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Hasedeno cnocié nobyodosu pesonanchux mpaex-
mopii pyxy eanmascy xumnoi npyscunu. Xummnoro
npyscunoro (swinging spring) Hasuearomv pizHoeuod
MAMEMAMUUHO20 MASMHUKA, AKUU CKIA0AEMbCS 3 MOY-
K068020 86anmasicy, npuconamnozo 00 Heeazomoi npyicu-
nu. /pyeuil xineup npyscunu Qikcyemocs Hepyxomo.
Pozznsoatomvcs MasmHuKonooioni KoaueanHs npy-
HCUHU Y BEPMUKANBHIN NAOWUHI 34 YMOBU 30epedcer-
0a3i po3e’asxie cucmemu oudepenyianvnux pieHamb,
3 KOMnoHenmamu, y AKi 6X00AMb 3HAUEHHS UACMOM
8EPMUKATLHUX 1 20PU3OHMATIGHUX NEPeMiuleHb MOUKY
Ha npyscumi.

Axmyanvricms memu 6UHAMAEMbCA HeOOXIOHICMIO
00CNI0IHCEHHA MEXHON0IUHUX NPOUECI6 OUHAMIMHUX CUC-
meM, KOJu HeAIHIlHO 36°43aHil KOIUBANbHI KOMNOHEH-
mu cucmemu 06MinI0I0MBCA eHepeziero Mmidc coboro. 3a
0010M02010 peHoMeHa XUMHOT NPYIHCUHU TIOCMPYEMD-
ca 00Min enepeiamu Midnc nonepetnumu (MAAMHUKOBU-
Mu) 1 n03006cHIMU (Npydsrcunnumu) Koausanusmu. lpu
UbOMY MAKONC BPAXOBYEMBCS BNAUG NOUAMKOBUX YMOG
iniyiroeannsa xoausamns. Ocobauee 3navenns mae 00cui-
0JCeHHS CMAHY PEe30HANHCY XUMHOT NPYHCUHU - KOTU HAC-
moma no3006x#CHIX KONUBAHb BIOPIZHAEMbCA 8 KpamHy
KinbKicmos pasie 6i0 wacmomu nonepevnHux KoauUGaAHb.
Kpim pos3nosciodcenozo <kaacuunozo»> eunaoxky (peso-
nancy 2:1) € neooxionicmo po3e’ssyeamu 3ada4i 3 inuu-
MU 3HAUEHHAMU 6i0HOWeHHs wacmom. B pesynomami
0yno0 3natideno zeomempuuni popmu mpaexmopii pyxy
8aAHMAIICY XUMHOI NPYHCUHUL, KT 6i10N0610aI0OMb 0COONU-
8ocmsam cmany ii pe3oHancy.

Oodeporcani pezyavmamu 00360110Mb 3 OONOMO2010
KoMn’iomepa cunmesyeamu mpacKkmopiio pyxy eawma-
JHCY XUMHOT npYHCUHU, AKA 8i0nosidamume 3a0anomy 6io-
HOWLEHHIO MACMOM NO3006IHCHIX T NONEPEHUX KOJIUBAHD.
ns uyboeo, kpim ocnoenux napamempis (macu anmanicy,
Jcopcmrocmi npyxcunu ma i 006HCUHU 6 HeHABaHmMA-
JICEHOMY CMaHi), we 3aaYy1aomovCsa noUamKo6i 3HaUeHHs
napamempie iniyiroeanns xoausanv. A came, «<cmapmo-
61> KOOPOUHAMU NONOIHCEHHA GAHMANCY, MA NOUAMKO-
61 wWeUOKOCmI PYXi6 6AHMANCY 6 HANPAMKY KOOPOUHAM-
Hux oceii. Pozensinymo npuxnaou nodyoosu mpaexmopii
PYXy eanmaoicy 0 eunaodkie pezonancie muny 2:1, 7:3,
9:4 i 11:2. Odepocani pesyrvmamu npoiroCmMposamno
KOMR tomepHumMu aHiMauiamMu Koaueamns 6ionoeionux
XUMHUX NPYHCUH OIS PI3HUX UNAOKIE PE3OHANCY.

Pesynvmamu mosxcna euxopucmamu sk napaouemy
015 6UBUEHHA HeNUHIUHUX 36 A3AHUX CUCMEM, d MAKOIC
npu po3pPaxynKax eapianmié MexamitHux npucmpois,
de npyscuHu 6nauearOms HA KONUBAHHS iX elemeHmis.
A maxosc y eunadxax, Koau Yy mexHonN02iAx 6UKOPUC-
MAHHA MeXAHIMHUX NPUCMPOi8 HeodXioHo 8idMedcyea-
mucs 6i0 xaomuunux pyxie eanmaoicie i 3adesneuumu
nepioduuni mpacxmopii ix nepemiwens

Knouoei cnosa: xumna npyscuna, pe3onanc xum-
HOI NPYNCUHU, MASIMHUKOGL KOJIUGAHHS, MPAEKMOPIl
PYXy eanmagicy

u] =,

1. Introduction

This is continuation of the research reported in papers [1, 2].
We have considered an approach to solving the class of prob-
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lems when, within a certain dynamic system, its nonlinearly
connected oscillatory components could exchange energy.
Studies [3—6] give many examples of such problems. In this
case, the authors address the issues about dependence of the




sharing energy activity on the parameters of a system’s con-
trol. The task is to determine the total energy of the system
and to properly estimate the energy magnitudes over time, as
well as their relation to each of the components.

To illustrate this approach, they use a two-dimensional
spring pendulum as a mechanical model to study multiple
nonlinearly connected systems. The two-dimensional spring
pendulum in a perfect form consists of the «point» load of
mass m, attached to the end of a weightless spring of rigidity 4
and length % in a no-load state. The other end of the spring
is fixed stationary. The oscillatory system, formed in such
a manner, should move in a vertical plane only, while main-
taining the spring axis straight. The point load simultaneously
participates in two types of oscillations: spring-like — when
moving along the straight spring axis, and pendulum-like —
when it executes oscillations jointly with the axis. This kind
of an oscillatory system is denoted in the scientific literature
as a swinging spring [7].

Using a swinging spring visualizes the exchange of ener-
gies among the transverse (pendulum) and longitudinal
(spring) oscillations. In this case, one should take into
consideration the influence of the initial conditions for
oscillation initiation. Of particular importance is to study
the condition for the emergence of resonance state of the
swinging spring. That is, when the frequency of longitudinal
oscillations will differ by the multiple number of times from
the frequency of transverse oscillations. In addition to a com-
mon «classic» case (resonance 2:1), it is advisable to solve
problems with different values for the frequency ratio. For
example, there is a need [8] to build the motion trajectories
of a load for the cases of such resonances as: 2:1, 7:3, 9:4, 11:2,
and others. The would-be geometrical shapes of the motion
trajectory of a swinging spring load under assigned parame-
ters could help define the characteristics for the solution to
the selected problem.

Papers [3—-6] report many possible implementations
based on the application of the idea about a swinging spring’s
oscillations. Large part of this list is directly related to the
breach in stability and controllability of aircraft or high-
speed vessels in the process of their movement. When calcu-
lating the displacement of a dynamic system in space (ship
or aircraft), one must take into consideration the exchange
of energy between the transverse and path (longitudinal)
oscillations as components of the system. In most cases, the
frequency of these oscillations is accepted to be 2:1.

However, for a detailed research, it is advisable to con-
sider other frequency ratios. This is especially true when
studying the dynamics of aircraft oscillations of the type
«Dutch roll» [9]. Such oscillations occur in the case of
a large transverse stability of the aircraft compared with
a low directional stability. Then the lateral movement of
an aircraft is characterized by interdependent oscillations
due to heel and sliding. Moreover, the oscillations with
sliding lag the phase of oscillations due to heel, which is
associated with weak directional and excessive transverse
stability. The heel of an airplane is the cause of slip of the
plane, eliminating which occurs with a delay due to weak
directional stability. The accompanying slip prompts the
need for an emergency heel of the aircraft in the opposite
direction due to the increased lateral stability, and the pro-
cess is repeated. To damp oscillations, aircraft employ yaw
dampers, whose calculation should be performed by using the
concept of energy transfer of a swinging spring in the state
of resonance.

It is clear that the state of resonance of a swinging spring
should occur at a certain combination of values for the pa-
rameters of a swinging spring. In a trivial case, when a period
of vertical oscillations would be about twice less than that
over the period of horizontal oscillations:

2T, =T

Y X0

where

m h
T, = 21t\/;, T, = 27:\/;,

where m is the mass of a load, % is the rigidity of a spring,
h is the length of a spring under a no-load state, g is the
acceleration of the Earth’s gravity. Or — as an ambiguous
statement — when the frequency of vertical oscillations
0, = W is approximately twice the frequency of horizon-
tal oscillations 0, =/g/h: 20, = ®,.

However, the resonance state of a swinging spring must
be additionally affected by the initial values for the parame-
ters of oscillation initiation. This could be tested if the state
of resonance is to be interpreted by using the motion trajec-
tory of a swinging spring load. Note: sometimes, periodic,
found among the possible motion trajectories [10]. To find it,
it is necessary to devise a universal technique to synthesize
a set of trajectories depending on the swinging spring param-
eters, and, importantly, on the parameters for its oscillation
initiation. And attention should be focused on cases where
trajectories are represented by periodic curves.

Given the above, it is a relevant task to undertake a re-
search aimed at geometric modeling of motion trajectories
of a swinging spring load, which would meet all the condi-
tions for a given type of resonance. That is, conditions when
the frequency of vertical oscillations of a «point> mass on
a swinging spring would be multiple times larger than the
frequency of horizontal oscillations, and would account for
a maximum number of parameters for the swinging spring
oscillation.

2. Literature review and problem statement

Papers [1, 2] reviewed those studies that addressed the
subject of swinging springs — taking into consideration the
state of their resonance. Thus, we shall cite here those articles
that enlarge the concept of resonance. Note that the move-
ment of a swinging spring load is noticeably more complica-
ted compared to the load of a mathematical pendulum, which
is why the effect of using a swinging spring as a mechanical
interpretation will be expectedly more pronounced. For
example, the conducted laboratory experiments involving
a swinging spring provide for a new understanding of the mo-
tion of planetary waves in the Earth’s atmosphere [11, 12].

Consider an oscillatory system of the type <«swinging
spring» in a vertically located plane with the Cartesian coor-
dinates Oxy. The system includes a weightless spring, to
which at one end a load of mass m is attached, and the other
end is fixed at point O in the coordinate origin. It is believed
that during the pendulum-like oscillation the axis of the
spring maintains its straightness. Rigidity of the spring is
denoted by k, & denotes the length of the spring without
aload, and H is the length of the spring with a load under the
equilibrium (vertical) state.



The equation of a swinging spring motion takes the fol-
lowing form:

mi(t)=-Tsinv;

mij(t)=-T cosv—mg, 1)
where T is the pull of the spring, v is the angle of spring de-
viation from the vertical, g is the acceleration of the Earth’s

gravity. Then the variable length of the spring is a function of
time with obvious physical interpretation:

u(t)=Jx@)* +[H-y()]". (2)
Considering:
T =klu(t)~h; k[H-h]=mg; 3)
sinv= &; cosv:M

y(0) u(t)

we obtain the equation of a swinging spring motion in the
form [13]:

B(t)+ oy (t) =0y (o), (4)

)+ oyyt) = e(t)’ /2,

where

k h

O, ==; 0, =—; A=k—;.
X Y m Hz

g
H

Frequency oy defines the oscillations of a mathematical
«linear pendulum», and value wy describes the frequency
at which the «point» mass on a spring oscillates vertically.
If A=0, then equation (4) could be solved independently,
but the pendulum and spring movements will be linked
through the non-linear conditions [13]. A detailed research
into all possible movements of a swinging spring is reported
in [14] in terms of parameter u determined from
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Intermediate cases for w were studied using Poincaré
sections and bifurcation diagrams. Paper [14] provided de-
scriptions for all combinations of possible movements of
a swinging spring.

Referring to work [13], consider the case when a «spring»
motion of a swinging spring dominates over its «pendu-
lum-like» movement. That is, when x(¢) <y(t). In this case,

¥(1)+ o3 (1) = Me()y(1); (6)
() +ory(t) =0,

hence:
F(0)+03a(t) = e()y(1); )

y(O)=y(0)cos(wy1).

The result is:

#(0)+[ 0} = My(0)cos(wyt) |x(t) =0. (8)

Equation (40) that is known as a Mathieu equation [15],
as well as its solutions, are unstable in cases when:
Oy _2

=% n=1,2,3. 9)
o, n

Ratio (9) yields the sequence of possible conditions for
the occurrence of resonance of a swinging spring and explains
the need to analyze the ratios of oscillation frequencies of
«spring» oy and «pendulum» oy for determining the reso-
nance state of a swinging spring.

Paper [13] gives a variant to determining the resonance
state of a swinging spring using a correlation between pa-
rameters 4 and H:

H 4 H
A orH=
H-h n’ o H-n’

h. (10)

In the trivial cases, the instability of a swinging spring mo-
tion could be observed in laboratory experiments at n=1, that
is, oy=2mx and H=4h/3. A detailed summary of the theory
of a swinging spring from the standpoint of laboratory expe-
riments for the specified cases could be found in [16]. In pa-
pers [11, 17], the issue on the oscillations of a swinging spring
was studied for the case of a three-dimensional space with
coordinates x, y, z. Article [18] shows that the derived mathe-
matical expressions could be used to describe the large-scale
movements of layers in the Earth’s atmosphere, as well as for
the case of forced damping of a swinging spring. This means,
in particular, that the laboratory experiments with a swinging
spring could provide for a new understanding of the dynamics
of primary resonance clusters in random nonlinear wave sys-
tems, which are characterized by three-wave resonances.

An interesting problem related to a swinging spring is
outlined in a research into the Wilberforce pendulum [19]
aimed at verifying whether its equations of motion are iden-
tical to those that describe the dynamics of certain common
resonance clusters [13]. A Wilberforce pendulum consists of
a massive load, suspended from a long spring, which can free-
ly rotate relative to its vertical axis. Such a pendulum, in con-
trast to a swinging spring, does not execute pendulum-like
oscillations. At appropriate setting, a Wilberforce pendulum
demonstrates the process of energy transfer between the
mode of «vertical» oscillations of a load (up and down) and
the mode of «revolving» oscillations of a load around the axis
of the spring. An analysis of normal modes for a Wilberforce
pendulum could be found in [20] along with a detailed de-
scription of possible laboratory experiments and examples of
numerical simulation.

The authors of [21] investigated at the analytical level
a condition for resonance between the two modes of oscilla-
tions, which is determined from equality:

(11)

It was experimentally demonstrated that in the case
of meeting a condition for resonance (11), <«neither the
length nor the diameter of the wire, nor the step of coiling
the spring, nor the number of its revolutions would affect
the state of resonance» [21]. This observation is extremely
important since a Wilberforce pendulum can be described

Wangle = Dyertical-



mathematically much closer to the «physical> Wilberforce
pendulum, compared, for example, with a description of
the mathematical pendulum relative to the physical linear
pendulum. Paper [13] considers possible implementations of
this approach in the field of a nonlinear resonance analysis of
wave turbulent systems, performed in the laboratory.

Paper [22] illustrated, based on the created program, the
parametric resonance of a swinging spring, which manifests
itself in the transfer of energy from the vertical oscillations
of a load to horizontal, and vice versa. It was shown that the
speed and amplitude of energy transfer strongly depend on
initial conditions. Study [23] illustrated the «flow» of energy
between longitudinal and transverse oscillations of a point
on a swinging spring. However, the study lacks software
implementation of this effect. In a cycle of papers [24-28],
the authors reported a study of resonance 2:1 in a swinging
spring and its connection to the motion trajectory of a swing-
ing spring load. However, the authors confined themselves to
only one variant of the resonance.

Papers [29—-31] provide computer animations of the os-
cillations of appropriate swinging springs that illustrate the
technique under consideration.

By summing up, we note that known techniques to study
the resonance of a swinging spring are based on the following
type of equality:

MOy = @y,

where o, =/k/m is the frequency of vertical oscillations, and
O, = m is the frequency of horizontal oscillations of some
point on a spring. Hereinafter, m [kg] is the mass of a load,
k[N/m] is the spring rigidity, 2 [m] is the length of the
spring under a no-load state, g [m/s?] is the acceleration of
the Earth’s gravity. In formula pw, = @, m is the coefficient
of proportionality between frequencies that actually deter-
mines the type of resonance.

However, the above works do not consider two more
parameters for a swinging spring that significantly affect
its oscillations. Specifically, parameters in the form of ini-
tial distances of a point load on a swinging spring from the
coordinate axes of the chosen coordinate system, as well as
the initial velocities of change in the position of a load in the
direction of coordinate axes. It is convenient to control the
effect of these parameters on the resonance state by using the
graphical component of oscillations — the motion trajectory
of a swinging spring load. To implement them, it is necessary
to define values for the parameters that would ensure the
periodic motion trajectory. The periodic trajectory should be
used when implementing a swinging spring. This is the field
of research that has not been addressed so far.

It follows from the above analysis that it is necessary to
devise a universal technique to synthesize the displacement
trajectory of swinging springs’ load depending on patterns
in the state of its resonance. Specifically, taking into con-
sideration not only the basic parameters for a swinging spring
(rigidity, length under a no-load state, and a load mass), but
the initial conditions for oscillation initiation as well.

3. The aim and objectives of the study

The aim of this study is to geometrically model the reso-
nance of a swinging spring based on the construction of mo-
tion trajectory of its load taking into consideration not only

the basic parameters for a swinging spring, but the initial
conditions for the occurrence of oscillations.

To accomplish the aim, the following tasks have been set:

—to describe the motion process of a swinging spring
considering the flow of horizontal oscillations in vertical,
and vice versa, which is typical for the resonance state of
a swinging spring;

— to describe the motion trajectory of a swinging spring
load by using a system of differential equations with compo-
nents, which include values for the frequencies of vertical and
horizontal displacements of a point on a spring;

— to determine the set of motion trajectories of a swin-
ging spring load, which would match the assigned ratios
of vertical and horizontal frequencies of load oscillations
(for example — 2:1, 7:3, 9:4, and 11:2); — to define values for
the variable parameters at which the motion trajectory of
a swinging spring load would take the form of periodic.

4. Determining the motion trajectories of a swinging
spring load under condition for its resonance

4. 1. The phenomenon of energy «flow» during oscilla-
tions of a swinging spring under the state of its resonance
of the type 2:1

Consider a swinging spring loaded with a mass m, rigidi-
ty kand length Ly under a no-load state. In the field of gravity
with a free fall acceleration of g=9.81 the period of oscillation of
such a springis T, = 2n\/m—/k . The position of the load equilib-
rium in this case will shift down to a height of AL=mg/k. At
such a lengthening of the spring the power elasticity compen-
sates for the effect of gravity. However, the period of vertical
oscillations relative to the new position of equilibrium with a
stretched spring will remain the same. A period of horizontal
oscillations of the stretched swinging spring is expressed
through the acceleration of free fall g and its full length
L=Ly+AL, that is T, = 275\/%. An analysis of the additional
stretching of a spring in the field of gravity makes it possible
to find out [23] the ratio between the periods:

L _ Mﬁz\/ﬂﬁﬂ
T g m AL

Y

(12)

Thus, for a swinging spring the period of horizontal os-
cillations is always greater than the period of vertical ones:
T.>T,. A swinging spring is the simplest example of the im-
plementation of the Fermi resonance. This resonance occurs
when the periods of vertical and horizontal oscillations are
linked via an approximated ratio 7,=2T,. Or, when using
frequencies of independent oscillations along the vertical
oy and the horizontal oy, via relation wy=2wy. That is, the
horizontal and vertical oscillations begin to seemingly flow
one into another. The energy of oscillations will transfer from
vertical oscillations into the horizontal, and vice versa. In
this case, which is very interesting, strictly vertical oscilla-
tions turn out to be unstable.

The emergence of relation 7,: T,=2:1 could be explained
as follows from [23]. We shall denote through X(¢) and Y(¢)
in a Cartesian plane Oxy the coordinates of time-dependent
deviation ¢ of a load from the equilibrium position. At such
a deviation, the potential energy grows by magnitude:

AU=§(( (L—Y)2+X2—LO)Q—(ALY)ng- (13)



If one chooses coordinates X and Y to be substantially
smaller than L, then expression (2) is approximately equal to:

AU zgyz +’;—fx2 —%XZY:UY +U +U,,

(14)
while adding other components, which are characterized by
the higher degrees of deviations. The magnitudes Uy and Uy
are the potential energies that occur as a result of vertical and
horizontal oscillations. And the magnitude:

L
Upy=-3 XY

is a special addition that generates the interaction between
the specified oscillations. Owing to such an interaction, the
vertical oscillations will affect the horizontal oscillations, and
vice versa.

We shall introduce new designations for convenience:

2 _ 8. o _ k. ‘=L%m§
L m 2L

and consider the system of equations of oscillations horizon-
tally and vertically:

X+ i X =2cXY;

Y +0lY =cX?. (15)

Without the right-hand sides, equations (15) yield de-
scriptions of independent oscillations vertically and horizon-
tally at frequencies wyand wy. Additions in the right-hand
sides point to the existence of a force whose action leads to
additional swing in oscillations. If frequencies wy and wy
are arbitrary, this force is small and does not manifest itself
in any substantial effect. However, if the relation wy=2wy
holds, then the state of resonance occurs. The force that
drives oscillations contains the component, for both types of
oscillations, with the same frequency as the oscillation itself.
As aresult, this force would contribute to executing one type
of oscillations and to damping another type [23]. That is
exactly the way that the horizontal and vertical oscillations
transfer from one to another.

To confirm the «flow» of energy between the longitudinal
and transverse oscillations of a point on a swinging spring,
we developed a computer program. Here are three examples
that illustrate the specified effect. To this end, we select the
parameters values for a swinging spring, which would ap-
proximately match the state of its resonance. For example,
m=0.35; k=150; Ly=0.1. Then:

0, = \/E =20.702; o, = \/g =9.905,
m L,

hence wy/wx=2.09. That is, the condition for the occurrence of
resonance of the type 2:1 more or less holds. The full length of
a spring is to be equal to L=0.5. A system of differential equa-
tions (15) should be solves numerically using a Runge-Kutta
method. The chards are built based on 5,000 derived points.

Example 1. System of equations (15) is to be solved at
the following initial conditions: xy=0.1; Dxo=0; yy=-0.2;
Dyy=0. That is, for a point with initial motion coordinates
X(0)=0.1; ¥(0)=-0.2 and in the absence of assigning their
speed along the directions of co-ordinate axes.

Fig. 1 shows the motion trajectory of a point with coor-
dinates X(¢), Y(¢) over time T=35. Fig. 2 shows charts of
a load’s deviations for respective coordinates. Fig. 3 shows
charts of potential energies for oscillations along respective
coordinates, as well as chart of addition that generates inter-
action between the specified oscillations.
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Fig. 1. Motion trajectory of a point for example 1
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Fig. 2. Deviation charts of a load:
a — for coordinate X; b — for coordinate Y
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Fig. 3. Charts of potential energies for:
a — oscillations along coordinate X; b — oscillations along
coordinate Y; ¢ — addition that generates interaction
between the specified oscillations

Example 2. System of equations (4) is to be solved at
the following initial conditions: x9=0.001; Dxp=0; yo=—0.2;
Dyy=0. That is, for a point that prior to the onset of motion
is located «almost» along the Oy axis.

Fig. 4 shows the motion trajectory of a point with coor-
dinates X(¢), Y(¢) over time T=35. Fig. 5 shows the deviation
charts of a load for respective coordinates. Fig. 6 shows the
charts of potential energies for oscillations along the respec-
tive coordinates, as well as the chart of addition that gene-
rates interaction between the specified oscillations.
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Fig. 4. Motion trajectory of a point for example 2
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Fig. 5. Deviation charts of a load:
a — for coordinate X; b — for coordinate Y
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Fig. 6. Charts of potential energies for:
a — oscillations along coordinate X; b — oscillations along
coordinate Y; ¢ — addition that generates interaction
between the specified oscillations

Example 3. System of equations (4) is to be solved at
the following initial conditions: xg=0; Dxy=0.25; yo=-0.2;
Dyy=0. That is, for a point, which is located along the Oy axis,
and which was set into motion by the pulse of magnitude
0.25 conditional units.

Fig. 7 shows the motion trajectory of a point with coor-
dinates X(¢), Y(¢) over time T=35. Fig. 8 shows the deviation
charts of a load for respective coordinates.

Fig. 9 shows the charts of potential energies for oscil-
lations along respective coordinates, as well as the chart of
addition that generates interaction between the specified
oscillations.

Note that when the choise of the parameters for a swin-
ging spring is arbitrary, the motion trajectory of its load
might not obey any law. A motion trajectory could even fill
some area in a plane. Next, we shall consider the technique
for finding specific periodic motion trajectories of a load. In
this case, the sequence of observations is as follows.
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Fig. 8. Deviation charts of a load:
a — for coordinate X; b — for coordinate Y
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Fig. 9. Charts of potential energies for:
a — oscillations along coordinate X; b — oscillations along
coordinate Y; ¢ — addition that generates interaction
between the specified oscillations

At the first stage, we define, for the chosen type of
resonance U®, =, by using the program developed, the
values for parameters m, &, and k, which could ensure a given
resonance. Let a point load have coordinates (Xo, Yp). Then
the criterion for the existence of resonance is based on the
representation of two charts of functions X(¢) and Y(¢) that
describe the distance of the point load to the correspond-
ing coordinate axes. The plotted charts should possess the
following pattern: maximum values for one chart should be
achieved at minimum values for another chart.

At the second stage, we select one of the parameters (for
example, Yj or DY)) as a variable magnitude. Next, we build,
in the form of computer animation [1, 2], the set of a load
motion trajectories dependent on parameter Y. The result is
the selected values for parameter Y, which correspond to the
periodic motion trajectories of a swinging spring load, shown
on the corresponding frames in the animation.



4. 2. The set of motion trajectories of a swinging spring
load for the resonance of oscillations of the type 2:1

When constructing patterns of a swinging spring tra-
jectory, we shall employ papers [1, 2]. Intermediate results
shall be omitted; only the obtained results are shown. The
motion trajectory of a swinging spring load along the vertical
plane Ouxy is to be determined form the system of differential
equations (15) depending on the mass of a load m, the origi-
nal length of a spring under a no-load state 4, the rigidity of
a spring &, and the initial conditions for oscillation initiation.
The full length of a spring is denoted via L.

It is believed that for all the problems the main condition
for the idealization of a load motion holds: the energy dissi-
pation process is slow compared to the characteristic scale
of time (that is, an oscillatory system is conservative).

Note that ®, =./k/m denotes the frequency of longi-
tudinal oscillations of a point on a non-deviated spring, and
®, =+/g/h indicates the frequency of lateral oscillations of
a point along the axis of the spring as a mathematical pen-
dulum (g=9.81).

The set of trajectories is built under the condition for
a change in the initial values x,, Dxy, yo, Dy for the posi-
tion of a point onto plane Oxy. Hereafter, a system of dif-
ferential equations (15) is to be solved numerically using
the method of Runge-Kutta. The charts are built based on
1,500 derived points.

Select the values for a swinging spring’s parameters:
m=1.91; h=0.5; k=150: L=1.5. Then o, / o, =2. That is, the
condition for resonance of the type 2:1 is satisfied.

Case 1. Assume x0=0.6; Dx0=0; Dy0=0 and the pa-
rameter y0 changes within 0.1<y0<0.6. Fig. 10 shows the
shape of the point’s deviations charts from the respective
axes for y0=0.6. In the case of randomly selected parame-
ters, a swinging spring load’s trajectory could fill some area
in the plane. Choosing a value for the parameter y0 could
help for the trajectory to take the form of a periodic curve.
The choice of y0 affects the ratio of amplitudes in deviation
charts. Fig. 11 shows the found variants of solutions when
the motion trajectory of a swinging spring load is periodic.
In paper [31], this is illustrated by using the developed com-
puter animation.
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Fig. 10. Charts of the point’s deviation from respective axes
for y0=0.6 (case 1)
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Fig. 11. Variants for the periodic trajectories of a swinging
spring load’s motion for case 1: a — y0=0.6; b — y0=0.5;
c— y0=0.39

Case 2. For comparison, we give a solution for parame-
ters x0=0.1; Dx0=0; Dy0=0, and the parameter y0 changes
within 0.1<y0<0.6. Fig. 12 shows the shape of deviation
charts of a point for respective points for y0=0.6. Fig. 13
shows the variants of solutions when the motion trajectory
of a swinging spring load is periodic.
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Fig. 12. Charts of the point’s deviation from respective axes
for y0=0.6 (case 2)
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Fig. 13. Variants for the periodic trajectories of a swinging
spring load’s motion for case 2: a — y0=0.6; b — y0=0.52;
c— y0=0.445

Case 3. Assume a variable magnitude is the initial velo-
city along the axis Oy, which changes within 0.1<Dy0<6.
We give a solution for parameters x0=1; Dx0=0; y0=0.
Fig. 14 shows the shape of charts of the point’s deviation
from respective axes for Dy0=4.112. Fig. 15 shows the vari-
ants of solutions when the motion trajectory of a swinging
spring load is periodic.
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Fig. 14. Charts of the point’s deviation from respective axes
for Dy0=4.112 (case 3)
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Fig. 15. Variants for the periodic motion trajectories
of a swinging spring load for case 3: a — Dy0=1.428;
b —Dy0=3.463; ¢ — Dy0=4.122

Case 4. Assume a variable magnitude is also the initial velo-
city along the axis Oy, which changes within 0.1<Dy0<6.



We give a solution for parameters x0=0.25; Dx0=0; y0=0.
Fig. 16 shows the shape of Charts of the point’s deviation
from respective axes for y0=4.17. Fig. 17 shows the variants
of solutions when the motion trajectory of a swinging spring
load is periodic.

Fig. 16. Charts of the point’s deviation from respective axes
for Dy0=4.17 (case 4)
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Fig. 17. Variants for the periodic motion trajectories
of a swinging spring load for case 4: ¢ — Dy0=3.139;
b — Dy0=3.935; ¢ — Dy0=4.525

Thus, the shape of the derived periodic trajectories can be
used to easily compare features of the same type of resonance.

4. 3. The set of motion trajectories of a swinging spring
load for the resonance of oscillations 7:3

The set of trajectories is built under the condition of
change in the initial values 20, Dx0, y0, Dy0 for the posi-
tion of a point in plane Oxy. Select the values for a swinging
spring’s parameters: m=0.28; h=0.1; k=150; g=9.81. Then
the frequency of vertical oscillations is:

o, =\/E=23.11;
m

and the frequency of horizontal oscillations is:

Oy =\/%=9.9.

Hence o, /o, =7/3. That is, the condition for resonance
of the type 7:3 will be satisfied.

Case 1. Assume x0=0.1; Dx0=0; Dy0=0; L=0.5, and
the parameter y0 changes within 0.2<y0<0.6. Fig. 18 shows
the shape of charts of the point’s deviation from respective
axes for y0=0.6. Fig. 19 shows the derived variants of solu-
tions when the motion trajectory of a swinging spring load
is periodic.

Case 2. Assume x0=1; Dx0=0; y0=0; L=1.3, and the
parameter Dy0 varies within 0.2<Dy0<6.5. Fig. 20 shows
the shape of charts of the point’s deviation from respective
axes for Dy0=6.5. Fig. 21 shows the derived variants of solu-
tions when the motion trajectory of a swinging spring load
is periodic.
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Fig. 18. Charts of the point’s deviation from respective axes
for y0=0.6 (case 1)
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Fig. 19. Variants for the periodic motion trajectories
of a swinging spring load for case 1: a — y0=0.516;
b— y0=0.426; c — y0=0.264
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Fig. 20. Charts of the point’s deviation from respective axes
for Dy0=6.5 (case 2)

Fig. 21. Variants for the periodic motion trajectories
of a swinging spring load for case 2: ¢ — Dy0=5.332;
b — Dy0=3.223; ¢ — Dy0=1.2431

Paper [8] argues on the feasibility of constructing the
motion trajectories of a load for resonance 7:3.

4. 4. The set of motion trajectories of a swinging spring
load for the resonance of oscillations 9:4

Select the values for a swinging spring’s parameters:
m=4.893; h=9; k=27; g=9.81. Then the frequency of vertical
oscillations is:

o, = \/% =2.35;

and the frequency of horizontal oscillations is:

Wy = \/%=1.04.

Hence o, /o, =9/4. That is, the condition for resonance
of the type 9:4 will be satisfied.



Case 1. Assume x0=0.2; Dx0=0; y0=0; L=5, and the
parameter Dy0 varies within 0.1<Dy0<1.5. Fig. 22 shows
the shape of deviation charts of a point from respective axes
for Dy0=1.42. Fig. 23 shows the derived variants of solu-
tions when the motion trajectory of a swinging spring load
is periodic.
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Fig. 22. Charts of the point’s deviation from respective axes
for Dy0=1.42 (case 1)
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Fig. 23. Variants for the periodic motion trajectories
of a swinging spring load for case 1: ¢ — Dy0=0.142;
b — Dy0=0.513; ¢ — Dy0=0.569

Case 2. Assume x0=0.1; Dx0=0; Dy0=0; L=5, and the
parameter y0 changes within 0.1<y0<1.52. Fig. 24 shows
the shape of charts of the point’s deviation from respective
axes for y0=0.52. Fig. 25 shows the derived variants of solu-
tions when the motion trajectory of a swinging spring load
is periodic.
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Fig. 24. Charts of the point’s deviation from respective axes
for y0=0.52 (case 2)

Fig. 25. Variants for the periodic motion trajectories
of a swinging spring load for case 2: a — y0=0.46;
b—y0=0.37; c— y0=0.27

Paper [8] argues on the feasibility of constructing the
motion trajectories of a load for resonance 9:4.

4. 5. The set of motion trajectories of a swinging spring
load for the resonance of oscillations 11:2

Select the values for a swinging spring’s parameters:
m=37.51; h=9; k=207, g=9.81. Then the frequency of verti-
cal oscillations is:

, =\/§:5.45

and the frequency of horizontal oscillations is:

o, = \/% =0.99.

Hence 0, /0, =11/2. That is, the condition for resonance
of the type 11:2 will be satisfied.

Case 1. Assume x0=0.1; Dx0=0; Dy0=0; L=5, and the
parameter y0 changes within 0.1<y0<0.52. Fig. 26 shows
the shape of charts of the point’s deviation from respective
axes for y0=0.52. Fig. 27 shows the derived variants of solu-
tions when the motion trajectory of a swinging spring load
is periodic.
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Fig. 26. Charts of the point’s deviation from respective axes
for y0=0.52 (case 1)
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Fig. 27. Variants for the periodic motion trajectories
of a swinging spring load for case 1: @ — y0=0.457;
b— y0=0.3898; v— y0=0.226

Case 2. Assume x0=0.1; Dx0=0; y0=0; L=5, and the
parameter Dy0 varies within 0.1<Dy0<1.65. Fig. 28 shows
the shape of charts of the point’s deviation from respective
axes for Dy0=1.65. Fig. 29 shows the derived variants of
solutions when the motion trajectory of a swinging spring
load is periodic.
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Fig. 28. Charts of the point’s deviation from respective axes
for Dy0=1.65 (case 2)
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Fig. 29. Variants for the periodic motion trajectories
of a swinging spring load for case 1: a — Dy0=1.0455;
b — Dy0=0.8285; ¢ — Dy0=0.2628

Note that the shape of the derived periodic trajectories
makes it possible to compare features of the same type of
resonance. Paper [8] argues on the feasibility of constructing
the motion trajectories of a load for resonance 11:2. The
website [31] hosts computer animations that illustrate the
obtained results.

5. Discussion of the geometrical modeling of resonance
of a swinging spring based on the construction
of the motion trajectory of its load

The idea of using swinging springs as a mechanical
model is expedient in order to analyze modern technolog-
ical processes as the dynamic systems. These systems may
consist of nonlinearly connected oscillatory components
that exchange energy. Oscillations of a swinging spring
should be considered in a combination with the geometric
component — the motion trajectory of its load. The result is
the possibility to characterize the resonance of oscillations
of a swinging spring using periodic trajectories, selected
from possible movements during oscillations of a swinging
spring load. Moreover, in order to synthesize a trajectory, it
is necessary to use not only the basic parameters for a swin-
ging spring, but also the parameters for the initial conditions
of oscillation initiation. After all, this case most effectively
demonstrates the angular swing of a swinging spring at the
expense of energy of this spring. The development of a ran-
dom transversal perturbation would proceed until reaching
a fixed value for the amplitude, because the reserves of energy
in a spring are exhaustive. Upon reaching such an amplitude,
during oscillations of a swinging spring there would again
occur the stretching (or compaction) of the spring.

Paper [32] reports a phenomenological technique to con-
struct the contour of a vertical cross-section of a liquid’s
surface in a tank that oscillates due to the movement of this
tank. The specified contours are called the Faraday waves.
The technique is based on the mechanical «pendulum»
analogy of the process of fluid oscillation. Specifically, the
Faraday waves are interpreted as the motion trajectories of
a mathematical pendulum’s load (not a spring), suspended
from a movable trolley. The authors considered the issues on
constructing the formulae that would approximately relate
the parameters for a liquid to the parameters for a pendulum
under the trolley. Based on this example, we shall consider the
following. We shall state the precondition for using the model
of a swinging spring as a hypothesis. To find a solution to the
considered class of problems, it is necessary, when stating it, to
define two (as an example) nonlinearly connected oscillatory
components that exchange energy. Next, one should deter-
mine the basic parameters for the system (that significantly
affect the solution), and match them against the parameters

for a swinging spring — its rigidity, the length under a no-load
state, and the mass of a load. As well as the parameters that
define the initial conditions for the oscillations of a swinging
spring — the initial angle of spring deviation and the speed of
its shift. Then the desired solution to the problem could be
related to the periodic motion trajectory of a swinging spring
load. And it is necessary to look for a trajectory of the smallest
length among the set of the periodic motion trajectories. It
is possible to compare the features of resonance trajectories
based on a condition for the density of pixels that make up
the image of a certain trajectory. According to the general
principle of «minimum energy», it is logical to assume that
it is the case with the shortest periodic trajectory (or rather,
with its one period) that might prove interesting in the course
of a particular implementation. The derived periodic motion
trajectory of a load can always be represented in a digital form
as the sequence of coordinates of the points that compose it.
Given the specified positions, it will be interesting to
investigate the nonlinearly connected systems the involve
interacting subsystems using examples of problems related to
engineering. An important role in the construction mechanics
belongs to the modified model of a swinging spring — a model
of the flexible thread. After all, the flexible thread is a kind
of spring that acts on stretching only. In a typical 2D model,
the flexible thread could simultaneously perform transverse
oscillations in its plane (similar to angular oscillations in
a swinging spring with a load) and pendulum oscillations
connecting support fixings (similar to vertical oscillations).
A field of the possible research could involve the wires of
high-voltage lines whose condition is affected by wind gusts.
At the ratio of frequencies of the specified oscillations of 1:2,
there is a loss of dynamic stability, followed by the transverse
oscillations of a thread, whose amplitude could reach rather
large values. Note that a possibility of the occurrence of such
phenomena must be considered when calculating various
structures for construction mechanics. For example, hanging
bridges, cable-beam systems, cable roads, various antenna for
rope system for maintaining facilities, flexible hoses, etc.
Difficulties in the advancement of research in this field
might be associated with an effort to determine the resonance
state while studying oscillations in a spatial swinging spring.

6. Conclusions

1. The phenomenon of the «flow» of energy between the
longitudinal and transverse oscillations of a swinging spring
is shown using the example with the following parameters:
m=0.35; k=150; h=0.1; L=0.5. Then:

o, = \/% =20702 o, = \/% =9.905,

hence it follows that the approximated resonance condition
wy/mx=2.09 is satisfied.

2. For a swinging spring with parameters m=1.91; 2=0.5;
k=150; L=1.5; x0=1.2; Dx0=0; Dy0=0 for the case of reso-
nance o, /0, = 2, we have found, by using the derived charts,
values y0=0.6; y0=0.5; y0=0.39, which correspond to the
periodic motion trajectories of a load.

3. For specific resonances of the types 7:3, 9:4, and 11:2,
by applying computerized animation, we have derived values
for the parameters of a swinging spring, which correspond to
the periodic trajectories of its load motion.



4. We have derived the values for parameters when b) 7:3 — m=0.2808; h=0.1; k=150; L=0.5; x0=0.2; y0=
the motion trajectory of a swinging spring load takes =0.516; Dx0=0; Dy0=0;

the form of periodic for the case of resonance, for exam- ¢) 9:4-m=4.893; h=9; k=27, L=5;x0=1;y0=0; Dx0=0;
ple, for: Dy0=0.142;
a) 2:1 —m=1.9113; h=0.5; k=150: L=1.5; x0=1.2; y0=0.5; d) 11:2 — m=37.5127; h=9; k=207; L=5; x0=0.1; y0=
Dx0=0; Dy0=0; =0.52; Dx0=0; Dy0=0.
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Bapabanuni smimyeaui moxcymv 3abesnenumu 3adanuil pisemd
pieHoMipHOCMI 3MIMYBAHHS, 8 MOMY UUCII KOMNOHEHMIE KOPMOGUX
dobasox. O0HaK NUMAHHA MeEOPEMUUIH020 MA eKCNEPUMEHMATILHOZ0
00TpYHMYBANNA KOHCMPYKUIHO-KiHeMamuuHUX napamempis 6apa-
oannux 3mimyeauie Hedocmamuvo Hayxoeo 0docaidxcene. Memoro
pobomu € nidsuuenns epexmuenocmi 6UPOOGHUUMBA KOPMOBUX CYMi-
wel WAAXOM 3a0e3neUenns ONMmMuUMaIvbHoi Kymoeoi weudxocmi odep-
manns 6apabannozo smimyeaya.

Jlna eusnauenmns padianvuoi weuoKocmi pyxy wacmku no Jonamui
bapabana 6ye euxopucmanuii po3e’a30x 001opionozo oudepenuyiiirno-
20 pienanns. Busnauenns uucnosozo 3navenns xkymoeoi weuoxocmi
peanizosano memoodom Komn’romeprnozo mooenrosanns. Illposedenns
eKCNepuUMEeHMANbHUX 00CTI0NHCEHb PIGHOMIPHOCMI nepepo3noodiay
KOpMOBUX KOMNOHEHMI8 Y CYyMiwi KoMOiKopmy 30ilcHIO8ANOCA 3a
00n0M02010 PO3POONEHO20 eKCnepuMeHmanviozo dapabaniozo 3mi-
wyeana. 3miumyeau CKAadascs 3 Kamepu, nNPAMOKYMHOL pamxu, onop-
Hoi pamu ma npusody. Kamepa 3mimyeanns mana 3aéanmaxcyeaiv-
HO-po36anmanicyeanvhe 6ikHO 3aKpume Kpuwkoro. Bcepeouni xamepu
no 6ciil ii 006xcuUMi i PIBHOMIPHO NO nepuMempy OYaU 6CMAHOBAEHOT
padianvii ronamxu.

Hocaiou npogoounucs i3 euxopucmanHam dapadaninozo 3miuy-
eaua i3 padiycom Gapabana 0,17 m, axuii mae padianvii nonam-
Ku wupunoro 25 Mm ma npu xoegiuyienmi 3anosnenns xamepu 0,5.
Bcmanosaeno, wo dapabannuii 3smiumyeay 3abde3nenye maxcumaivie
PO3CII08AHHA MACMOUOK MAMeEPiany no noeepxHi podo1ozo ceemenmy
npu kymosii weuoxocmi odepmanns 6apadany 9,69 pad/c.

Y pesynvmami excnepumenmanvhux 00CaioIHceHb 6CMAHOBIEHO,
wo npu wacmomi obepmanns 6apadana naéopamopnoi ycmanoexu
9,42 pad/c pienomipnicmv cymimxu cmanosumo 92,5-93 %, wo 6io-
nogidae iCHYOUUM 300MEXHIMHUM BUMO2AM O]l 6CIX 6UDI8 KOMOIKOp-
Mie. ITpu ybomy Mmaxcumanvre i0XULEHHS MEOPEMUHUX MA eKCne-
PUMEHMATLHUX 0aHUX CMano8uo 6ias 9 %. Ompumani pe3yromamu
datomv 3M02Yy CMBEPOIHCYEAMU NPO MONCUGICMb BUSHAMEHHS HUCTLO-
6020 3HAUEHHA KYMOBOT WEUOKOCME 6APAdAHHUX 3MIUWYBAYIE 3anPONo-
HOBAHUM MEMOOOM KOMN IOMEPHO20 MOOENI08AHHS

Kmouosi caosa: nonamxa, padianvia weudxicmo, xoediuicnm
3aN06HEHHS, HAC IMIUYBANHIA, KOPMOBI 000a8KU, KOHMPOTLHUUL KOM-

nonenm, cymiw, paoiyc 6apadana
a o

1. Introduction

Among animal feed, a leading role belongs to mixed fod-
der, which is a concentrated source of nutrients and a means
to balance rations in accordance with standards of animal
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nutrition. Over recent time, production of mixed fodder is
moved from specialized mixed fodder factories directly to ag-
ricultural manufacturing. Engineers designed and produced
asignificant number of mixed fodder units whose operation is
based on using own grain raw materials and the commercially




