worth to take into consideration accumulation of defects and
change of fatigue strength of metal during operation.




An important problem for the LS-CS-CPS system con-
sists in stabilizing quality of the links between its compo-
nents. In this context, artificial neural networks (ANNs)
should be used to optimize working parameters of transpor-
tation of products, particularly gas, and minimize techno-
logical deviations during operation of pipelines and metal
structures operated by oil and gas enterprises.

Information necessary for assessing pipeline quality can
be established based on analysis of electrophysical parame-
ters measured by a polarization potential meter (PPM) and
a contactless current meter (CCM) [1].

Urgency of studying the LS-CS-CPS system service life is
predetermined by 3 main factors. First, the LS-CS-CPS system
should be considered as an involved composite system taking
into consideration a multitude of electrophysical parameters
and currents. Second, to optimize the LS-CS-CPS system, it is
expedient to apply multilayer ANNSs. Third, for correct forecast
of service life of the underground pipelines contacting with
ground electrolytes, correct strength criteria should be used
taking into consideration loads and fatigue strength.

Known results of evaluation of BMP service life were
obtained with assumption of linear nature of corrosion rate.
Experimental studies have shown that it is advisable to take
into consideration nonlinear nature of corrosion rate.

2. Literature review and problem statement

The problem of quality of underground metal pipelines
is connected with efficiency of cathodic protection devices
(CPD) as well as accuracy and reliability of information-
measurement systems (IMS), in particular, relevant devices
such as PPM, CCM [1]. Vibration of metal structure ele-
ments and influence of compressor stations were not taken
into consideration in [1].

Implementation of measurements relates to diagnosis
and monitoring of BMP taking into consideration parasitic
and stray currents [2]. Background of stray currents is not
separated in [1] as well. Therefore, negative effect of stray
current background on quality of measurement of electro-
physical parameters of the LS-CS-CPS system is disadvan-
tage of studies [1, 2].

Protective coatings and cathodic protection devices are
conventionally used to protect BMPs [3, 4]. Coating peeling
is controlled by electrochemical (destructive) method [3]. It
is assumed that coating efficiency is 97 %, that is, corrosion
defects may appear on about 3 % of pipeline area [4].

A more up-to-date approach worth of application is related
to a more qualitative CCM method which enables quick con-
trol of state of corrosion protection at various sections of un-
derground pipelines and detection of insulation damage [5-7].

Corrosion processes in a pipeline can be modeled
taking into consideration electrophysical parameters and
energy characteristics of interphase layers based on rela-
tions given in [7].

Principles of diagnosing complex systems operated by
enterprises taking into consideration diagnostic value of
information and risks are presented in [8]. A procedure for
evaluating investment attractiveness of enterprises taking
into consideration means of product control and quality
criteria is presented in [9]. However, results of metrological
examination of diagnostic devices are not presented in [8, 9].

A time-dependent model of propagation of corrosion
defects using artificial neural networks was proposed for

oil and gas pipelines, but its applicability was evaluated
without taking into consideration data correction meth-
ods [10]. This model is formulated on the basis of defect
parameters taken from inspection data and quantified by
statistical analysis.

Main parameters of cathodic protection in three types
(neutral, acidic, alkaline) of simulated soil media for a high-
strength pipeline steel using technology of electrochemical
impedance spectroscopy (EIS) in combination with polar-
ization curves were studied in [11, 12].

Forecast of depth and length of corrosion defects which
can be used for calculation of corrosion rate is proposed [12].
Results of corresponding studies can help pipeline operators
forecast pipeline structure reliability in terms of probability
of its failure and service life [11].

A method of using an intelligent software and hardware
complex for monitoring systems of underground steel gas
pipelines and a cathodic protection device with the use of
databases and knowledge bases are proposed in [11].

Information on metrological characteristics of steel
structures taking into consideration interphase layers and
the corresponding procedure of their improvement with
the help of neural networks is given in [10, 12]. However,
these studies provide no description of influence of energy
characteristics of interphase layers on corrosion processes
occurring in defects in the metal surface.

Approximate formulas for assessing service life of un-
derground pipelines if defects propagate from outer surface
into the pipe wall are presented in [12]. However, the study
does not take into consideration the wide range of variants
of nonlinear nature of corrosion defect distribution. It is
partially presented in [13].

As a result of analysis of studies [14, 15] with the help of
artificial neural networks, it is possible to analyze informa-
tion obtained in diagnostics of a pipeline section by means of
PPM and CCM devices and predict service life of the metal
pipe with the detected defect taking into consideration ef-
fect of metal corrosion fatigue.

Elements of a procedure for studying propagation of
acoustic signals in pipelines have been developed in [16, 17],
however, the possibility of detecting defects using electro-
magnetic waves has not been taken into consideration.

As it follows from above analysis, direction of solving
the important problem of oil and gas enterprises associated
with control of operation quality of their gas and oil trans-
portation systems consists in substantiation of service life, in
other words, evaluation of service life of underground metal
pipelines taking into consideration fatigue life [18, 19] and
information given in [20, 21].

3. The aim and objectives of the study

The study objective is evaluation of service life of under-
ground metal pipelines operated by oil and gas enterprises
with account for corrosion fatigue life using neural networks.

Achievement of this goal involves formulation of the
following tasks:

— to conduct survey of sections of a underground metal
pipeline with the help of a polarization potential meter and a
contactless current meter and formulate principles of using
neural networks in processing the experimental results;

— to improve quality criterion and use it for the BMP-
CPD system;



— based on analysis of the results of BMP diagnosis, de-
termine potentials along the pipeline section;

— using strength and quality criteria and a neural net-
work, determine physical and chemical parameters that
characterize rate of defect penetration in the outer surface
of the pipeline taking into consideration corrosion fatigue.

4. Materials and methods used in studying medium
impact on the state of underground pipelines

Let us consider a crack-like defect in the form of a cavity
having a crack at its apex. The defect is in the outer surface
of the pipeline as shown in Fig. 1

PIPE CROSS SECTION AT LOCATION
OF CORROSION OCCURRENCE

PIPELINE CORROSION LOCATION

Fig. 1. Formation of a defect in the form of a cavity in the
pipeline section

As can be seen from Fig. 1, pipe of the BMP is under-
ground in a medium modeled as a soil electrolyte. Denote
outer diameter of the pipe by D, thickness of the pipe wall by d,
internal diameter by D-d [12]. Consider projection of the cav-
ity on the XOY plane as a semi-elliptic crack with semi-axis
dimensions ¢ and ar (cy>ar). The OY axis is directed along
the pipe, OX axis is perpendicular to the pipe surface. The
crack apex moves in the opposite direction relative to the OX
axis. Origin of coordinates is at the crack apex.

Since corrosion fatigue is taken into consideration, con-
sider that the crack increases its dimensions with the number
of loading cycles N¢ while retaining semi-elliptic shape [12]:

“Jf da

N =C )
(AK(a,00,08,K,, pH . E0, B, (S)))'

¢ Ya

Ny=N. /N, @

where ao is the initial size of the macrocrack in the material;
ac is critical size of the fatigue macrocrack; Aa is the quantum
of destruction; A3 is the peak-to-peak value of mechanical
stresses; n, C, are the constants characterizing the “material
(steel)-medium” system; N_. is the number of the base spec-
imen loading cycles; Nyc is the relative number of loading
cycles; Ky is the stress intensity factor (SIF); pHyc is hydrogen
indicator of the medium; E;c is the electrode potential of met-
al; B,,(S) is parameters characterizing state of material surfac-
es, S, that are formed during fracture, ao=d. is the parameter
in which d. is the zone size before fracture [12].

Longevity of trouble-free operation (TFO) of BMP, T
(that is the pipeline service life) can be estimated by formula
[12] taking into consideration corrosion (anodic) current I4

Tsz(hzm(IA)_hmax)/Im 2)

where £,,,(14), hnay are geometric dimensions of the variable
defect and the defect of maximum permissible depth; I, is
anodic (corrosion) current, dimensionality of which is, in
particular, 1 mm/year (1 mm/year ~0.8616 A/m?).

For a qualitative analysis of propagation of fatigue cracks
taking into consideration hardening, use the formula for
analyzing the change of limit of the peak-to-peak value of
SIF, AK, [13]:

AKth = A]<1 = EeK V 2Tcpmin’ (3)

where ppi, is the critical radius of curvature of the crack nose
which is determined by the Burgers vector; E is the Young’s
module; ex is the actual residual deformation of metal after
fracture.

The corrosion process takes place quite intensively at the
crack apex and, therefore, to analyze in detail anodic disso-
lution of the metal, it is advisable to take into consideration
the ratio that was introduced in [12]:
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where o is the angle at the apex of the surface defect
(cracks); y is electrical conductivity of electrolyte (partic-
ularly, soil); AW, is the ohmic change of electric potential
between anodic (A) and cathodic (C) sections; ¢, & are
effective depth and opening of the crack, respectively; By,
S are empirical constants; WPL is surface energy of plastic
deformation (SEPD) in a stressed state within the range of
change of plastic strains, €p; WPLO is SEPD under a con-
dition when stress o at the crack apex reaches boundary
of yield strength o7 of material. The ratio (4) is written for
the crack apex, the anode A. Lateral surfaces of the defect
(the crack) are the cathode K [12]. Elements of the procedure
for estimating errors in basic parameters I4, AW, of formu-
la (4) are presented in [22].

Interaction between the pipeline and the CPD system as
well as transient specific resistance of the protective coating
are taken into consideration.

Term PBy of safe operation of the pipeline (gas pipeline)
material with a damaged protective coating in a corrosive
medium will be written as [12]:

PB, = P,w, = K, ©,P,PB=wP,P, =K,P, 5)

where PB is longevity of safe operation of the pipeline
material in air; P, w are design and relative longevities of
safe operation of the pipeline material in air, respectively;
Kyw=Kw(N¢, Nk) are coefficients of influence of medium
aggressivity on life span of the pipeline material; N¢, Nx are
durabilities of the pipeline material in air and corrosive me-
dium, respectively; Pk is durability of the pipeline material
with a damaged protective coating.

An in-depth trained neural network was used in the
study process. The in-depth trained neural networks corre-
spond to a probabilistic generative model in which functions
of several layers of hidden nodes are employed (Fig. 2). It can
be considered as a composition of training modules forming
each of the layers [23, 24].

The neural network is used for generative pre-training
through the use of trained weight factors of initial weight



factors. Reverse extension or other discriminating algo-
rithms can be used for precise specification of these weight
factors. This is particularly useful when available training
data are limited since the weight factors with poorly set
initial values can significantly interfere with effectiveness
of the trained model. These pre-trained weight factors are
in the scope of weight factors that are closer to the optimal
weight factors than the randomly selected starting values.
This ensures improved simulation procedure as well as faster
convergence of the phase of accurate learning which is more
appropriate than that given in [25].

During perceptron training, refined weight factors are
taken according to the following equation:
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where p(v) is the probability of a visible vector set as follows:

p(v)zézheﬁ(v}z)’ (7)

where Z is the statistical sum; E(o, &) is the function of the
so-called energy assigned to the neural network. The lower
function shows that the neural network is in the desired
configuration.

Write the gradient function as follows:

al
w,;
which takes a simplified form:
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where p is the average value relative to the distribution p.
Let us use Gibbson’s sampling. Gibbson’s sampling is used to
discard same numeric values of parameters in the database
and organize data while working with the neural network.

Gibbson’s sampling demonstrates the best forecast oc-
curred following n steps (n=1 was set in the neural network).
After n steps, sampling of data was made and used instead of
expression (v;#j) model.

The more detailed principle of the neural network oper-
ation is as follows:

1. Set the value of the training vector.

2. Clarify hidden functions (so-called hidden network
nodes) for the data of visible nodes:

p(hj = 1|V)=8(bj +Ziviww),

where () is a sigmoid function; b; and /; characterize shift.
3. Clarification of other hidden functions for the data of
hidden nodes is done in parallel:

(10)

p(o,=11H)=3(a,+ Y, hw,), (1)
where a; is shift of v;.

4. Repeat clarification of hidden functions for data of
rebuilt visible nodes using relation (11).

5. To construct the graph, refine weight coefficients (the
weights to be set for the neural network input):

Aw, ;oo(v;h;)data —(v;h, )reconstruction. 12)

Fig. 2. Block diagram of forecasting using an in-depth trained
neural network

Thus, the neural network is able to simulate virtually
any complex function and the complexity of this function
determines the number of hidden layers and the number
of neurons in each of them [26]. Therefore, accuracy of
forecast always depends on the appropriately and properly
selected number of intermediate layers and corresponding
neurons [27].

5. Quality criteria for an underground pipeline metal

Let us consider a product of the following type:
kp:k1~k2-k3 [1]

ky: the coefficient of the BMP competitiveness;

ky: the coefficient of the BMP reliability;

k3: the coefficient characterizing strength pgs of the BMP
metal.

In the same way as in [1], multiplicative quality criterion
for the BMP section is presented as:

Z1:ﬁki:k1'k2'k3'k4'k5'k6'k7'ks'k9:max’ 13)
i1

where k4(Df)v ks(nZv AKth)v kG(Gve), k7(K5)v kS(TSV NC)v k‘)(UP)
are the coefficients characterizing defectiveness Dy, strength-
ening nyz, corrosion fatigue limit 6,.(N¢), the coating effect
on corrosion resistance Ks, longevity of trouble-free opera-
tion Ts (service life) of the structure (pipe) taking into con-
sideration N¢; observance of optimal range of polarization
potential Up.

Also, let us introduce the quality criterion Z5 in the addi-
tive form similar to [1]:

Zy=a,-k+a, k+a,-k,+a, -k +
+as-ky+ag-ky+a, -k +ag ke +ay- ky = max,

(14)

where a; (j=1, 2, ..., 9) are the weight coefficients to be deter-
mined by expert estimation.

Here, in formulas (13), (14), unlike the study [1], k5(rz, AKz)
and kg(Ts, N¢) are taken into consideration depending on
two parameters.

6. Results obtained in the study of cavity formation in
a pipeline section

State of corrosion protection of pipeline sections was
controlled with the help of CCM and PPM devices. Contact-
less measurement of currents is used during survey of con-
ductive service lines (underground metal pipelines, cables,



etc.) to determine distribution of current in the networks.
On the basis of such measurements, damage to insulation
coatings are found as well various defects formed in the outer
surface of the underground pipelines are detected. Elements
of the procedure for improving the regulatory framework for
ordering monitoring of diagnosis of complex systems and
improving quality of the results are presented in [28].

Using formulas (1)—(14), a comprehensive survey of the
BMP section was carried out according to the procedures set
forth in [5]. In accordance with these measurement results,
locations of formation of corrosion defects (particularly cav-
ities) were revealed as illustrated in Fig. 3 where distance is
laid in the horizontal and polarization potential in the verti-
cal. The procedure of estimation is partially presented in [1].
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Fig. 3. A pipeline section with corrosion defects in the pipe
surface (distance in mm is shown in the horizontal, potential
in V is shown in the vertical)

At the first stage, diagnosis of the terrain from space was
conducted. To make presentation more visual, a map with a
view from the space where the defect was detected is shown
in Fig. 4.

A

Start of measurement
°
s

©

Fig. 4. Location of the surveyed BMP section shown in
a space photograph

At the second stage, the pipeline was diagnosed with
non-destructive testing devices (PPM and CCM). During
a more detailed analysis of the pipeline, a defect with total
length of about 40 cm was detected (Fig. 3). This defect
was not protected by cathodic protection device. The defect
propagation was observed during five years.

In contrast to standard methods, the proposed control
method and procedures for estimating the polarization po-
tential with the aid of a neural network make it possible to
physically substantiate and mathematically more correctly
describe the process of propagation of corrosion defects in the
depth of the pipe wall. In particular, the range of estimation of
the average value of density of corrosion current in the coating
defects was constricted by approximately 50-70 %.

Protective potential in the defect zone is less than —0.85 'V,
therefore, there was corrosion dissolution of metal. It was es-
tablished that the most intense anode (corrosion) dissolution
was at the ends.

7. Result of the neural network forecast for the pipeline
section with a defect formed

With the help of an in-depth trained neural network,
data of the past five years were loaded and average value
for the current year shown in the graph was found (Fig. 3).
Forecast of the situation regarding formation of a corrosion
defect with propagation rate about 0.13 mm/year in the cur-
rent year was made.

To estimate the defect depth A, and width Lz, use rela-
tion [12]:

h, =h+c,=d-L, [01785E=
o,

h =d L (y_p.(D-2d) y
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where K is the coefficient of crack sensitivity; c., is crit-
ical crack depth; Kg is the coefficient which takes into
consideration change in the pipe thickness in the defective
section of the pipeline; K¢ is the parameter of cracking re-
sistance determined experimentally by known mechanical
test methods; p., is critical internal pressure (gas) in the
pipeline.

Width Ly of the crack was determined experimentally
and used to establish depth A,

Similar experimental studies were carried out with
17G1S grade steel specimens in a medium simulating soil
electrolyte.

Based on the model relations (1) to (15), a set of key
parameters for simulation of stages of the defect propagation
in the outer surface of the pipeline was formed taking into
consideration fatigue strength.

Input data and the neural network forecast for the pipe-
line section where the defect was detected are given in Fig. 5.

(15)

200 400 600
= Input data of pipeline No. 1
------ Input data of pipeline No. 2
Forecast No. 1

Forecast No. 2

Fig. 5. Graph with input data and the neural network
forecasts (distance in mm is shown in the horizontal,
potential in V is shown in the vertical)



The graph of forecast No. 1 of corrosion formation ac-
cording to the input data is given in Fig. 6.
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Fig. 6. Forecast No. 1 of the neural network
(distance in mm is shown in the horizontal,
potential in V is shown in the vertical)

It was established that corrosion leads to defect propa-
gation by 0.39 mm in the pipeline section where the defect
was formed.

In the course of forecast No. 2 by the neural network
according to the input data, a decrease in polarization poten-
tial was observed. This decrease in potential characterizes
corrosion propagation. The corresponding graph is shown
in Fig. 7.

0 200 400 600
~~~~~~ Input data of pipeline No. 2

Forecast No. 2

Fig. 7. Forecast No. 2 of the neural network
(distance in mm is shown in the horizontal,
potential in V is shown in the vertical)

Initial value of corrosion rate (Fig. 7) was 0.13 mm/year.
The forecast made by the neural network (forecast No. 1) has
shown that the cavity has propagated in depth by 0.39 mm
at the left end of the defective region during three years. The
forecast No. 2 has shown that the cavity has propagated in
depth by 0.43 mm at the right end during the same period.
Thus, forecasts No. 1 and No. 2 show an uneven (nonlinear)
character of corrosion rate.

8. Discussion of results obtained in studying the system
of protection of pipelines operated by oil and gas
enterprises with the help of a neural network

Based on analysis of graphic dependences and modeling
results (Fig. 3—7) obtained in the study, it was established
that corrosion rate decreased with time (approximately by
10 % in the case for the right end of the unprotected BMP
section). At the same time, polarization potential decreased
in an absolute magnitude.

Proceeding from the study results, it can be stated that
corrosion rate obtained in forecasting with the aid of a neu-
ral network corresponds to a rather “successful” result. Fore-
cast of the neural network concerned the operating pipeline
section of length L=40 cm which contained places where
corrosion occurred. Forecast No. 1 has shown distribution of
polarization potential, Uy, for the left end and, accordingly,
forecast No. 2 has shown Uy distribution at the right end
of the unprotected BMP section. The neural network has
allowed us to establish that the average value of the rate of
metal (steel) corrosion in the surface of the underground
pipe in locations of coating defects was roughly in the range
of 0.13+0.15 mm/year.

Drawback of the testing set consists in the fact that it is
insufficiently volumetric. Besides, taking into consideration
this initial testing set, the neural network functioned as a
“hidden calculation layer” during training which imposed
certain limitations on the corresponding results of forecast
of the pipe service life.

For an example, consider a concrete situation for a un-
derground pipe made of 17G1S steel grade. The specified
initial dimensions of the pipe and cavities, ultimate strength
of metal, effect of corrosion fatigue, initial corrosion rate in
the coating defect and other parameters useful in solving
problems of diagnosing the corrosion process were taken
into consideration. In particular, pressure inside the pipe
p=5.5 MPa (=55 atm), thickness of the pipe wall d=10 mm,
the pipe diameter D=2R=0.76 m; initial cavity depth #=3 mm.
Critical crack depth ¢z,=3 mm. Critical situation (pipe de-
struction) occurs when effective size of the defect (4+c) rea-
ches depth of #+¢=6 mm. In this case, mechanical stresses at
the crack apex reach critical value which, according to the
criterion of maximum normal stresses, corresponds to the con-
dition of destruction, that is, ultimate strength o ;,~ 510 MPa.
Criterion of quality (13) was taken for estimation of polar-
ization potential shifts and the factor of safety was taken to
be 1.43. Effect of corrosion fatigue has been taken into ac-
count based on consideration of known experimental data for
17G1S grade steel [12].

Critical defect depth meets the condition of 0.6d and the
time to reach this crack depth depends on initial corrosion
rate of 0.14 mm/yr and characteristics of vibration caused by
compressor stations. Vibration causes deviations of mechan-
ical parameters associated with fatigue strength. Corrosion
rate decreases with time. It was confirmed by means of mod-
eling, that is, on the basis of relations (1) to (15). This fact was
substantiated physically and confirmed experimentally since
corrosion products move away with time from the top of the
defect at a lower speed. If initial corrosion rate i,0=0.14 mm/yr,
then the metal tube lifetime (that is, the time when the crack
achieves critical depth A+c=6 mm) in this particular example
is approximately t=21.4 years. Since the corrosion process is
nonlinear, the time of crack propagation, that is, service life of
the metal pipe, is 1,=24.3 years (6=1;,/1=1.136).

The considered example confirms the possibility and use-
fulness of simulation of corrosion processes occurring in un-
derground pipelines with the help of a neural network. Based
on the obtained results, it is possible to estimate service life
of pipelines and take into consideration such phenomenon as
corrosion fatigue as well as nonlinear effects.

A concrete example was considered and analyzed. Due to
application of a neural network to estimation of service life
of metal of an actual pipe made of 17G1S grade steel with
a corrosion defect in the outer pipe surface, this analysis



has revealed nonlinearity characterized by magnitude of
8=1.136. Specified initial dimensions of the pipe and cavity,
ultimate strength of the metal, effect of corrosion fatigue,
initial rate of corrosion in the coating defect and other pa-
rameters useful for solving the problems of diagnosing the
corrosion process were taken into consideration.

9. Conclusions

1. Inspection of underground metal pipeline sections was
conducted with the aid of a polarization potential meter to-
gether with a contactless current meter and principles of us-
ing neural networks for processing experimental results were
formulated. In simulation of physical-chemical processes oc-
curring in the pipeline, its interaction with the cathodic pro-
tection device system as well as transient specific resistance
of the insulating coating were taken into consideration.

2.1In view of varying threshold peak-to-peak value of
stress intensity factor, quality criterion was defined more

clearly and used for the “underground metal pipeline-corro-
sion protection device” system.

3. Based on analysis of the results obtained in diag-
nosis of the underground metal pipeline, potentials were
measured in a pipeline section. The proposed control
method and procedures for estimating polarization po-
tentials with the aid of neural networks make it possible
to describe the process of corrosion defect propagation in
the depth of the pipe wall. This description is physically
substantiated and mathematically more correct in con-
trast to standard descriptions. In particular, the range of
estimation of the average value of corrosion current den-
sity in coating defects was constricted by approximately
50-70 %.

4. With the help of a neural network, a concrete example
was considered and analyzed for metal of an actual pipe of
17G1S grade steel with a corrosion defect in the outer sur-
face. This analysis has resulted in estimation of the metal
service life and revealed nonlinearity characterized by mag-
nitude of 6=1.136.
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