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Ha ocnogi mexanizmy nepedizy nonixondencauii cknadena cxema
peaxuii piHOBANCHOT KOHOEHCAUIHOT meloMepuU3ayii, K NOJIKOH-
dencauiiinozo npouecy 3 00pu6om NaAHUI0ZA MOHOPYHKUIOHAIGHUM
menozenom. Buxoosauu 3 yiei cxemu cxaadeni pisnanmns mamepiaio-
HO020 0anancy 3a CMpyKmypHUMU eJleMeHMaAMU, W0 MiCMsims HeCKiH-
uenny Kinvkicmo uaenie. Ilpu euxonanni npunuyuny Daopi npo
00HaKo8y peaxuiiiny 30amuicmv KiHUEGUX 2PYN HECKIHMeHHI CYMuU
A6AAI0Mb CO0010 2e0MempuMHi NPoZpecii 3 00HAKOBUM 3HAMEHHU-
xom. Le dozsonse 3eopHymu modesw npoyecy 6 3amKHymy cucmemy
3 HOMUPLOX HENTHIINUX ATI2eOPaATMHUX PIBHAND.

B pesyavmami docniddcensv eaacmuseocmeti Mooeni WNAXOM
MamemMamu4Hoz0 ananizy i KOMn’IomepHuUx excnepumenmie ecma-
HO8JIeHO HacmynHe:

— p03n00in npodyKmie meomepu3ayii npedcmasusie Cynepnosu-
Ui10 260MEMPUHHUX PO3NO0INIE HA30BUX CPYKMYPHUX KOMNOHEHMIE
3 00HUM § MUM Jice 3HAMEHHUKOM NPO2Pecii, ae Pi3HUMU GeTUMUNHA-
Mu suxionux xonyenmpauii. Posnooin @aopi ons eomononixonden-
cauii MOJCHA Po3ea0amu, K OKpeMuii GUNadox ybozo po3noodiny;

— cucmema pisHano modeai modxce mamu 0o 4 oilichux xope-
nig. Ilpu odunuunomy piwenni cucmemu npu 6unaoxoeomy eudopi
nouamixo6020 nabaudncenns 6 ~74 % 6unaokis 6UxX00UMb NOMUNKO-
6uUll NO3UMUBHUL KOPiHb. /[N nepesipku iCMUHHOCMI KOpeHs: Po3-
POOREHUIl Kpumepill Ha 0CHOGI 6eUMUHU 3HAMEHHUKA 30191CHOT 2€0-
Mempuunoi npoepecii, 3anpononosana npoueoypa KoMn romepHozo
pluents cucmemu, wo 00360€ 3HAUMU ICMUHHUL KOPiHb;

—Ha MoO0eni GUAGJEHI 3AKOHOMIPHOCMI 6NAUSY KOHUeHMpaA-
uii peazenmis HA CKJAAO PIBHOBAJNCHOT CYMIWi npu cmManocmi KoH-
ueHmpayii NOGIMHO20 HUILKOMONEKYIAPHOZ0 NPOOYKMY KOHOEHCA-
uii. Iloxazamno, wo npu npaznenti yici KonyeHmpauii 00 HYAL CKAA0
nepecmae 3anexcamu 6io 3nauenb KOHCMaHm pieHOBAZU.

Pospobrena modens 003601s€ po3paxosysami ckaa0 pieHo6aic-
HOI cymiwii 0izomepie 8 3aexcHoCmi 610 CniGEiIOHOWEHHS KOHYeHm -
pauiii mMoHomepis, menozeHa i HU3LKOMOJEKYAAPHO20 NPOOYKmy
xondencauii. Ile pooums ii Kopucroro na npaxmuyi 0 nonepeonvoi
HUCENbHOT OUIHKU CKIAOY PIBHOBANCHUX CYyMiwel oNizomepie npu
NAAHYBAaHHI CUHME3I6 MeMmOOOM KOHOeHCauiliHol menomepuzauii

Kntouoei cnosa: pisnosajcna xondencauitina meaomepusauii,
Heninilini aneeOpaiuni pieHants, KoMn lomepie Mo0e06aHHS, CKIAO0
osizomepis

u] =,

1. Introduction

Polycondensation is one of the main methods for obtai-
ning polymers. An important kind of polycondensation is the
condensation telomerization, which proceeds in accordance
with a general pattern:
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(n+1)H-A-H+nX-B-X+2RX &=
== R-A—(B-A), —R+2-(n+1)HX. (1)

Condensation telomerization can be regarded as he-
teropolycondensation with a chain disruption due to the




introduction to the reaction with bifunctional monomers
H-A-H and X-B-X a of the monofunctional mono-
mer RX, which is called telogen [1]. In the course of the
reaction, a polymer and the low-molecular product HX form.
This process is exploited in industry for the synthesis of
acrylic oligomers and oligomeric plasticizers [1, 2]. Typically,
reactions (1) are reversible. Telomerization processes are car-
ried out under conditions that are close to equilibrium. This
is achieved by distilling the low-molecular product HX from
the mass (water, lower alcohol, etc.) [1, 2].

Telomerization condensation processes are of interest
for new applications. In recent years, they have been used in
biology and medicine to obtain so-called «smart» polymers,
changing their characteristics with a change in temperature,
pH and other properties of external environment. Such poly-
mers were derived by polymerizing the products of telome-
rization of dimethyl acrylate [(e-hydroxycaproate)-co-glyco-
late] and butyl acrylate [3], short-chain polyethylene glycols
and ethylene glycol with esters of acrylic acid [3], ethylene
glycol and methyl methacrylate [4, 5]. The methods of syn-
thesis of such «smart» polymers and their application in
biomedicine were considered in reviews [6, 7].

Despite the practical importance, theoretical aspects of
the condensation telomerization processes have not been
sufficiently investigated. That refers to issues related to the
distribution of oligomeric products for the types of terminal
functional groups and the degree of polymerization, the im-
pact exerted on them by the starting ratio of reagents and the
concentration of a low-molecular by-product. It is a relevant
task to explore these issues by constructing and examining
the properties of mathematical models, so it could be used to
obtain polymeric blends with the predefined properties.

2. Literature review and problem statement

Despite the practical importance of equilibrium conden-
sation telomerization, mathematical models of the distribu-
tion of products from this process have not been considered
in the scientific literature up to now. Equilibrium telome-
rization is a case of the equilibrium linear polycondensation
with a disrupted chain. Therefore, we shall focus on current
approaches to modeling the processes of polycondensation in
terms of their possible application to constructing a model of
condensation telomerization.

Underlying the models of polycondensation products
distribution is the theory by P. Flory and W. Carothers, the
principal provisions of which are as follows [8-12]:

a) the formation of a polymer occurs statistically. To
obtain a polymer with 7 recurring links, all possible combina-
tions of polymers-predecessors are used, which can interact
thereby forming this product;

b) similar terminal functional groups of polymers have
the same reactivity that is independent of the length of the
polymer chain.

The result is a geometric distribution of polymers based
on the degree of polymerization for homopolymers.

Direct application of the Flory-Carothers theory to the
more complex process under consideration (1) with the ad-
ditional participation of telogens turns out to be impossible.
The theory should be modified taking into consideration the
specificity of process (1). In this case, provisions a) and b)
are common and must be used to construct a model of con-
densation telomerization.

Recently, scientists have intensively studied the role in
polycondensation of the processes of forming the macrocyclic
products at the expense of competitive intramolecular inter-
action between different terminal groups. That relates to the
observed anomalous increase in the degree of polydispersity
(DPD) (a ratio of the weight average polymerization degree
to average) above the limit value of 2, following from the
Flory-Carothers theory [10, 11]. The formation of macrocy-
cles of different size in the processes of polyesterification has
been recently proven for the first time experimentally using
the methods of elution liquid chromatography and matrix-
activated laser desorption/ionization (MALDI TOF) [9].

Several approaches are currently being developed to ac-
count for cyclization in the model of polycondensation. They
are based on the introduction of a quantitative characteris-
tic — the cyclization factor P’. This parameter characterizes
the share of conversion of terminal groups, which leads to
cyclic products. By introducing the assumption on that B’
does not depend on the size of the cycle and steric factors,
the authors of [8] modified the Flory theory, thereby making
it possible to qualitatively explain the existence of DPD>2.
Paper [13] assumed that in the process of cyclization a con-
stant value is retained not by the cyclization factor B’, but
the cyclization rate constant of the first-order. The equation
for polydispersity, derived by the author of [13], turned out
to be identical in the form to that described in [8]; it, too,
qualitatively explained the existence of DPD>2. However,
given the lack of experimental data on the kinetics of cyc-
lization, assumptions about the magnitudes of B’ seem to be
insufficiently substantiated.

Given the above, there is an issue about a possible role of
cyclization processes in the processes of equilibrium conden-
sation telomerization. There are no experimental data on the
possibility of such a process. Based on general assumptions,
one can assume that its role in telomerization would be neg-
ligible. That is associated with the presence of a competitive
pathway — a chain disruption by telogen, which prevents the
formation of polymers with a high degree of polymerization,
susceptible to cyclization.

Some problems that emerge in polycondensation theory
should be stated differently for the equilibrium condensation
telomerization. Thus, from the standpoint of polycondensa-
tion theory, of great interest is the behavior of the system in
the neighborhood of the hypothetical singular point, when
the complete conversion of monomer has been achieved and
a single giant polymer molecule has been formed [10, 11, 14].
It was suggested in [11, 12] that the actual conversion during
polycondensation does not reach 100 % with the process
terminated at earlier stages. In [14], authors noted that in
the Flory theory the limit value DPD=2 is contrary to
the fact that at complete transformation of a monomer the
only one molecule forms, for which this magnitude must
be equal to 1.

In the equilibrium condensation telomerization the forma-
tion of a single large molecule is ruled out, to the problem of
singularity should be stated differently. It implies the ultimate
distribution of products when the low-molecular by-product
HX is removed from the reaction zone (equation (1)).

Given the above, there is an issue on the methodology
for elaborating the model. In[12], in order to construct
a model of equilibrium heteropolycondensation, a systematic
approach was used, based on the classification of types of
equilibria occurring in the process, by deriving the material
balance equations for base components and their convolution



into a system of nonlinear equations. Such an approach seems
promising to construct a model of the equilibrium condensa-
tion telomerization.

Thus, a model of the equilibrium condensation telomeri-
zation process should be constructed based on the theory of
the Flory-Carothers model using a systemic approach.

3. The aim and objectives of the study

The aim of this study is to develop a computer model of
the equilibrium condensation telomerization products dis-
tribution, to explore the features of this model, to examine
regularities in telomerization, by employing it, under con-
ditions of controlled concentration of a low-molecular
by-product and in the neighborhood of a singular point.

To accomplish the aim, the

We introduce the following notation for equilibrium
concentrations:

x,=[HX]; x,=[RX]; x,=[HAH]; x,=[XBX].

Compare a table of the stepped linearly-independent
equilibria of interaction between oligomers (=0, 1, 2,...) and
monomers H-A—H, X-B-X and the telogen RX with the
formation of new oligomers and the low-molecular product
HX (Table 1). Each component in the line differs from the
preceding one by the presence of additional group —A-B-.
We shall consider the degree of polymerization % in hetero-
oligomers to be the largest number of fragments of the ini-
tial monomers within its composition. Data in Table 1 are
grouped in a series of rows with identical values for degree of
polymerization k.

following tasks have been set: Table 1
— to build a mgthematlcal Components of polymer mixture of condensation telomerization
model of telomerization based on
the systemic analysis of common | & Structural elements
regularities in equilibrium poly-
. . HAH XBX HABX RAH RAR RABX
condensation processes; 1
. X3 X4 X5 X6 X7 X8
—to implement a computer
model and examine features in 9 HABAH XABAX H(AB),X RABAH RABAR R(AB),X
solutions; X9 X10 xqq X1z x13 X14
—to explore regularities in H(AB),AH | XB(AB),X | H(AB);X | R(AB)AH | R(AB),AR | R(AB);X
the distribution of equilibrium | 3 N i
L. 15 X16 X17 X18 X19 X20
telomerization products, by em-
ploying the model, under condi-
tions of controlled concentration | H(AB)Y, AH | XB(AB) X | H(AB)X | R(AB) (AH | R(AB) AR | R(AB)X
9f a 1(_)W_mOIeCUI?r by-product, ! X6(i-1)+3=X6i-3 | X6(i—1)+4=X6i-2 | X6(i-1)+5=X6i-1 | X6(i—1)+6=X6i | X6(i—1)+7=X6i+1 | X6(i—1)+8=X6i+2
including the neighborhood of
a singular point.

4. Distribution model of the equilibrium condensation
telomerization products

When constructing a model, we considered the dis-
tribution of equilibrium condensation telomerization pro-
ducts from the standpoint of general patterns in the theory
of polycondensation processes [1, 2, 8-12]. According to
them, the equilibrium condensation telomerization occurs
as a system of successive equilibria, resulting in a growth
and disruption of the chain. In accordance with the Flory
principle [8—12], we believed that the equilibrium constants
of growth (K,) and chain disruption (K,) did not depend
on the length of the polymer chain. Given that the system
includes a RX component, capable of not only disrupting
the chain of conversions, but also impeding the cyclization,
we believed that cyclization could be neglected under these
conditions.

When considering the interaction between monomers
HAH and XBX and the telogen RX, one can select the fol-
lowing basic linearly-independent reactions:

[ K
HAH + XBX &=—= HABX + HX,

K
HAH + RX == RAH + HX, @)

K.
RAH + RX == RAR + HX,

K
|HABX + RX L~ RABX + HX.

Calculation of equilibrium concentrations of oligomers
at k=1, based on the schema of equilibria (1), is given
in Table 2.

Table 2

Expressions for equilibrium constants of the formation
and equilibrium concentrations of oligomers
at a polymerization degree k=1

Compound Equilibrium Equilibrium
p constant concentration
HABX K == xy=—L—3 4
Xy Xy Xy
X+ X K, -x,-x
RAH K,==t-1 Xy =232
Xy X, X,
X5 X, K, x-x, K x,-x
RAR K2= 7 X, = 26 2 _ N2 25 2
XX X x
6 2 1 1
X+ X, K, x.-x, K -x,-x,-x
RABX K,= 8" Xy = 2" h5 Ay Yy 322 4
X5 Xy X X

Let us analyze Table 1 for columns, starting with the co-
lumn HAH and the line with a polymerization degree k=1.
For the cell at the intersection of this column and the arbi-
trary i-th line that contains H(AB); {H (i>1), one can write
the following formation equation:



K
H(AB). ,AH + HABX == H(AB),, AH + HX . (3)

Xe(i-1)-3 X5 Xgi-3 Xy

Calculate concentration xg, , and the ratio of concentra-
tions x, , / Ko(itys -

1 6(i-1)-3 "5 1 6(i-1)-3 P .
: = ‘ : K1' : ’ (4)

Xeig =
X X X
Xy Xy X
6i-3  _ 2 X3 Xy
_Y_K1 : P (5)
Xe(i-1)-3 1

Ratio (5) is not dependent on the line number (degree
of polymerization). This indicates that concentrations in the
column form a geometric progression with denominator:

Xy X
1

Similar correlations were obtained for the components
HAH, XBX, HABX, which are the first terms of progressions:

HAH: Yo _ K X3 'szs =v; @)
‘X‘ﬁ(i71)73 1
XBX: —8=2 = K2 oy (8)
xﬁ(i71)72 xl
HABX: —oit = g2. 52 0y )
X(i-t)-1 X

Below are the equilibria of the formation of compounds
R(AB);_1AH, R(AB);_1AR, R(AB),X involving the mono-
functional telogen RX:

K.
H(AB), ,AH+RX #=—= R(AB), AH+HX;

(10)
X6i3 Xy X Xy
K,
R(AB),,AH+RH —= R(AB), , AR+HX; (11)
X Xy Xoirt X
K,
H(AB) AH+RX =22 R(AB)X+HX. (12)

Xgi1 Xy X6is2 Xy

Based on the system of equilibria (10) to (12), we cal-
culated equilibrium concentrations of these compounds for
i=23,..:

_Kyxggw, o X

2 i1,
X =K, —=-x;-7"7; (13)
X Xy
K 2
X X X .
_ Ry X Xy P i,
Xeing = ’ =| Ky =] xS (14)
Xy Xy
Ko " X Xy Ko X,
Ry Xyt Xy 0 Xy Xy iy
KXoiva = ' =K, K- 2 . (15)
Xy Xy

Thus, the concentrations of all components in the system
are linked to the basic components, given in line 1 in Table 1

by geometric progressions with a single denominator (6). By
analogy with the Flory theory [9], we believe that this series
converges, that is, y<1. It should be noted that progression
denominator coincides in magnitude with that for the model
that describes the equilibrium heteropolycondensation [12].
Hence, it follows that in the condensation telomerization,
similarly to polycondensation, there is the geometric dis-
tribution of the system’s components (Flory distribution).
For telomerization, geometric progressions are formed based
on the equilibrium concentrations of base monomers and
telogen, which do not necessarily have to be the same. In
this aspect, the distribution of products for equilibrium
telomerization differs from the distribution for equilibrium
homopolycondensation by the Flory theory, where one ob-
serves the concentration of a single monomer.

We shall construct the material balance equations based
on fragments A, B, R, X, in the form of a system of equa-
tions with an infinite number of terms (respectively, equa-
tions (16) to (19)).

zi'xﬁi—s +Z(i_1)‘xsi72 +zi'x6i—1 +
p) it p)

+ii'xm+ii'xei+1+ii‘xsi+2:ao; (16)
i1 i1 i=1

Z(i_1)'x6i-3+zi'x6i—2+zi'xsi—1+

p) = p)

+ 2 (=) + D (=) 2+ D1 2, =y (17
i=1 i=1 =1

x2+zx6i+z2'x6i+1+zxsi+2 =1 (18)

i=1 i=1 =1

2'2‘%‘61‘72 + z:,xsm + Z1x6i+2 +x +x,=
i=1 i= i=

=2-b, +7,+[HX],, (19)

where ay, b,, 1, [HX], is, respectively, the total concentra-
tion in the system of fragments —A—, —B—, —R— and the com-
ponent HX. If the process involves the monomers and telogen,
these magnitudes are equal to their starting concentrations.
To convolute the infinite sums, we shall use following
equalities for the converging geometric progression:

i1
=— 20

Z,Y = (20)
oo oo d X d oo

i 171= - =" i
Siv=S gt

d 1 1

dy[1-v] (1-v) (
i(i—l)-yi'l:y+272+373+...+k~y"+...=

i=1
=y Yy t= L (22)

< Ty

Substitute in the system (16) to (19) expressions (20) to
(22) and represent by a geometric progression the equilibrium



concentrations of components through the concentrations of
monomers, telogen, and HX. As a result, we obtain a system
of nonlinear algebraic equations (23) to (26) in order to de-
scribe the equilibrium state:

X3 Xy K22, Ky,

-y d-7 x-(-7) x-(-v)
2

+(K2x2] KK, g (23)

X, a-v) x-(1=7)
Y- X5 i Xy K1'x3'x4+K2'x2'x3"Y
1-v)? (d-v)° -(1=v)? -(1=v)?
-y d-v) x--7v) x-(1-v)

2

K,-x, X3y Xy Xy Xy
+ : +K,-K,- =by; (24)
( X ] -y ' a-y)”

2

. K, x, x, +2.(K2~x2J R
) .

x-(1=7)° x ) 1=y

K -K, x, x,-x,

=y (25)

xp-(1=v) !
x+2'x4 K1'X3'x4 K1'K2'x2'x:;'x4=
ey x(-y) o x(1-)
=[HX], +7, +2b,. (26)

In system (23) to (26), magnitude vy is calculated from
equation (6).

This system makes it possible to calculate the equilibrium
concentrations of HAH, XB XBX, RX, HX, R, and then, by
using ratios (3) to (5), (13) to (15) — the equilibrium concen-
trations of the remaining products with a predefined degree
of polymerization.

5. Numerical study of the model of system (23)-(26)

The system of equations (23) to (26) is non-linear, it
is possible to solve it only by numerical methods. This raises
the question about the number of roots and their physi-
cal sense.

Numerical simulation was performed in the environment
of applied mathematics software package Scilab, employing
the following algorithm:

a) set initial magnitudes: values for the constants of
equilibrium K, and K,, starting concentrations of reactants;

b) generate the initial approximations of concentrations
of basic reagents HX, RX, HAH, XBX as random magnitudes
that are uniformly distributed between 0 and the initial value
(for HX - total initial value for the amount of fragment X);

¢) solve the system of equations of the model numerical-
ly and save it;

d) based on the derived values, calculate and save the
denominator of the progression;

e) calculations were repeated 10,000 times.

Upon end of the calculations, we organized the calculated
value for roots, analyzed the number of roots and the frequen-
cy of their occurrence in the obtained sample.

The result of simulation has revealed the presence of four
roots in the system, which appear at a different frequency
(Table 3).

Table 3

Roots of the equation system of the model of condensation

telomerization at K, =K, =10. Starting concentration:
HAH=XBX =1, RX=0.1, HX=0

Occurrence frequency
No. Xy X X3 X4
Absolute | Relative, %
1] 2399 |-2.393| —-0.059 | —5.3400 5 0.05
2 | 1.4698 | —0.138 | 0.1172 | 0.1103 109 1.09
3 | 1.4788 | 0.0363 | 0.0896 | 0.1168 1977 19.77
4 | 24327 | 0900 | 0.1466 | 2.7015 7909 79.09

It follows from data in Table 3 that even though all ap-
proximations of solutions were positive, certain cases yield
roots whose components have negative values and, accor-
dingly, are false: they have no physical sense. They are fairly
rare: one per 0.05 %, and the second per 1 % of cases. The
remaining 2 roots have only positive components, and there
is a question about their physical sense.

In an earlier study [12], in a related modelling task on
equilibrium heteropolycondensation, the authors applied, as
a criterion of the physical sense of roots, the magnitude of
denominator in a geometric progression, which was also de-
scribed by equation (6). Because the equations of model (23)
to (26) were derived under assumption that the geometric
progression is converging, that is y<1, the physical sense
can acquire only such a solution that makes the magnitude
of the denominator smaller than 1. In Table 3, for root No. 3,
this magnitude is 0.029, and for root No. 4 it is 6.7. That is,
among all roots, only one (No. 3, Table 3) has a physical sense
and it is true. Thus, for the case of equilibrium telomerization
the value for denominator in progression (6) can also be
a validity criterion for the solution.

It should be noted that the existence of two positive roots
creates problems in numerical calculations and sets the task
on choosing a good initial approximation. As can be seen
from Table 3, at a random selection of random approximation
out of the permissible domain of its possible values, 81 %
of cases yield false roots, and only 19 % of cases produce
a true root. Given the lack of information about the «domain
of attraction» for the true root, obtaining a true solution in
a single calculation at a random selection of initial appro-
ximation is unlikely. Therefore, to derive the true root, it
is required to perform a series of calculations based on the
random selection of initial approximation, as was the case for
the algorithm described above. At the same time, to reduce
the number of computations, one can perform them until the
derived components of the root vector lead to the magnitude
v <1 (under conditions of positive values for all components
of this vector).

6. Modeling of equilibrium composition of oligomers
in the neighborhood of a singular point

In practice, the magnitudes of equilibrium constants K,
and K, are typically small, the order of 1-10. To shift equi-
librium towards the products from the system, the process is
carried out under conditions of a low content of the low-mo-
lecular product HX, controlled by its distillation. As noted
in chapter 2, a singular point of the system corresponds to



the limit state at HX content equal to zero. At this point,
the denominator of expression (6), which defines the distri-
bution of products, becomes zero. Thus, it is a relevant task
to model a composition of the equilibrium mixture at a low
content of HX.

The constructed model can be simplified for a given case
if one accepts that the content of HX in the system is main-
tained at a constant level x, =d = const. In this case, one can
exclude from the system of equations (23) to (26) the last
equation, leaving equations (23) to (25).

When modeling using system (23) to (25), we calculated
the molecular-mass distribution and apparent number aver-
age degree of polymerization 7 :

_ N,
n=—", 27
N 27
where N, =N{,, + N +NJ is the total number of moles

of oligomers and telogen introduced to the reaction; N is the
total number of moles in the equilibrium mixture.

The magnitude N can be calculated based on the number
of basic components with i=1 (Table 1) realizing that the
number of moles in the compound from each column form
a geometric progression with the same denominator. The
number of moles RX(x,) and HX(d) in the resulting equilib-
rium mixture should be added to the derived sums:

_ N tX Xty
-y

N

Y L, +d, (28)

where, in accordance with the above:

x _Kixyx, X _Kyx,

5 ’ 6 ’
d d

x _Kyxy g x _K,-xy -y

7= v Xg= .
d d

In practice [1] for calculating the average degree of
polymerization in the equilibrium condensation polycon-
densation under conditions of complete transformation of
monomers XBX and RX and the total absence of HX in the
system the following formula is applied:

0 0 0
1+6]'+7’= Nypx + Nex + Nian

qolvd , (29)
1+q ~r N)(ZBX+N3X_N£IAH
where
’_ NIgX. _N[OIAU
q'=—; r=—1AL
Nypx Nypx

Formula (29) is marginal in essence and does not depend
on the equilibrium constants Ky and K,. From this perspec-
tive, it is advisable to investigate the asymptotic properties of
model (23) to (25) at d — 0, that is, in the neighborhood of
a singular point. To this end, we calculated 7# and the com-
position of the equilibrium mixture containing HX from 10
to 0.0001 mol per 100 mol XBX at equilibrium constants
K, =K, =1, 10, 100 (Fig. 1).

Fig. 1 shows that at a high content of HX in the system
the magnitude 7 heavily depends on the magnitude for equi-
librium constants: an increase in them leads to an increase in
the average degree of polymerization at fixed values for d.

If this magnitude tends to 0 in the singular point the value of
7 also tends to the limit, which does not depend on the equi-
librium constants: curves for different values of K, and K,
converge at one point. This boundary value of 7, obtained
at a very low content of HX (d=0.001), almost coincides
with the magnitude that was calculated from formula (29)
(Table 4).

0 T T T T 1
0 2 4 6 8 10
Fig. 1. Dependence of average degree of polymerization

on the content of HX in an equilibrium mixture
(d, mol /100 mol XBX). Molar ratio
N

Rax i MO i M, =1:1.2:0.4. Equilibrium constants:
1—Ki=K=1;2— K1=K,=10; 3 — K1=K,=100

Table 4
Comparison of magnitude n, calculated
from formula (29), and according to model (23) to (25), at
d=0.0001 depending on ratio Mg, : Mo, : Moy

HAH

N NDa Ny 1:1.1:0.2 | 1:1.2:04 | 1:1.3:0.6
7 according to (29) 23 13 9.66
7 according to (23)—(25) 229 12,9 9.65

The results obtained demonstrate that formula (29) can
indeed be regarded as an extreme case of model (23) to (25).
At the same time, in the neighborhood of a singular point
there is a gradual convergence between the curves of depen-
dence of the average degree of polymerization on the content
of HX for different values of equilibrium constants and their
intersection at the singular point.

A parameter, defined by the state of equilibrium, is the
denominator of geometric progression (6), which depends
on the combination of equilibrium concentrations of HAH,
XBX and HX. It is of interest to consider the way this para-
meter changes at the singular point. To this end, we investi-
gated a dependence of the magnitude of progression’s denom-
inator on the equilibrium amount of HX. By extrapolating
it for 0, we estimated the boundary value of progression’s
denominator at a singular point (y,) and investigated the
dependence of this magnitude on equilibrium constants and
the equilibrium ratios of reactants. The following patterns
were identified:

a) magnitude v, does not depend on values for equilib-
rium constants K, and K, and the ratio of amounts RH: XBX;

b) magnitude v, depends only on the ratio of amounts
XBX:HAH and coincides with this ratio (Table 5).



Table 5
Dependence of magnitude 7y, on the ratio
of amounts XBX:HAH (6)
b 0.909 0.833 0.769 0.714 0.667 0.625
Yo | 0.909 0.833 0.769 0.714 0.667 0.625

By calculating the equilibrium amounts of basic com-
pounds in the equilibrium mixture from model (23) to (25),
one can estimate the total amounts of compounds of each
type depending on equilibrium content of the component
HX. One can use the formula for the sum of a geometric
progression:

P (30)

where x) and x7 are, respectively, the equilibrium amount
of the i-th base product and all polymers based on it.

It follows from Table 6 that as the equilibrium concen-
tration of HX decreases, the molar quantities of each type of
products, except for RAR, reduce sharply. At the same time,
there is an increase in the amount of products based on RAR
and in the denominator of the geometric progression.

Dependence of progression’s denominator (y) and the total molar amount
of compounds of basic types in the equilibrium condensation telomerization
on the equilibrium amount of HX (d). Starting amounts: XBX 100 mol,
HAH 110 mol, RX 20 mol, equilibrium constants: K1=K>=10

be regarded as a special case of the generalized distribution
when there is only one type of product.

The special feature of the numerical solution to the
model is that it includes, along with the true root, several
false roots that have no physical sense. The latter, depen-
ding on the random selection of initial approximation from
the permissible domain of concentrations, appear much
more frequently than the true root. Therefore, to find the
true root, a single solution to the system’s equations is not
enough. In order to find a true root, we have devised a pro-
cedure based on a combination of the Monte-Carlo method
for selecting initial approximation with a solution to the
system and analysis of the root. A criterion for deriving the
true root is a magnitude for the progression’s denominator
calculated from equation (6): it must be strictly less than 1.

A numerical computer solution to the system of equations
of the model allows the calculation of the equilibrium concen-
trations of monomers and then the concentrations of all compo-
nents inf the mixture. Thus, the approach considered makes it
possible to calculate a complete composition of the equilibrium
mixture at any ratio of monomers, telogen, and a low-molecular
product in the starting mixture, to determine the mean degree
of polymerization, as well as other characteristics.

Of the greatest practical interest is the case of a sin-
gular point neighborhood when the low-molecular pro-
duct HX is removed from the system. When
solving a system of equations of the model,
one must not formally assign a zero value
to the equilibrium amount of this product
in the mixture, because in this case the pro-
gression’s denominator (6) accepts an invalid

Table 6

- value. Therefore, the boundary average degree

d Basic types y of polymerization and the progression’s de-
HAH XBX | HABX | RAH RAR | RABX nominator were estimated by extrapolation.

In contrast to existing method [1], the con-

10 410 387 3.52 460 016 395 0.779 structed model makes it possible to calculate
1 0.75 0.70 0.68 2.38 7.57 215 0.871 not only the average degree of polymerization,
01 |975102]9.03102|889102| 0939 | 905 | 0857 | osgy | Dut also the composition of the equilibrium
mixture for types of compounds over a wide

1102 [ 1.06:102[9.71-103 [ 9.66-103 | 0.320 9.68 0.292 0.906 range of content of a low-molecular product,
11073 [ 1.09-1073[9.91-104[9.89-104 | 0.104 9.90 [9.44-10°2| 0.908 up to a singular point. D.etermll}lng thc; com-
position of the equilibrium mixture in the

11074 [ 1.10-104]9.98-105[9.98-10% [ 3.31-10°2| 997 [3.01-10°2| 0.909 neighborhood of a singular point allows fin-

7. Discussion of results of studying
a telomerization model

Within the framework of the set tasks, the systematic
approach, proposed earlier in [18] for constructing a mo-
del of the linear equilibrium heteropolycondensation, was
further advanced for building a model of the equilibrium
condensation telomerization. This approach, based on the
classification of types of components in the mixture and
the equilibria in their formation, has made it possible to
build a model in the form of a system of nonlinear algebraic
equations. When constructing the model, we have identified
the overall pattern, which can be denoted as the generalized
Flory distribution: each type of components turns out to be
distributed in line with the law of geometric progression with
the same denominator. The differences include the first terms
of the progression, defined by the concentration of base com-
ponents that correspond to the respective type. Given this,
the classic Flory distribution for homopolycondensation can

ding the difference between telomerization and
polycondensation.

At telomerization, the singular point contains a large
number of molecules of the type R—(AB), ,—A—-R, distri-
buted in line with the law of geometric progression. At the
same time, at polycondensation, a singular point is matched
with a single giant molecule.

In terms of practice, the constructed model could prove
useful for solving an applied task on the a priori estimate of
the composition of a mixture of oligomers when designing the
synthesis conditions depending on the ratio of components
and values for equilibrium constants.

The drawback of the model is a comparative computa-
tional complexity and the necessity for a thorough examina-
tion of the solution in order to rule out false roots.

The developed model has limitations. Since the starting
point for the model is the Flory principle about independence
of the reactivity of terminal groups on the length of a poly-
mer chain, the systems in which this principle does not hold
must not be treated with the model. In addition, this model
neglects the possibility for cyclization and other equilibrium



processes that could occur in the system. In this case, how-
ever, this model can be modified. For example, for the case
of cyclization, by assuming that the cyclization equilibrium
constant does not depend on the magnitude of a micro cycle,
it is possible, by employing the approach described, to intro-
duce for consideration another type of products — macro-
cycles, and supplement the system with one more balance
equation for cyclic products. In this case, by analogy with the
above, it can be expected that the concentration of macrocy-
cles under these conditions will also demonstrate a geometric
distribution. This indicates the potential for extending the
scope of application of the described approach for construc-
ting models of polycondensation processes.

8. Conclusions

1. Based on the understanding of the mechanism of poly-
condensation processes, we have constructed a mathematical
model of the equilibrium condensation telomerization in the
form of a system of 4 equations of balance and equilibria with
an infinite number of terms. When analyzing this system, we
have identified 6 basic structural components of the system.
By implementing the Flory principle about independence

of the reactivity of terminal groups of polymers on a chain
length, the model can be collapsed into a closed system of
4 nonlinear algebraic equations relative to the concentra-
tions of basic components.

2. Through computer simulation, we have revealed the
presence of 4 roots in a system of equations of the model. We
have devised criteria for deriving the true value of the root
based on the value of a geometric progression and the signs
of coefficients, as well as the algorithm for the method to find
a solution and to calculate the molecular-mass distribution
based on it.

3.1t was established in modeling that in the neighbor-
hood of a singular point the limit value for the denominator
of geometric progression, characterizing the distribution of
compounds based on their type, does not depend on the mag-
nitudes for the equilibrium constants of growth and a chain
disruption and the concentration of telogen and is numeri-
cally equal to the ratio of amounts of bifunctional monomers,
introduced to the reaction. We have identified a dependence
of the composition of the equilibrium mixture of oligomers on
its content of a low-molecular product of polycondensation.

4. The model constructed could prove useful for the a
priori assessment of the composition of a mixture ofr oligo-
mers when planning synthesis conditions.
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