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1. Introduction

Assessment of quality of monitoring underground metal 
pipelines (BMP) in oil and gas industry relates to quality of 
functioning of their three defining components:

1) linear section (LS) (pipe metal);
2) compressor station (CS);

3) cathodic protection systems (CPS). The LS-CS-CPS 
system is rather complicated and it is expedient to use 
intelligent monitoring systems capable of processing large 
volumes of information for its control.

In the process of analysis of the LS-CS-CPS system, it is 
worth to take into consideration accumulation of defects and 
change of fatigue strength of metal during operation.
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Сформовано множину визначальних параме-
трiв для моделювання етапiв розвитку поверхнево-
го дефекту на зовнiшнiй поверхнi металевого тру-
бопроводу з урахуванням втомної мiцностi.

Для дiлянки трубопроводу з поверхневим дефек-
том запропоновано застосувати алгоритм про-
гнозування поляризацiйного потенцiалу з викори-
станням засобiв нейронної мережi. Сформовано 
методику функцiонування тестуючої множини для 
оцiнювання ефективностi нейронної мережi, що 
включає вiдповiднi методи навчання. За резуль-
татами аналiзу взаємозв’язаних деформацiйних 
та корозiйних процесiв розроблено елементи мето-
дологiї формування iнформацiйного забезпечення 
прогнозування ресурсу лiнiйної частини пiдземного 
металевого трубопроводу з урахуванням корозiй-
ної втоми.

Вiдомi результати оцiнювання ресурсу пiдзем-
ного металевого трубопроводу (ПМТ) передбача-
ли лiнiйний характер швидкостi корозiї. Вiдповiдна 
iнформацiя представлена в мiжнародних та нацiо-
нальних стандартах. Проведенi в останнiй час екс-
периментальнi дослiдження показали, що доцiльно 
враховувати нелiнiйний характер швидкостi корозiї 
на зовнiшнiй поверхнi ПМТ.

Проведено обстеження дiлянки ПМТ за допо-
могою вимiрювача поляризацiйного потенцiалу 
(ВПП) у комплексi з безконтактним вимiрюва-
чем струму (БВС) i сформульовано принципи 
використання нейронної мережi для опрацюван-
ня результатiв експерименту. Розглянуто кон-
кретний приклад для ПМТ, в результатi аналiзу 
якого з допомогою нейронної мережi для пiдземної 
труби (зi сталi 17Г1С) з корозiйним дефектом на 
зовнiшнiй поверхнi проведено оцiнювання ресур-
су металу i виявлено нелiнiйнiсть, величину якої 
характеризує вiдношення δ=1,136.

Запропоновано метод контролю i методики оцi-
нювання поляризацiйного потенцiалу з допомогою 
нейронної мережi. Вони дозволяють фiзично обґрун-
товано та математично бiльш коректно на вiд-
мiну вiд стандартних описати процедуру поширен-
ня корозiйних дефектiв у глибину труби.

Вiдзначена iнформацiя є важливою для удоско-
налення методiв контролю пiдземних металевих 
труб нафтогазових пiдприємств, зокрема, методик 
коректного вимiрювання та оцiнювання поляриза-
цiйних потенцiалiв та анодних струмiв у дефектах 
iзоляцiйних покрить з урахуванням нелiнiйностi 
iнформативних параметрiв

Ключовi слова: пiдземнi трубопроводи, нафто-
газовi пiдприємства, поверхневий дефект, поля-
ризацiйний потенцiал, корозiйна втома, нейронна 
мережа, ресурс металу
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An important problem for the LS-CS-CPS system con-
sists in stabilizing quality of the links between its compo-
nents. In this context, artificial neural networks (ANNs) 
should be used to optimize working parameters of transpor-
tation of products, particularly gas, and minimize techno-
logical deviations during operation of pipelines and metal 
structures operated by oil and gas enterprises.

Information necessary for assessing pipeline quality can 
be established based on analysis of electrophysical parame-
ters measured by a polarization potential meter (PPM) and 
a contactless current meter (CCM) [1].

Urgency of studying the LS-CS-CPS system service life is 
predetermined by 3 main factors. First, the LS-CS-CPS system 
should be considered as an involved composite system taking 
into consideration a multitude of electrophysical parameters 
and currents. Second, to optimize the LS-CS-CPS system, it is 
expedient to apply multilayer ANNs. Third, for correct forecast 
of service life of the underground pipelines contacting with 
ground electrolytes, correct strength criteria should be used 
taking into consideration loads and fatigue strength.

Known results of evaluation of BMP service life were 
obtained with assumption of linear nature of corrosion rate. 
Experimental studies have shown that it is advisable to take 
into consideration nonlinear nature of corrosion rate.

2. Literature review and problem statement

The problem of quality of underground metal pipelines 
is connected with efficiency of cathodic protection devices 
(CPD) as well as accuracy and reliability of information- 
measurement systems (IMS), in particular, relevant devices 
such as PPM, CCM [1]. Vibration of metal structure ele-
ments and influence of compressor stations were not taken 
into consideration in [1].

Implementation of measurements relates to diagnosis 
and monitoring of BMP taking into consideration parasitic 
and stray currents [2]. Background of stray currents is not 
separated in [1] as well. Therefore, negative effect of stray 
current background on quality of measurement of electro-
physical parameters of the LS-CS-CPS system is disadvan-
tage of studies [1, 2].

Protective coatings and cathodic protection devices are 
conventionally used to protect BMPs [3, 4]. Coating peeling 
is controlled by electrochemical (destructive) method [3]. It 
is assumed that coating efficiency is 97 %, that is, corrosion 
defects may appear on about 3 % of pipeline area [4].

A more up-to-date approach worth of application is related 
to a more qualitative CCM method which enables quick con-
trol of state of corrosion protection at various sections of un-
derground pipelines and detection of insulation damage [5‒7].

Corrosion processes in a pipeline can be modeled 
taking into consideration electrophysical parameters and 
energy characteristics of interphase layers based on rela-
tions given in [7].

Principles of diagnosing complex systems operated by 
enterprises taking into consideration diagnostic value of 
information and risks are presented in [8]. A procedure for 
evaluating investment attractiveness of enterprises taking 
into consideration means of product control and quality 
criteria is presented in [9]. However, results of metrological 
examination of diagnostic devices are not presented in [8, 9].

A time-dependent model of propagation of corrosion 
defects using artificial neural networks was proposed for 

oil and gas pipelines, but its applicability was evaluated 
without taking into consideration data correction meth-
ods [10]. This model is formulated on the basis of defect 
parameters taken from inspection data and quantified by 
statistical analysis.

Main parameters of cathodic protection in three types 
(neutral, acidic, alkaline) of simulated soil media for a high-
strength pipeline steel using technology of electrochemical 
impedance spectroscopy (EIS) in combination with polar-
ization curves were studied in [11, 12].

Forecast of depth and length of corrosion defects which 
can be used for calculation of corrosion rate is proposed [12]. 
Results of corresponding studies can help pipeline operators 
forecast pipeline structure reliability in terms of probability 
of its failure and service life [11].

A method of using an intelligent software and hardware 
complex for monitoring systems of underground steel gas 
pipelines and a cathodic protection device with the use of 
databases and knowledge bases are proposed in [11].

Information on metrological characteristics of steel 
structures taking into consideration interphase layers and 
the corresponding procedure of their improvement with 
the help of neural networks is given in [10, 12]. However, 
these studies provide no description of influence of energy 
characteristics of interphase layers on corrosion processes 
occurring in defects in the metal surface.

Approximate formulas for assessing service life of un-
derground pipelines if defects propagate from outer surface 
into the pipe wall are presented in [12]. However, the study 
does not take into consideration the wide range of variants 
of nonlinear nature of corrosion defect distribution. It is 
partially presented in [13].

As a result of analysis of studies [14, 15] with the help of 
artificial neural networks, it is possible to analyze informa-
tion obtained in diagnostics of a pipeline section by means of 
PPM and CCM devices and predict service life of the metal 
pipe with the detected defect taking into consideration ef-
fect of metal corrosion fatigue.

Elements of a procedure for studying propagation of 
acoustic signals in pipelines have been developed in [16, 17], 
however, the possibility of detecting defects using electro-
magnetic waves has not been taken into consideration.

As it follows from above analysis, direction of solving 
the important problem of oil and gas enterprises associated 
with control of operation quality of their gas and oil trans-
portation systems consists in substantiation of service life, in 
other words, evaluation of service life of underground metal 
pipelines taking into consideration fatigue life [18, 19] and 
information given in [20, 21].

3. The aim and objectives of the study

The study objective is evaluation of service life of under-
ground metal pipelines operated by oil and gas enterprises 
with account for corrosion fatigue life using neural networks.

Achievement of this goal involves formulation of the 
following tasks:

– to conduct survey of sections of a underground metal 
pipeline with the help of a polarization potential meter and a 
contactless current meter and formulate principles of using 
neural networks in processing the experimental results;

– to improve quality criterion and use it for the BMP-
CPD system;
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– based on analysis of the results of BMP diagnosis, de-
termine potentials along the pipeline section;

– using strength and quality criteria and a neural net-
work, determine physical and chemical parameters that 
characterize rate of defect penetration in the outer surface 
of the pipeline taking into consideration corrosion fatigue.

4. Materials and methods used in studying medium 
impact on the state of underground pipelines

Let us consider a crack-like defect in the form of a cavity 
having a crack at its apex. The defect is in the outer surface 
of the pipeline as shown in Fig. 1

Fig. 1. Formation of a defect in the form of a cavity in the 
pipeline section

As can be seen from Fig. 1, pipe of the BMP is under-
ground in a medium modeled as a soil electrolyte. Denote 
outer diameter of the pipe by D, thickness of the pipe wall by d,  
internal diameter by D-d [12]. Consider projection of the cav-
ity on the XOY plane as a semi-elliptic crack with semi-axis 
dimensions cT and aT (cT>aT). The OY axis is directed along 
the pipe, OX axis is perpendicular to the pipe surface. The 
crack apex moves in the opposite direction relative to the OX 
axis. Origin of coordinates is at the crack apex.

Since corrosion fatigue is taken into consideration, con-
sider that the crack increases its dimensions with the number 
of loading cycles NC while retaining semi-elliptic shape [12]:

1

,
( ( , , , , , , ( )))

ac

c a n
tC tC mao

da
N C

K a a K pH E B S
=

Δ Δ Δδ∫

*/ ,VC C CN N N= 		  (1)

where ao is the initial size of the macrocrack in the material; 
ac is critical size of the fatigue macrocrack; Δa is the quantum 
of destruction; Δδ is the peak-to-peak value of mechanical 
stresses; n, Ca are the constants characterizing the “material 
(steel)-medium” system; *CN  is the number of the base spec-
imen loading cycles; NVC is the relative number of loading 
cycles; K1 is the stress intensity factor (SIF); pHtC is hydrogen 
indicator of the medium; EtC is the electrode potential of met-
al; Bm(S) is parameters characterizing state of material surfac-
es, S, that are formed during fracture, ao=d is the parameter 
in which d is the zone size before fracture [12].

Longevity of trouble-free operation (TFO) of BMP, TS 
(that is the pipeline service life) can be estimated by formula 
[12] taking into consideration corrosion (anodic) current IA 

max( ( ) ) / ,S zm A AT h I h I= − 			   (2)

where hzm(IA), hmax are geometric dimensions of the variable 
defect and the defect of maximum permissible depth; IA is 
anodic (corrosion) current, dimensionality of which is, in 
particular, 1 mm/year (1 mm/year 0.8616 A/m2).

For a qualitative analysis of propagation of fatigue cracks 
taking into consideration hardening, use the formula for 
analyzing the change of limit of the peak-to-peak value of 
SIF, ΔKth [13]:

1 min2 ,th KK K Ee pΔ = Δ = p 		  (3)

where pmin is the critical radius of curvature of the crack nose 
which is determined by the Burgers vector; E is the Young’s 
module; eK is the actual residual deformation of metal after 
fracture.

The corrosion process takes place quite intensively at the 
crack apex and, therefore, to analyze in detail anodic disso-
lution of the metal, it is advisable to take into consideration 
the ratio that was introduced in [12]:

( )
0

1  ,
ln / 0

S

ak
A W

WPL WPL
I

c WPL

 a ⋅χ⋅ Δψ − = ⋅ + b ⋅   δ ⋅ δ  
	 (4)

where  is the angle at the apex of the surface defect 
(cracks); χ is electrical conductivity of electrolyte (partic-
ularly, soil); Δak is the ohmic change of electric potential 
between anodic (A) and cathodic (C) sections; c, δ are 
effective depth and opening of the crack, respectively; W, 
S are empirical constants; WPL is surface energy of plastic 
deformation (SEPD) in a stressed state within the range of 
change of plastic strains, P; WPL0 is SEPD under a con-
dition when stress  at the crack apex reaches boundary 
of yield strength T of material. The ratio (4) is written for  
the crack apex, the anode A. Lateral surfaces of the defect 
(the crack) are the cathode K [12]. Elements of the procedure 
for estimating errors in basic parameters IA, Δak of formu- 
la (4) are presented in [22].

Interaction between the pipeline and the CPD system as 
well as transient specific resistance of the protective coating 
are taken into consideration.

Term PBK of safe operation of the pipeline (gas pipeline) 
material with a damaged protective coating in a corrosive 
medium will be written as [12]:

, , .K K K W K K WPB P w K w P PB wP P K P= = = = ,	 (5)

where PB is longevity of safe operation of the pipeline 
material in air; P, w are design and relative longevities of 
safe operation of the pipeline material in air, respectively; 
KW=KW(NС, NK) are coefficients of influence of medium 
aggressivity on life span of the pipeline material; NС, NK are 
durabilities of the pipeline material in air and corrosive me-
dium, respectively; PK is durability of the pipeline material 
with a damaged protective coating.

An in-depth trained neural network was used in the 
study process. The in-depth trained neural networks corre-
spond to a probabilistic generative model in which functions 
of several layers of hidden nodes are employed (Fig. 2). It can 
be considered as a composition of training modules forming 
each of the layers [23, 24].

The neural network is used for generative pre-training 
through the use of trained weight factors of initial weight 
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factors. Reverse extension or other discriminating algo-
rithms can be used for precise specification of these weight 
factors. This is particularly useful when available training 
data are limited since the weight factors with poorly set 
initial values can significantly interfere with effectiveness 
of the trained model. These pre-trained weight factors are 
in the scope of weight factors that are closer to the optimal 
weight factors than the randomly selected starting values. 
This ensures improved simulation procedure as well as faster 
convergence of the phase of accurate learning which is more 
appropriate than that given in [25].

During perceptron training, refined weight factors are 
taken according to the following equation:

, ,
,

log( ( ))
( 1) ( ) ,i j i j

i j

p v
w t w t

w
∂

Δ + = + η
∂

		  (6)

where p(v) is the probability of a visible vector set as follows:

( , )1
( ) ,E v h

h
p v e

Z
−= ∑ 			   (7)

where Z is the statistical sum; E(v, h) is the function of the 
so-called energy assigned to the neural network. The lower 
function shows that the neural network is in the desired 
configuration.

Write the gradient function as follows:

,

log( ( ))
,

i j

p v
w

∂
∂

				    (8)

which takes a simplified form:

(vihj)data–(vihj)model,			   (9)

where p is the average value relative to the distribution p. 
Let us use Gibbson’s sampling. Gibbson’s sampling is used to 
discard same numeric values of parameters in the database 
and organize data while working with the neural network.

Gibbson’s sampling demonstrates the best forecast oc-
curred following n steps (n=1 was set in the neural network). 
After n steps, sampling of data was made and used instead of 
expression (vihj) model.

The more detailed principle of the neural network oper-
ation is as follows:

1. Set the value of the training vector.
2. Clarify hidden functions (so-called hidden network 

nodes) for the data of visible nodes:

( ) ( ),1 ,j j i i ji
p h V b v w= = ∂ + ∑ 			   (10)

where ( )∂ ⋅  is a sigmoid function; bj and hj characterize shift.
3. Clarification of other hidden functions for the data of 

hidden nodes is done in parallel:

,( 1| ) ( ),i i j i jj
p v H a h w= = ∂ + ∑ 			   (11)

where ai is shift of vi.
4. Repeat clarification of hidden functions for data of 

rebuilt visible nodes using relation (11).
5. To construct the graph, refine weight coefficients (the 

weights to be set for the neural network input):

, ( )data ( )reconstruction.i j i j i jw v h v hΔ ∞ − 		  (12)

Fig. 2. Block diagram of forecasting using an in-depth trained 
neural network

Thus, the neural network is able to simulate virtually 
any complex function and the complexity of this function 
determines the number of hidden layers and the number 
of neurons in each of them [26]. Therefore, accuracy of 
forecast always depends on the appropriately and properly 
selected number of intermediate layers and corresponding 
neurons [27].

5. Quality criteria for an underground pipeline metal

Let us consider a product of the following type: 
kP=k1k2k3 [1]:

k1: the coefficient of the BMP competitiveness;
k2: the coefficient of the BMP reliability;
k3: the coefficient characterizing strength pS of the BMP 

metal.
In the same way as in [1], multiplicative quality criterion 

for the BMP section is presented as:

1 1 2 3 4 5 6 7 8 9
1

max,
m

i
i

Z k k k k k k k k k k
=

= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒∏ 	 (13)

where k4(Df), k5(nZ, ΔKth), k6(sve), k7(KS), k8(TS, NС), k9(UP) 
are the coefficients characterizing defectiveness Df, strength-
ening nZ, corrosion fatigue limit sve(NС), the coating effect 
on corrosion resistance KS, longevity of trouble-free opera-
tion TS (service life) of the structure (pipe) taking into con-
sideration NС; observance of optimal range of polarization 
potential UP.

Also, let us introduce the quality criterion Z2 in the addi-
tive form similar to [1]:

2 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9 max,

Z a k a k a k a k

a k a k a k a k a k

= ⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⇒ 	 (14)

where aj ( j=1, 2, ..., 9) are the weight coefficients to be deter-
mined by expert estimation.

Here, in formulas (13), (14), unlike the study [1], k5(nZ, ΔKth) 
аnd k8(TS, NС) are taken into consideration depending on 
two parameters.

6. Results obtained in the study of cavity formation in  
a pipeline section 

State of corrosion protection of pipeline sections was 
controlled with the help of CCM and PPM devices. Contact-
less measurement of currents is used during survey of con-
ductive service lines (underground metal pipelines, cables, 
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etc.) to determine distribution of current in the networks. 
On the basis of such measurements, damage to insulation 
coatings are found as well various defects formed in the outer 
surface of the underground pipelines are detected. Elements 
of the procedure for improving the regulatory framework for 
ordering monitoring of diagnosis of complex systems and 
improving quality of the results are presented in [28].

Using formulas (1)–(14), a comprehensive survey of the 
BMP section was carried out according to the procedures set 
forth in [5]. In accordance with these measurement results, 
locations of formation of corrosion defects (particularly cav-
ities) were revealed as illustrated in Fig. 3 where distance is 
laid in the horizontal and polarization potential in the verti-
cal. The procedure of estimation is partially presented in [1].

Fig. 3. A pipeline section with corrosion defects in the pipe 
surface (distance in mm is shown in the horizontal, potential 

in V is shown in the vertical)

At the first stage, diagnosis of the terrain from space was 
conducted. To make presentation more visual, a map with a 
view from the space where the defect was detected is shown 
in Fig. 4.

Fig. 4. Location of the surveyed BMP section shown in  
a space photograph 

At the second stage, the pipeline was diagnosed with 
non-destructive testing devices (PPM and CCM). During 
a more detailed analysis of the pipeline, a defect with total 
length of about 40 cm was detected (Fig. 3). This defect 
was not protected by cathodic protection device. The defect 
propagation was observed during five years.

In contrast to standard methods, the proposed control 
method and procedures for estimating the polarization po-
tential with the aid of a neural network make it possible to 
physically substantiate and mathematically more correctly 
describe the process of propagation of corrosion defects in the 
depth of the pipe wall. In particular, the range of estimation of 
the average value of density of corrosion current in the coating 
defects was constricted by approximately 50‒70 %.

Protective potential in the defect zone is less than −0.85 V, 
therefore, there was corrosion dissolution of metal. It was es-
tablished that the most intense anode (corrosion) dissolution 
was at the ends.

7. Result of the neural network forecast for the pipeline 
section with a defect formed

With the help of an in-depth trained neural network, 
data of the past five years were loaded and average value 
for the current year shown in the graph was found (Fig. 3). 
Forecast of the situation regarding formation of a corrosion 
defect with propagation rate about 0.13 mm/year in the cur-
rent year was made.

To estimate the defect depth hcr and width LT, use rela-
tion [12]:

 

2

21 8
,T cr C

cr

d
L L K

p D

 
⇒ ==  π  

 1 .T
S

Lh c
K

d D
+

= + , 	 (15)

where KK is the coefficient of crack sensitivity; ccr is crit-
ical crack depth; KS is the coefficient which takes into 
consideration change in the pipe thickness in the defective 
section of the pipeline; KС is the parameter of cracking re-
sistance determined experimentally by known mechanical 
test methods; pcr is critical internal pressure (gas) in the 
pipeline.

Width LT of the crack was determined experimentally 
and used to establish depth hcr.

Similar experimental studies were carried out with 
17G1S grade steel specimens in a medium simulating soil 
electrolyte.

Based on the model relations (1) to (15), a set of key 
parameters for simulation of stages of the defect propagation 
in the outer surface of the pipeline was formed taking into 
consideration fatigue strength.

Input data and the neural network forecast for the pipe-
line section where the defect was detected are given in Fig. 5.

Fig. 5. Graph with input data and the neural network 
forecasts (distance in mm is shown in the horizontal, 

potential in V is shown in the vertical)
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The graph of forecast No. 1 of corrosion formation ac-
cording to the input data is given in Fig. 6.

Fig. 6. Forecast No. 1 of the neural network  
(distance in mm is shown in the horizontal,  

potential in V is shown in the vertical)

It was established that corrosion leads to defect propa-
gation by 0.39 mm in the pipeline section where the defect 
was formed.

In the course of forecast No. 2 by the neural network 
according to the input data, a decrease in polarization poten-
tial was observed. This decrease in potential characterizes 
corrosion propagation. The corresponding graph is shown 
in Fig. 7.

Fig. 7. Forecast No. 2 of the neural network  
(distance in mm is shown in the horizontal,  

potential in V is shown in the vertical)

Initial value of corrosion rate (Fig. 7) was 0.13 mm/year. 
The forecast made by the neural network (forecast No. 1) has 
shown that the cavity has propagated in depth by 0.39 mm 
at the left end of the defective region during three years. The 
forecast No. 2 has shown that the cavity has propagated in 
depth by 0.43 mm at the right end during the same period. 
Thus, forecasts No. 1 and No. 2 show an uneven (nonlinear) 
character of corrosion rate.

8. Discussion of results obtained in studying the system 
of protection of pipelines operated by oil and gas 

enterprises with the help of a neural network

Based on analysis of graphic dependences and modeling 
results (Fig. 3–7) obtained in the study, it was established 
that corrosion rate decreased with time (approximately by 
10 % in the case for the right end of the unprotected BMP 
section). At the same time, polarization potential decreased 
in an absolute magnitude.

Proceeding from the study results, it can be stated that 
corrosion rate obtained in forecasting with the aid of a neu-
ral network corresponds to a rather “successful” result. Fore-
cast of the neural network concerned the operating pipeline 
section of length L=40 cm which contained places where 
corrosion occurred. Forecast No. 1 has shown distribution of 
polarization potential, UV, for the left end and, accordingly, 
forecast No. 2 has shown UV distribution at the right end 
of the unprotected BMP section. The neural network has 
allowed us to establish that the average value of the rate of 
metal (steel) corrosion in the surface of the underground 
pipe in locations of coating defects was roughly in the range 
of 0.13÷0.15 mm/year.

Drawback of the testing set consists in the fact that it is 
insufficiently volumetric. Besides, taking into consideration 
this initial testing set, the neural network functioned as a 
“hidden calculation layer” during training which imposed 
certain limitations on the corresponding results of forecast 
of the pipe service life.

For an example, consider a concrete situation for a un-
derground pipe made of 17G1S steel grade. The specified 
initial dimensions of the pipe and cavities, ultimate strength 
of metal, effect of corrosion fatigue, initial corrosion rate in 
the coating defect and other parameters useful in solving 
problems of diagnosing the corrosion process were taken 
into consideration. In particular, pressure inside the pipe  
p=5.5 MPa (≈55 аtm), thickness of the pipe wall d=10 mm, 
the pipe diameter D=2R=0.76 m; initial cavity depth h=3 mm.  
Critical crack depth сkp=3 mm. Critical situation (pipe de-
struction) occurs when effective size of the defect (h+c) rea- 
ches depth of h+c=6 mm. In this case, mechanical stresses at 
the crack apex reach critical value which, according to the 
criterion of maximum normal stresses, corresponds to the con-
dition of destruction, that is, ultimate strength b ≈ 510 MPa.  
Criterion of quality (13) was taken for estimation of polar-
ization potential shifts and the factor of safety was taken to  
be 1.43. Effect of corrosion fatigue has been taken into ac-
count based on consideration of known experimental data for 
17G1S grade steel [12].

Critical defect depth meets the condition of 0.6d and the 
time to reach this crack depth depends on initial corrosion 
rate of 0.14 mm/yr and characteristics of vibration caused by 
compressor stations. Vibration causes deviations of mechan-
ical parameters associated with fatigue strength. Corrosion 
rate decreases with time. It was confirmed by means of mod-
eling, that is, on the basis of relations (1) to (15). This fact was 
substantiated physically and confirmed experimentally since 
corrosion products move away with time from the top of the 
defect at a lower speed. If initial corrosion rate ia0=0.14 mm/yr, 
then the metal tube lifetime (that is, the time when the crack 
achieves critical depth h+c=6 mm) in this particular example 
is approximately τ=21.4 years. Since the corrosion process is 
nonlinear, the time of crack propagation, that is, service life of 
the metal pipe, is τL=24.3 years (δ=τL/τ=1.136).

The considered example confirms the possibility and use-
fulness of simulation of corrosion processes occurring in un-
derground pipelines with the help of a neural network. Based 
on the obtained results, it is possible to estimate service life 
of pipelines and take into consideration such phenomenon as 
corrosion fatigue as well as nonlinear effects.

A concrete example was considered and analyzed. Due to 
application of a neural network to estimation of service life 
of metal of an actual pipe made of 17G1S grade steel with 
a corrosion defect in the outer pipe surface, this analysis 
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has revealed nonlinearity characterized by magnitude of 
δ=1.136. Specified initial dimensions of the pipe and cavity, 
ultimate strength of the metal, effect of corrosion fatigue, 
initial rate of corrosion in the coating defect and other pa-
rameters useful for solving the problems of diagnosing the 
corrosion process were taken into consideration.

9. Conclusions

1. Inspection of underground metal pipeline sections was 
conducted with the aid of a polarization potential meter to-
gether with a contactless current meter and principles of us-
ing neural networks for processing experimental results were 
formulated. In simulation of physical-chemical processes oc-
curring in the pipeline, its interaction with the cathodic pro-
tection device system as well as transient specific resistance 
of the insulating coating were taken into consideration.

2. In view of varying threshold peak-to-peak value of 
stress intensity factor, quality criterion was defined more 

clearly and used for the “underground metal pipeline-corro-
sion protection device” system.

3. Based on analysis of the results obtained in diag-
nosis of the underground metal pipeline, potentials were 
measured in a pipeline section. The proposed control 
method and procedures for estimating polarization po-
tentials with the aid of neural networks make it possible 
to describe the process of corrosion defect propagation in 
the depth of the pipe wall. This description is physically 
substantiated and mathematically more correct in con-
trast to standard descriptions. In particular, the range of 
estimation of the average value of corrosion current den-
sity in coating defects was constricted by approximately 
50‒70 %.

4. With the help of a neural network, a concrete example 
was considered and analyzed for metal of an actual pipe of 
17G1S grade steel with a corrosion defect in the outer sur-
face. This analysis has resulted in estimation of the metal 
service life and revealed nonlinearity characterized by mag-
nitude of δ=1.136.
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