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На основі механізму перебігу поліконденсації складена схема 
реакції рівноважної конденсаційної теломеризації, як полікон-
денсаційного процесу з обривом ланцюга монофункціональним 
телогеном. Виходячи з цієї схеми складені рівняння матеріаль
ного балансу за структурними елементами, що містять нескін-
ченну кількість членів. При виконанні принципу Флорі про 
однакову реакційну здатність кінцевих груп нескінченні суми 
являють собою геометричні прогресії з однаковим знаменни-
ком. Це дозволяє згорнути модель процесу в замкнуту систему 
з чотирьох нелінійних алгебраїчних рівнянь.

В результаті досліджень властивостей моделі шляхом 
математичного аналізу і комп’ютерних експериментів вста-
новлено наступне:

– розподіл продуктів теломеризації представляє суперпози-
цію геометричних розподілів базових структурних компонентів 
з одним і тим же знаменником прогресії, але різними величина-
ми вихідних концентрацій. Розподіл Флорі для гомополіконден-
саціі можна розглядати, як окремий випадок цього розподілу;

– система рівнянь моделі може мати до 4 дійсних коре-
нів. При одиничному рішенні системи при випадковому виборі 
початкового наближення в ~74 % випадків виходить помилко-
вий позитивний корінь. Для перевірки істинності кореня роз-
роблений критерій на основі величини знаменника збіжної гео-
метричної прогресії, запропонована процедура комп’ютерного 
рішення системи, що дозволяє знайти істинний корінь;

– на моделі виявлені закономірності впливу концентра-
ції реагентів на склад рівноважної суміші при сталості кон-
центрації побічного низькомолекулярного продукту конденса-
ції. Показано, що при прагненні цієї концентрації до нуля склад 
перестає залежати від значень констант рівноваги.

Розроблена модель дозволяє розраховувати склад рівноваж-
ної суміші олігомерів в залежності від співвідношення концент
рацій мономерів, телогена і низькомолекулярного продукту 
конденсації. Це робить її корисною на практиці для попередньої 
чисельної оцінки складу рівноважних сумішей олігомерів при 
плануванні синтезів методом конденсаційної теломеризації

Ключові слова: рівноважна конденсаційна теломеризації, 
нелінійні алгебраїчні рівняння, комп’ютерне моделювання, склад 
олігомерів
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1. Introduction

Polycondensation is one of the main methods for obtai
ning polymers. An important kind of polycondensation is the 
condensation telomerization, which proceeds in accordance 
with a general pattern:

(n n

nn

+ − − − −  →← 
 →←  − − − − ⋅

1)H A H+ X B X+2RX  

 R A (B A) R+2 ( +1)HX.. 	 (1)

Condensation telomerization can be regarded as he
teropolycondensation with a chain disruption due to the 
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introduction to the reaction with bifunctional monomers 
H A H− −  and X B X− −  a of the monofunctional mono-
mer RX, which is called telogen [1]. In the course of the 
reaction, a polymer and the low-molecular product НХ form. 
This process is exploited in industry for the synthesis of 
acrylic oligomers and oligomeric plasticizers [1, 2]. Typically, 
reactions (1) are reversible. Telomerization processes are car-
ried out under conditions that are close to equilibrium. This 
is achieved by distilling the low-molecular product НХ from 
the mass (water, lower alcohol, etc.) [1, 2].

Telomerization condensation processes are of interest 
for new applications. In recent years, they have been used in 
biology and medicine to obtain so-called «smart» polymers, 
changing their characteristics with a change in temperature, 
pH and other properties of external environment. Such poly-
mers were derived by polymerizing the products of telome
rization of dimethyl acrylate [(ε-hydroxycaproate)-co-glyco-
late] and butyl acrylate [3], short-chain polyethylene glycols 
and ethylene glycol with esters of acrylic acid [3], ethylene 
glycol and methyl methacrylate [4, 5]. The methods of syn-
thesis of such «smart» polymers and their application in 
biomedicine were considered in reviews [6, 7].

Despite the practical importance, theoretical aspects of 
the condensation telomerization processes have not been 
sufficiently investigated. That refers to issues related to the 
distribution of oligomeric products for the types of terminal 
functional groups and the degree of polymerization, the im-
pact exerted on them by the starting ratio of reagents and the 
concentration of a low-molecular by-product. It is a relevant 
task to explore these issues by constructing and examining 
the properties of mathematical models, so it could be used to 
obtain polymeric blends with the predefined properties.

2. Literature review and problem statement

Despite the practical importance of equilibrium conden-
sation telomerization, mathematical models of the distribu-
tion of products from this process have not been considered 
in the scientific literature up to now. Equilibrium telome
rization is a case of the equilibrium linear polycondensation 
with a disrupted chain. Therefore, we shall focus on current 
approaches to modeling the processes of polycondensation in 
terms of their possible application to constructing a model of 
condensation telomerization. 

Underlying the models of polycondensation products 
distribution is the theory by P. Flory and W. Carothers, the 
principal provisions of which are as follows [8–12]:

а)  the formation of a polymer occurs statistically. To 
obtain a polymer with n recurring links, all possible combina-
tions of polymers-predecessors are used, which can interact 
thereby forming this product;

b)  similar terminal functional groups of polymers have 
the same reactivity that is independent of the length of the 
polymer chain.

The result is a geometric distribution of polymers based 
on the degree of polymerization for homopolymers.

Direct application of the Flory-Carothers theory to the 
more complex process under consideration (1) with the ad-
ditional participation of telogens turns out to be impossible. 
The theory should be modified taking into consideration the 
specificity of process (1). In this case, provisions a) and b) 
are common and must be used to construct a model of con-
densation telomerization.

Recently, scientists have intensively studied the role in 
polycondensation of the processes of forming the macrocyclic 
products at the expense of competitive intramolecular inter-
action between different terminal groups. That relates to the 
observed anomalous increase in the degree of polydispersity 
(DPD) (a ratio of the weight average polymerization degree 
to average) above the limit value of 2, following from the  
Flory-Carothers theory [10, 11]. The formation of macrocy-
cles of different size in the processes of polyesterification has 
been recently proven for the first time experimentally using 
the methods of elution liquid chromatography and matrix- 
activated laser desorption/ionization (MALDI TOF) [9].

Several approaches are currently being developed to ac-
count for cyclization in the model of polycondensation. They 
are based on the introduction of a quantitative characteris-
tic – the cyclization factor ′β . This parameter characterizes 
the share of conversion of terminal groups, which leads to 
cyclic products. By introducing the assumption on that ′β  
does not depend on the size of the cycle and steric factors, 
the authors of [8] modified the Flory theory, thereby making 
it possible to qualitatively explain the existence of DPD>2. 
Paper [13] assumed that in the process of cyclization a con-
stant value is retained not by the cyclization factor ′β ,  but 
the cyclization rate constant of the first-order. The equation 
for polydispersity, derived by the author of [13], turned out 
to be identical in the form to that described in [8]; it, too, 
qualitatively explained the existence of DPD>2. However, 
given the lack of experimental data on the kinetics of cyc
lization, assumptions about the magnitudes of ′β  seem to be 
insufficiently substantiated.

Given the above, there is an issue about a possible role of 
cyclization processes in the processes of equilibrium conden-
sation telomerization. There are no experimental data on the 
possibility of such a process. Based on general assumptions, 
one can assume that its role in telomerization would be neg-
ligible. That is associated with the presence of a competitive 
pathway – a chain disruption by telogen, which prevents the 
formation of polymers with a high degree of polymerization, 
susceptible to cyclization.

Some problems that emerge in polycondensation theory 
should be stated differently for the equilibrium condensation 
telomerization. Thus, from the standpoint of polycondensa-
tion theory, of great interest is the behavior of the system in 
the neighborhood of the hypothetical singular point, when 
the complete conversion of monomer has been achieved and 
a single giant polymer molecule has been formed [10, 11, 14].  
It was suggested in [11, 12] that the actual conversion during 
polycondensation does not reach 100 % with the process 
terminated at earlier stages. In [14], authors noted that in 
the Flory theory the limit value DPD = 2  is contrary to 
the fact that at complete transformation of a monomer the 
only one molecule forms, for which this magnitude must  
be equal to 1.

In the equilibrium condensation telomerization the forma-
tion of a single large molecule is ruled out, to the problem of 
singularity should be stated differently. It implies the ultimate 
distribution of products when the low-molecular by-product 
НХ is removed from the reaction zone (equation (1)). 

Given the above, there is an issue on the methodology 
for elaborating the model. In [12], in order to construct  
a model of equilibrium heteropolycondensation, a systematic 
approach was used, based on the classification of types of 
equilibria occurring in the process, by deriving the material 
balance equations for base components and their convolution 
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into a system of nonlinear equations. Such an approach seems 
promising to construct a model of the equilibrium condensa-
tion telomerization.

Thus, a model of the equilibrium condensation telomeri-
zation process should be constructed based on the theory of 
the Flory-Carothers model using a systemic approach.

3. The aim and objectives of the study

The aim of this study is to develop a computer model of 
the equilibrium condensation telomerization products dis-
tribution, to explore the features of this model, to examine  
regularities in telomerization, by employing it, under con-
ditions of controlled concentration of a low-molecular 
by-product and in the neighborhood of a singular point.

To accomplish the aim, the 
following tasks have been set:

– to build a mathematical 
model of telomerization based on 
the systemic analysis of common 
regularities in equilibrium poly-
condensation processes; 

– to implement a computer 
model and examine features in 
solutions; 

– to explore regularities in 
the distribution of equilibrium 
telomerization products, by em-
ploying the model, under condi-
tions of controlled concentration 
of a low-molecular by-product, 
including the neighborhood of  
a singular point.

4. Distribution model of the equilibrium condensation 
telomerization products

When constructing a model, we considered the dis-
tribution of equilibrium condensation telomerization pro
ducts from the standpoint of general patterns in the theory 
of polycondensation processes [1, 2, 8–12]. According to 
them, the equilibrium condensation telomerization occurs 
as a system of successive equilibria, resulting in a growth 
and disruption of the chain. In accordance with the Flory 
principle [8–12], we believed that the equilibrium constants 
of growth ( )1K  and chain disruption ( )K2  did not depend 
on the length of the polymer chain. Given that the system 
includes a RX component, capable of not only disrupting 
the chain of conversions, but also impeding the cyclization, 
we believed that cyclization could be neglected under these  
conditions.

When considering the interaction between monomers 
HAH and XBX  and the telogen RX, one can select the fol-
lowing basic linearly-independent reactions:

HAH + XBX  HABX + HX,

HAH + RX     RAH + 

K

K

1

2

 →← 

 →←  HHX,

RAH + RX     RAR + HX,

HABX + RX   

K

K

2

1

 →← 

� ⇀��↽ ��� RRABX + HX.
















	 (2)

We introduce the following notation for equilibrium 
concentrations:

x1 = [HX];  x2 = [RX];  x3 = [HAH];  x4 [XBX].=

Compare a table of the stepped linearly-independent 
equilibria of interaction between oligomers ( ,i = 0  1, 2,...) and 
monomers H–A–H, X–B–X and the telogen RX with the 
formation of new oligomers and the low-molecular product 
НХ (Table 1). Each component in the line differs from the 
preceding one by the presence of additional group –А–В–. 
We shall consider the degree of polymerization k in hetero
oligomers to be the largest number of fragments of the ini-
tial monomers within its composition. Data in Table 1 are 
grouped in a series of rows with identical values for degree of 
polymerization k.

Calculation of equilibrium concentrations of oligomers 
at k = 1,  based on the schema of equilibria (1), is given  
in Table 2.

Table 2

Expressions for equilibrium constants of the formation 	
and equilibrium concentrations of oligomers 	

at a polymerization degree k = 1

Compound
Equilibrium 

constant
Equilibrium  

concentration

HABX K
x x
x x1

5 1

3 4

= ⋅
⋅

x
K x x

x5
1 3 4

1

= ⋅ ⋅

RAH K
x x
x x2

6 1

3 2

= ⋅
⋅

x
K x x

x6
2 3 2

1

= ⋅ ⋅

RAR K
x x
x x2

7 1

6 2

=
⋅
⋅ x

K x x
x

K x x
x7

2 6 2

1

2
2

3 2
2

1
2= ⋅ ⋅ = ⋅ ⋅

RABX K
x x
x x2

8 1

5 2

= ⋅
⋅

  x
K x x

x
K x x x

x8
2 5 2

1

1 3 2 4

1
2= ⋅ ⋅ = ⋅ ⋅ ⋅

Let us analyze Table 1 for columns, starting with the co
lumn HAH and the line with a polymerization degree k = 1. 
For the cell at the intersection of this column and the arbi-
trary i-th line that contains H(AB)i–1H (i > 1), one can write 
the following formation equation:

Table 1

Components of polymer mixture of condensation telomerization

k Structural elements

1
HAH 

x3

XBX 
x4

HABX 
x5

RAH 
x6

RAR 
x7

RABX 
x8

2
HABAH 

x9

ХАВАХ 
х10

H(AB)2X 
x11

RABAH 
x12

RABAR 
x13

R(AB)2X 
x14

3
Н(AB)2AH 

x15

XB(AB)2X 
x16

H(AB)3X 
x17

R(AB)2AH 
x18

R(AB)2AR 
x19

R(AB)3X 
х20

… … … … … … …

i
H(AB)i–1AH 
x6(i–1)+3 = x6i–3

XB(AB)i–1X 
x6(i–1)+4 = x6i–2

H(AB)iX 
x6(i–1)+5 = x6i–1

R(AB)i–1AH 
x6(i–1)+6 = x6i

R(AB)i–1AR 
x6(i–1)+7 = x6i+1

R(AB)iX 
x6(i–1)+8 = x6i+2

… … … … … … …
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H(AB) AH  + HABX  H(AB)  AH + HX .

      
i i

i

K

x
− −

−

 →← 2
1

1

6 1( ))− −3 5 6 3                                               x x i      x1

	(3)

Calculate concentration x i6 3−  and the ratio of concentra-
tions x xi i6 3 6 1 3− − −( ) :

x
K x x

x

K x

x
K

x x
xi

i i
6 3

1 6 1 3 5

1

1 6 1 3

1
1

2 4

1
−

− − − −=
⋅ ⋅

=
⋅

⋅ ⋅
⋅





( ) ( ) ; 	 (4)

x
x

K
x x

x
i

i

6 3

6 1 3
1
2 3 4

1
2

−

− −

= = ⋅
⋅

( )

.γ 	 (5)

Ratio (5) is not dependent on the line number (degree 
of polymerization). This indicates that concentrations in the 
column form a geometric progression with denominator:

γ = ⋅
⋅

K
x x

x1
2 3 4

1
2 . 	 (6)

Similar correlations were obtained for the components 
НАН, ХВХ, НАВХ, which are the first terms of progressions:

HAH : ;
( )

x
x

K
x x

x
i

i

6 3

6 1 3
1
2 3 4

1
2

−

− −

= ⋅
⋅

= γ 	 (7)

XBX:
x

x
K

x x
x

i

i

6 2

6 1 2
1
2 3 4

1
2

−

− −

= ⋅
⋅

=
( )

;γ 	 (8)

HABX:
x

x
K

x x
x

i

i

6 1

6 1 1
1
2 3 4

1
2

−

− −

= ⋅
⋅

=
( )

.γ 	 (9)

Below are the equilibria of the formation of compounds 
R(AB)i–1AH, R(AB)i–1AR, R(AB)iX involving the mono-
functional telogen RX:

H(AB) AH+RX  R(AB) AH+HX;

              
i i

i

K

x
− −

−

 →← 1
2

1

6 3                                        x x xi2 6 1

	 (10)

R(AB) AH+RH  R(AB) AR+HX;

                
i i

i

K

x
− −

 →← 1
2

1

6                                        x x xi2 6 1 1+

	 (11)

H(AB) AH+RX  R(AB) X+HX.

                 
i i

i

K

x x

2

6 1 2

 →← 

−                            x xi6 2 1+

	 (12)

Based on the system of equilibria (10) to (12), we cal-
culated equilibrium concentrations of these compounds for 
i = 2 3, ,... :

x
K x x

x
K

x
x

xi
i i

6
2 6 3 2

1
2

2

1
3

1=
⋅ ⋅

= ⋅ ⋅ ⋅− −γ ; 	 (13)

x
K x x

x
K

x
x

xi
i i

6 1
2 6 2

1
2

2

1

2

3
1

+
−=

⋅ ⋅
= ⋅







⋅ ⋅ γ ; 	 (14)

x
K x x

x
K K

x x x
xi

i i
6 2

2 6 1 2

1
2 1

2 3 4

1
2

1
+

− −=
⋅ ⋅

= ⋅ ⋅
⋅ ⋅

⋅ γ . 	 (15)

Thus, the concentrations of all components in the system 
are linked to the basic components, given in line 1 in Table 1 

by geometric progressions with a single denominator (6). By 
analogy with the Flory theory [9], we believe that this series 
converges, that is, γ < 1. It should be noted that progression 
denominator coincides in magnitude with that for the model 
that describes the equilibrium heteropolycondensation [12]. 
Hence, it follows that in the condensation telomerization, 
similarly to polycondensation, there is the geometric dis-
tribution of the system’s components (Flory distribution). 
For telomerization, geometric progressions are formed based 
on the equilibrium concentrations of base monomers and 
telogen, which do not necessarily have to be the same. In 
this aspect, the distribution of products for equilibrium 
telomerization differs from the distribution for equilibrium 
homopolycondensation by the Flory theory, where one ob-
serves the concentration of a single monomer.

We shall construct the material balance equations based 
on fragments А, В, R, X, in the form of a system of equa-
tions with an infinite number of terms (respectively, equa-
tions (16) to (19)).

i x i x i x

i x i

i
i

i
i

i
i

i
i

⋅ + − ⋅ + ⋅ +

+ ⋅ + ⋅

−
=

∞

−
=

∞

−
=

∞

=

∞

∑ ∑ ∑

∑

6 3
1

6 2
1

6 1
1

6
1

1( )  

xx i x ai
i

i
i

6 1
1

6 2 0
1

+
=

∞

+
=

∞

∑ ∑+ ⋅ = ; 	 (16)

( )

( )

i x i x i x

i x

i
i

i
i

i
i

i
i

− ⋅ + ⋅ + ⋅ +

+ − ⋅

−
=

∞

−
=

∞

−
=

∞

=

∞

∑ ∑ ∑1

1

6 3
1

6 2
1

6 1
1

6
1

 

∑∑ ∑ ∑+ − ⋅ + ⋅ =+
=

∞

+
=

∞

( ) ;i x i x bi
i

i
i

1 6 1
1

6 2 0
1

	 (17)

x x x x ri
i

i
i

i
i

2 6
1

6 1
1

6 2
1

02+ + ⋅ + =
=

∞

+
=

∞

+
=

∞

∑ ∑ ∑ ; 	 (18)

2

2

6 2
1

6 1 6 2
11

1 2

0 0 0

⋅ + + + + =

= ⋅ + +

−
=

∞

− +
=

∞

=

∞

∑ ∑∑x x x x x

b r

i
i

i i
ii
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where a b r0 0 0 0, , , [ ]   HX  is, respectively, the total concentra-
tion in the system of fragments –А–, –В–, –R– and the com-
ponent HX. If the process involves the monomers and telogen, 
these magnitudes are equal to their starting concentrations. 

To convolute the infinite sums, we shall use following 
equalities for the converging geometric progression:
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Substitute in the system (16) to (19) expressions (20) to 
(22) and represent by a geometric progression the equilibrium  
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concentrations of components through the concentrations of 
monomers, telogen, and HX. As a result, we obtain a system 
of nonlinear algebraic equations (23) to (26) in order to de-
scribe the equilibrium state:
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In system (23) to (26), magnitude γ is calculated from 
equation (6). 

This system makes it possible to calculate the equilibrium 
concentrations of HAH, XB XBX, RX, HX, R, and then, by 
using ratios (3) to (5), (13) to (15) – the equilibrium concen-
trations of the remaining products with a predefined degree 
of polymerization.

5. Numerical study of the model of system (23)–(26)

The system of equations (23) to (26) is non-linear, it  
is possible to solve it only by numerical methods. This raises 
the question about the number of roots and their physi-
cal  sense. 

Numerical simulation was performed in the environment 
of applied mathematics software package Scilab, employing 
the following algorithm:

a)  set initial magnitudes: values for the constants of 
equilibrium K1  and K2,  starting concentrations of reactants;

b)  generate the initial approximations of concentrations 
of basic reagents HX, RX, HAH, XBX as random magnitudes 
that are uniformly distributed between 0 and the initial value 
(for HX – total initial value for the amount of fragment X);

c)  solve the system of equations of the model numerical-
ly and save it; 

d)  based on the derived values, calculate and save the 
denominator of the progression; 

e)  calculations were repeated 10,000 times.
Upon end of the calculations, we organized the calculated 

value for roots, analyzed the number of roots and the frequen-
cy of their occurrence in the obtained sample.

The result of simulation has revealed the presence of four 
roots in the system, which appear at a different frequency 
(Table 3).

Table 3

Roots of the equation system of the model of condensation 
telomerization at K K1 2 10= = .  Starting concentration: 

HAH XBX= =1,  RX = 0 1. ,  HX = 0

No. x1 x2 x3 x4

Occurrence frequency

Absolute Relative, %

1 2.399 –2.393 –0.059 –5.3400 5 0.05

2 1.4698 –0.138 0.1172 0.1103 109 1.09

3 1.4788 0.0363 0.0896 0.1168 1977 19.77

4 2.4327 0.900 0.1466 2.7015 7909 79.09

It follows from data in Table 3 that even though all ap-
proximations of solutions were positive, certain cases yield 
roots whose components have negative values and, accor
dingly, are false: they have no physical sense. They are fairly 
rare: one per 0.05 %, and the second per 1 % of cases. The 
remaining 2 roots have only positive components, and there 
is a question about their physical sense.

In an earlier study [12], in a related modelling task on 
equilibrium heteropolycondensation, the authors applied, as 
a criterion of the physical sense of roots, the magnitude of 
denominator in a geometric progression, which was also de-
scribed by equation (6). Because the equations of model (23) 
to (26) were derived under assumption that the geometric 
progression is converging, that is γ < 1, the physical sense 
can acquire only such a solution that makes the magnitude 
of the denominator smaller than 1. In Table 3, for root No. 3, 
this magnitude is 0.029, and for root No. 4 it is 6.7. That is, 
among all roots, only one (No. 3, Table 3) has a physical sense 
and it is true. Thus, for the case of equilibrium telomerization 
the value for denominator in progression (6) can also be  
a validity criterion for the solution.

It should be noted that the existence of two positive roots 
creates problems in numerical calculations and sets the task 
on choosing a good initial approximation. As can be seen 
from Table 3, at a random selection of random approximation 
out of the permissible domain of its possible values, 81 % 
of cases yield false roots, and only 19 % of cases produce  
a true root. Given the lack of information about the «domain 
of attraction» for the true root, obtaining a true solution in 
a single calculation at a random selection of initial appro
ximation is unlikely. Therefore, to derive the true root, it 
is required to perform a series of calculations based on the 
random selection of initial approximation, as was the case for 
the algorithm described above. At the same time, to reduce 
the number of computations, one can perform them until the 
derived components of the root vector lead to the magnitude 
γ < 1 (under conditions of positive values for all components 
of this vector).

6. Modeling of equilibrium composition of oligomers  
in the neighborhood of a singular point

In practice, the magnitudes of equilibrium constants K1 
and K2 are typically small, the order of 1–10. To shift equi-
librium towards the products from the system, the process is 
carried out under conditions of a low content of the low-mo-
lecular product HX, controlled by its distillation. As noted 
in chapter 2, a singular point of the system corresponds to 
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the limit state at HX content equal to zero. At this point, 
the denominator of expression (6), which defines the distri-
bution of products, becomes zero. Thus, it is a relevant task 
to model a composition of the equilibrium mixture at a low 
content of HX.

The constructed model can be simplified for a given case 
if one accepts that the content of HX in the system is main-
tained at a constant level x d1 = = const.  In this case, one can 
exclude from the system of equations (23) to (26) the last 
equation, leaving equations (23) to (25). 

When modeling using system (23) to (25), we calculated 
the molecular-mass distribution and apparent number aver-
age degree of polymerization n :

n
N
N

= 0 , 	 (27)

where N N N N0
0 0 0= + +HAH XBX RX  is the total number of moles 

of oligomers and telogen introduced to the reaction; N is the 
total number of moles in the equilibrium mixture. 

The magnitude N can be calculated based on the number 
of basic components with i = 1 (Table 1) realizing that the 
number of moles in the compound from each column form  
a geometric progression with the same denominator. The 
number of moles RX( )x2  and HX( )d  in the resulting equilib-
rium mixture should be added to the derived sums:

N
x x x x x x

x d=
+ + + + +

−
+ +3 4 5 6 7 8

21 γ
, 	 (28)

where, in accordance with the above:

x
K x x

d5
1 3 4=
⋅ ⋅

;  x
K x x

d6
2 2 3=
⋅ ⋅

;  

x
K x x

d7
2 2 6=
⋅ ⋅

;  x
K x x

d8
2 2 3=
⋅ ⋅

.

In practice [1] for calculating the average degree of 
polymerization in the equilibrium condensation polycon-
densation under conditions of complete transformation of 
monomers XBX  and RX  and the total absence of HX in the 
system the following formula is applied:

n
q r
q r

N N N
N N N

=
+ ′ +
+ ′ −

=
+ +
+ −

1
1

0 0 0

0 0 0
XBX RX HAH

XBX RX HAH

, 	 (29)

where

′ =q
N
N

RX

XBX

0

0 ;  r
N
N

= HAH

XBX

0

0 .

Formula (29) is marginal in essence and does not depend 
on the equilibrium constants K1 and K2. From this perspec-
tive, it is advisable to investigate the asymptotic properties of 
model (23) to (25) at d → 0,  that is, in the neighborhood of 
a singular point. To this end, we calculated n  and the com-
position of the equilibrium mixture containing HX  from 10 
to 0.0001 mol per 100 mol XBX  at equilibrium constants 
K K1 2 1 10= = , ,  100  (Fig. 1).

Fig. 1 shows that at a high content of HX  in the system 
the magnitude n  heavily depends on the magnitude for equi-
librium constants: an increase in them leads to an increase in 
the average degree of polymerization at fixed values for d.  

If this magnitude tends to 0 in the singular point the value of 
n  also tends to the limit, which does not depend on the equi-
librium constants: curves for different values of K1 and K2 
converge at one point. This boundary value of n,  obtained 
at a very low content of HX  ( . ),d = 0 001  almost coincides 
with the magnitude that was calculated from formula (29) 
(Table 4).
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Fig. 1. Dependence of average degree of polymerization 	
on the content of HX in an equilibrium mixture 	

(d, mol/100 mol XBX). Molar ratio 

N N NXBX HAH RX
0 0 0 1 1 2 0 4: : : . : . .=  Equilibrium constants: 	

1 – K1 = K2 = 1; 2 – K1 = K2 = 10; 3 – K1 = K2 = 100

Table 4

Comparison of magnitude n, calculated 	
from formula (29), and according to model (23) to (25), at 

d = 0 0001.  depending on ratio N N NXBX HAH RX
0 0 0: :

N N NXBX HAH RX
0 0 0: : 1 1 1 0 2: . : . 1 1 2 0 4: . : . 1 1 3 0 6: . : .

n  according to (29) 23 13 9.66

n  according to (23)–(25) 22.9 12.9 9.65

The results obtained demonstrate that formula (29) can 
indeed be regarded as an extreme case of model (23) to (25). 
At the same time, in the neighborhood of a singular point 
there is a gradual convergence between the curves of depen-
dence of the average degree of polymerization on the content 
of HX for different values of equilibrium constants and their 
intersection at the singular point.

A parameter, defined by the state of equilibrium, is the 
denominator of geometric progression (6), which depends 
on the combination of equilibrium concentrations of НАН, 
ХВХ and НХ. It is of interest to consider the way this para
meter changes at the singular point. To this end, we investi-
gated a dependence of the magnitude of progression’s denom-
inator on the equilibrium amount of HX. By extrapolating 
it for 0, we estimated the boundary value of progression’s 
denominator at a singular point ( )γ 0  and investigated the 
dependence of this magnitude on equilibrium constants and 
the equilibrium ratios of reactants. The following patterns 
were identified:

a)  magnitude γ 0  does not depend on values for equilib
rium constants K1 and K2 and the ratio of amounts RH XBX: ; 

b)  magnitude γ 0  depends only on the ratio of amounts 
XBX HAH:  and coincides with this ratio (Table 5).



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/6 ( 98 ) 2019

34

Table 5
Dependence of magnitude γ 0  on the ratio 	

of amounts XBX:HAH (b)

b 0.909 0.833 0.769 0.714 0.667 0.625

γ0 0.909 0.833 0.769 0.714 0.667 0.625

By calculating the equilibrium amounts of basic com-
pounds in the equilibrium mixture from model (23) to (25), 
one can estimate the total amounts of compounds of each 
type depending on equilibrium content of the component 
HX. One can use the formula for the sum of a geometric 
progression:

x
x

i
S i=

−

0

1 γ
, 	 (30)

where xi
0  and xi

S  are, respectively, the equilibrium amount 
of the i-th base product and all polymers based on it. 

It follows from Table 6 that as the equilibrium concen-
tration of HX decreases, the molar quantities of each type of 
products, except for RAR, reduce sharply. At the same time, 
there is an increase in the amount of products based on RAR  
and in the denominator of the geometric progression.

7. Discussion of results of studying  
a telomerization model

Within the framework of the set tasks, the systematic 
approach, proposed earlier in [18] for constructing a mo
del of the linear equilibrium heteropolycondensation, was 
further advanced for building a model of the equilibrium 
condensation telomerization. This approach, based on the 
classification of types of components in the mixture and 
the equilibria in their formation, has made it possible to 
build a model in the form of a system of nonlinear algebraic 
equations. When constructing the model, we have identified 
the overall pattern, which can be denoted as the generalized 
Flory distribution: each type of components turns out to be 
distributed in line with the law of geometric progression with 
the same denominator. The differences include the first terms 
of the progression, defined by the concentration of base com-
ponents that correspond to the respective type. Given this, 
the classic Flory distribution for homopolycondensation can 

be regarded as a special case of the generalized distribution 
when there is only one type of product.

The special feature of the numerical solution to the 
model is that it includes, along with the true root, several 
false roots that have no physical sense. The latter, depen
ding on the random selection of initial approximation from 
the permissible domain of concentrations, appear much 
more frequently than the true root. Therefore, to find the 
true root, a single solution to the system’s equations is not 
enough. In order to find a true root, we have devised a pro-
cedure based on a combination of the Monte-Carlo method 
for selecting initial approximation with a solution to the 
system and analysis of the root. A criterion for deriving the 
true root is a magnitude for the progression’s denominator 
calculated from equation (6): it must be strictly less than 1.

A numerical computer solution to the system of equations 
of the model allows the calculation of the equilibrium concen-
trations of monomers and then the concentrations of all compo-
nents inf the mixture. Thus, the approach considered makes it 
possible to calculate a complete composition of the equilibrium 
mixture at any ratio of monomers, telogen, and a low-molecular 
product in the starting mixture, to determine the mean degree 
of polymerization, as well as other characteristics.

Of the greatest practical interest is the case of a sin-
gular point neighborhood when the low-molecular pro

duct HX is removed from the system. When 
solving a system of equations of the model, 
one must not formally assign a zero value 
to the equilibrium amount of this product 
in the mixture, because in this case the pro-
gression’s denominator (6) accepts an invalid 
value. Therefore, the boundary average degree 
of polymerization and the progression’s de-
nominator were estimated by extrapolation.

In contrast to existing method [1], the con-
structed model makes it possible to calculate 
not only the average degree of polymerization, 
but also the composition of the equilibrium 
mixture for types of compounds over a wide 
range of content of a low-molecular product, 
up to a singular point. Determining the com-
position of the equilibrium mixture in the 
neighborhood of a singular point allows fin
ding the difference between telomerization and 
polycondensation.

At telomerization, the singular point contains a large 
number of molecules of the type R AB A R− − −−( ) ,i 1  distri
buted in line with the law of geometric progression. At the 
same time, at polycondensation, a singular point is matched 
with a single giant molecule.

In terms of practice, the constructed model could prove 
useful for solving an applied task on the a priori estimate of 
the composition of a mixture of oligomers when designing the 
synthesis conditions depending on the ratio of components 
and values for equilibrium constants. 

The drawback of the model is a comparative computa-
tional complexity and the necessity for a thorough examina-
tion of the solution in order to rule out false roots.

The developed model has limitations. Since the starting 
point for the model is the Flory principle about independence 
of the reactivity of terminal groups on the length of a poly-
mer chain, the systems in which this principle does not hold 
must not be treated with the model. In addition, this model 
neglects the possibility for cyclization and other equilibrium 

Table 6

Dependence of progression’s denominator (γ) and the total molar amount 	
of compounds of basic types in the equilibrium condensation telomerization 

on the equilibrium amount of HX (d ). Starting amounts: XBX 100 mol, 	
HAH 110 mol, RX 20 mol, equilibrium constants: K1 = K2 = 10

d
Basic types

γ
HAH XBX HABX RAH RAR RABX

10 4.10 3.87 3.52 4.60 5.16 3.95 0.779

1 0.75 0.70 0.68 2.38 7.57 2.15 0.871

0.1 9.75⋅10–2 9.03⋅10–2 8.89⋅10–2 0.939 9.05 0.857 0.899

1⋅10–2 1.06⋅10–2 9.71⋅10–3 9.66⋅10–3 0.320 9.68 0.292 0.906

1⋅10–3 1.09⋅10–3 9.91⋅10–4 9.89⋅10–4 0.104 9.90 9.44⋅10–2 0.908

1⋅10–4 1.10⋅10–4 9.98⋅10–5 9.98⋅10–5 3.31⋅10–2 9.97 3.01⋅10–2 0.909
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processes that could occur in the system. In this case, how-
ever, this model can be modified. For example, for the case 
of cyclization, by assuming that the cyclization equilibrium 
constant does not depend on the magnitude of a micro cycle, 
it is possible, by employing the approach described, to intro-
duce for consideration another type of products – macro
cycles, and supplement the system with one more balance 
equation for cyclic products. In this case, by analogy with the 
above, it can be expected that the concentration of macrocy-
cles under these conditions will also demonstrate a geometric 
distribution. This indicates the potential for extending the 
scope of application of the described approach for construc
ting models of polycondensation processes.

8. Conclusions

1. Based on the understanding of the mechanism of poly-
condensation processes, we have constructed a mathematical 
model of the equilibrium condensation telomerization in the 
form of a system of 4 equations of balance and equilibria with 
an infinite number of terms. When analyzing this system, we 
have identified 6 basic structural components of the system. 
By implementing the Flory principle about independence 

of the reactivity of terminal groups of polymers on a chain 
length, the model can be collapsed into a closed system of 
4 nonlinear algebraic equations relative to the concentra-
tions of basic components.

2. Through computer simulation, we have revealed the 
presence of 4 roots in a system of equations of the model. We 
have devised criteria for deriving the true value of the root 
based on the value of a geometric progression and the signs 
of coefficients, as well as the algorithm for the method to find 
a solution and to calculate the molecular-mass distribution 
based on it.

3. It was established in modeling that in the neighbor-
hood of a singular point the limit value for the denominator 
of geometric progression, characterizing the distribution of 
compounds based on their type, does not depend on the mag-
nitudes for the equilibrium constants of growth and a chain 
disruption and the concentration of telogen and is numeri-
cally equal to the ratio of amounts of bifunctional monomers, 
introduced to the reaction. We have identified a dependence 
of the composition of the equilibrium mixture of oligomers on 
its content of a low-molecular product of polycondensation.

4. The model constructed could prove useful for the a 
priori assessment of the composition of a mixture ofr oligo-
mers when planning synthesis conditions.
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