| =,

Po3pobaeno nioxio xepoearnoz0 0HMON02i€10 3ACMOCY8AHHA CMU-
i 6 indcenepii npoepamnozo 3abesneuenns. Cymuicmo nioxo-
0y noaszac y UKOPUCMAHHI OHMOJI02I] He MinvKu 015 npedcmas-
JIeHHs CMUig, HO MAK0JHC 01 KOHMPOJI0 3ACMOCYBAHHA CMUNIG
nio uac cmeopenHs i CYnpoBooNCeHH NPOPAMHO20 3abe3neuenns.
Ipu yvomy, 0ns npedcmasienns MU0 CMEOPIOEMBCA 6i0N06I0-
HA OHMOJI02iA Ma 3acO0U NIOMpUMKU PO3POOHUKA, a 0N KOHMPO-
J110 3aCMOCYBAHHI CIMUNIO 8 POHOUUX NPodyKmax Pasz HCUMmeso20
YUKILY NPopamnozo 3abesneuenns cmeopioomvcs 3acobu (puso-
Hepu) Ha 0CHOBL OHMONL02IMHOT 0a3U 3HAHL. 3a NPEICMABNEHHAM Y
deckpunmueniil n02ixi 6a3a 3nanv micmumov 06i CKAA0061 — mepMmi-
nonoeziuny (TBox) ma paxmuuny (ABox). Ilepwma cxnadosa cmeo-
proemocs 3a30anezidv, WAAXOM GUKOHAHHA O0OMEHHOZ20 AHANI3Y.
Zlpyea cxanadoea cmeopioemvcs nid wac ananizy npeocmasieHHs:
610106101020 P0601020 NPodyKmMyY.

3 memoro munizauyii, 6 Konmexcmi nioxody, w0 pospoodieno,
CMEopeHo WabioHU CMUI0 oHmoN02ii A0pa inxcenepii npozpam-
H020 3a0e3nevenns, WAAXOM AHANI3Y NOHAMMS CMULIO 6 PIZHUX
domenax. Chopmynvoeani 0CHOBHI XAPAKMEPUCMUKYU CMUAI0 K
domenne He3ANEINHCHO20 NOHAMMIL, KL NPe0CMasieHo 6 WadIoHaX.
IIpu yvomy, 0 obpanns xinvkocmi wadaonis, WO HeOOXIONT 0N
npedcmagnenns cmuno, 3acmocogano nammepn Work Product
Pattern Application 3 Unified Foundational Ontology. Ilammepn
onucye 0ii, w0 Moacyms icnysamu 6i0HOCHO CMUNIO POOOH020 NPO-
oyxmy (Work product).

Pozeasanymo npuxnad peanizauii nioxooy, wasxom 00caioxcen-
Hsl 3anpononoeanozo memoody, Kepoeanozo OHMOJI02i€I0 3ACmO-
CY8anns CMua0 Npopamyeanns 6 indcenepii npopammnozo
3abes3nevenns ma apximexmypu 3acody, wo iozo peanizye. 3
3acmocyeannam Protege noxazamno nooyooey onmonoezii cmuns
npoepamyeanns i acucmyeanns npozpamicmy. Pospooneno i peani-
3068an0 apximexmypy 3acody KoHmpoalo 3acMoCY8aHHs CMULIO
6 pobouomy npodyxmi pasu KoHcmpyroeanus — mexcmi npozpa-
Mmu. Ocnosy apximexmypu ckaadae 6asa 3Hanv NPo 6i0N0GIOHUU
cmunw. Tepminonoziuna cxaadosa 6asu snanv micmumo inpopma-
Yit0 6I0HOCHO MO8 i CMUJIIO NPOPAMYBAHHS i CMEOPIOEMBCA 343~
daneziov po3pobnuxom onmonozii. Daxmuuna cxkaraooea cmeo-
PIOEMBCA PUOHEPOM O KONCHO20 NPedCcmasieHHs podou020
npooyKmy — mexcmy npozpamu.

3acodu, wo cmeopeno 6 KoHmeKcmi 3anponoHo8anozo nioxody,
asmomamu3yoms npouecu, AKi Maomov Micye nid uac 3acmocyean-
HsL Cmustié 8 podouux npodyxmax has HUMmee020 YUKY npozpam-
HO20 3a0e3neuenns

Kniouoei crosa: inscenepis npozpamnozo 3adesnevenns, wadion
CMus, O0HMOJ02is1, 0eCKPUNMUBHA N02IKA, CMUTL NPOPAMYBAHHS

u] =,

Received date 04.07.2019
Accepted date 25.07.2019
Published date 23.08.2019

UDC 004.415.2(043.3)
DOI: 10.15587,/1729-4061.2019.175665

DEVELOPMENT OF
AN APPROACHTO
USING A STYLE
IN SOFTWARE
ENGINEERING

N. Sydorov

Doctor of Technical Sciences, Professor,
Head of Department®

E-mail: nyksydorov@gmail.com

N. Sydorova

PhD, Associate Professor*

E-mail: nika.sidorova@gmail.com

E. Sydorov

PhD, Associate Professor,

Senior Principal Software Engineer
P&S Integrated Media Enterprise

Avid Development GmbH
Paul-Heyse-Stralle, 29,

Miinchen, Germany, 80336

E-mail: Eugen.sidorov@live.com

O. Cholyshkina

PhD, Dean**

E-mail: greenhelga5@gmail.com

I. Batsurovska

Doctor of Pedagogical Sciences,
Associate Professor

Department of Information Security**
E-mail: batsurovska_ilona@outlook.com
**|nterregional Academy

of Personnel Management

Frometivska str., 2, Kyiv, Ukraine, 03039
*Department of Computer and
Information Technologies**

Copyright © 2019, N. Sydorov, N. Sydorova, E. Sydorov, O. Cholyshkina, I. Batsurovska.

This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by,/4.0)

1. Introduction

To date, methods and tools have become widely common
in creating and maintaining reusable software products. The
application of these methods and tools requires the program-
mer (software developer) to read, analyse and understand
a significant number of work product representations of
various phases of the lifecycle. Reusability is now largely ex-
pected from the specifications of the requirements as well as
derivative texts and documentation. Therefore, it is primar-

ily essential for software to be clear. The developer activity
will be more efficient, the software will be clearer, and the
programme development and maintenance will be cheaper
when styles (standards) are applied while creating software
to make the work products of different phases of the lifecycle
understandable.

The use of a style in software engineering has tradition-
ally been associated with construction, but today, due to the
aforementioned circumstances, styles should be applied to
all other software lifecycle processes. This is required by the

special nature of software creation and maintenance pro-
cesses, namely collective development and reuse. Applying a
style means improving the quality and efficiency of software
creation and maintenance. Therefore, the use of a style is
very important, but it involves additional spending while
solving the problems of learning the style description and
adhering to it when creating work products of the lifecycle
phases. These tasks are virtually unsolved except for indi-
vidual construction phase processes.

A style description is a representation of the knowledge
of a style, and it depends on the form of that representation,
in particular the convenience of learning the style, the effec-
tiveness of the appropriate means of its observance, and the
ability to apply the style in different phases of the software
lifecycle. It is proposed to use ontologies as a form of repre-
senting style knowledge, regardless of the lifecycle phase, to
solve the problems of studying the description of a style and
adherence to it when creating software products.

2. Literature review and problem statement

The notion of style has historically evolved in two sci-
entific disciplines, namely philology and art. Nevertheless,
the notion of style is now widely used and researched. In
general, in terms of a style as a domain-independent concept,
style is defined as a means of expressing an ideology or idea
in a human activity [1]. The literature review shows [2] that
there is no definition of style in the fields of human activity
that could be used in software engineering. However, draw-
ing on the main studies in these fields, the authors formulate
general provisions that are the basis for developing such a
concept of style. According to the literature analysis [2],
there are three characteristics of styles: properties, tools,
and factors. The properties of a style include the following:
unity, ideology, task (creativity), emergence-disintegration,
and value (aesthetic); the style tools presuppose media and
elements as well as categories. A style as a complex system of
elements arises under the influence of factors such as histor-
ical, social, stylistic, and style forming. Engineering methods
for designing advanced software and lifecycle models based
on component development and reuse have now become
widespread [3]. Besides, software development also entails
agile methodologies (such as extreme programming) [4],
obfuscation [5] and egoless programming [6].

In this connection, tasks are posed to be related not
only to reading the texts of software written by different
programmers, in different programming languages and at
different times but also representations of other work prod-
ucts created in the same way. It is known that the nature of
representations is influenced by decisions made about a work
product, such as architecture, algorithm, and programming
language. In addition, the nature of the presentations is af-
fected by the ideological, cultural and gender characteristics
of the developer and the time period in which the software
is created [7, 8]. Two documents are considered by the de-
veloper when applying a style — a description of the style
and presentation of the work product in which the style is
applied. Therefore, there are two processes, namely studying
the description of an appropriate style and controlling the
use of the style in the representation of the work product.
The style description consists of rules and restrictions ad-
opted to represent a particular work product. The impact
of both processes on the efficiency and cost of development

requires their automation, which is missing today. Of partic-
ular importance is the form of providing knowledge about
both the style and the representation of the work product.
This form can be an ontology. In [9], the results of ontology
applications in software engineering are presented. Soft-
ware engineering work products and software products are
knowledge-oriented and are the result of knowledge-orient-
ed actions.

Therefore, knowledge is a major component of software
engineering, and forms of representation, methods, and tools
for processing and applying knowledge play a significant role
in software development [9]. Ontologies have been shown to
be an effective means of representing the diverse knowledge
that is used in software creation and maintenance processes.
Today, ontologies are the best means of presenting and pro-
cessing software engineering knowledge [1]. However, the
question of using an ontology to solve style application prob-
lems in all phases of the software lifecycle remains unsolved,
which is a consequence of traditional style application only
in the coding phase and partly in the design phase when
knowledge of the programming style (coding standard)
is provided in the so-called configuration file in XML or
HTML. Therefore, there are several studies dedicated to the
use of ontology for applying a style in the design and coding
phases [2, 10, 11]. However, they are aimed at solving the
problem of presenting the appropriate style. The use of an on-
tology to control the use of a style in relevant work products
in these studies was not investigated. This is often the reason
for abandoning the style in lifecycle processes and leading to
loss of productivity. Thus, ontologies play an important role
in the implementation of stylesheets and, unlike common
stylesheets such as XML, ensure improved software develop-
ment and maintenance.

The sources of knowledge in software engineering are
three types of domains — application, implementation, and
problem [12]. In the process of building a domain ontology,
it is preferable to use categorization, which constitutes a hi-
erarchy or a network of ontologies, namely from the top-level
ontology to the ontology of use in the application domain.
There are also three approaches to building a domain ontol-
ogy [13, 14]. The above categorization and approach are ap-
plied to building the ontology of software engineering styles.
Building a top-level ontology is based on the use of existing,
so-called foundational or formal ontologies [15]. Such a use
is seen as a promising approach to building an ontology be-
cause it greatly accelerates the process of its construction.
Only the basic ontology can now be used for a style domain.
However, after building an ontology network for software
engineering styles that is partially implemented in the study,
applying the approach will ensure its effective development.

Given that there are many domains that can apply the
notion of style in software engineering, although the general
notion of style does not depend on the domain, it is advisable
to use pattern-based templates to build an ontology [15].
Therefore, using the Work Product Pattern Application
(WPPA) pattern of [16], which describes the Style artefact
actions existing with respect to the Work Product in the
case under consideration, style kernel ontology templates
were created. Thus, the templates were established for do-
main-independent style concepts and processes for creating
and applying the style. By reusing the style templates, it
will be possible to build a kernel ontology for many relevant
domains. Knowledge templates were introduced in [15]
by applying the notion of a software engineering design

template to denote a classified, parameterized <<kind>>
representation of knowledge. Templates were sug- Business_Area
gested to retain the best practices in knowledge
modelling. Later, in [17], a formal representation |l
of the ontology template was given as follows: . has_Style
T(p1, .y Pn) = Qr, here T(py, ..., py) is called the _)
head and it contains the designation of the tem- <<kind>> ! contains
plate T and a list of formal template parameters; Style
Qr is called the body and is a knowledge base. 1 has Attribut i
When applying a template, an instance of the ol1 ~ N <<dependents>
head is created as T(fi, ..., f»), which contains a Style_Standard
list of actual parameters (fy,..,[f,) whose val- <<dependent>> =
ues replace the notation of formal parameters Attributes static string StyleName ="SN';
(p1, ..., pp) in the template body for 1<i<n when
processing the instance denoted by T.
Thus, a style representation is a form of knowl-
edge of the agreed rules for creating a work prod- <<dependent>> <«<dependent>>
uct in the relevant aspect. Meanwhile, the tasks of Property <<dependent>> Means
using modern ontology representations to support Factors
professionals both in the study of a style and in E@cgﬁngghd:r{[?f"?'; stfic oring Socole =S static string Elements ="E'";
its application remain unsolved. In part, for the M:Estzgﬁi=|+.. staticstring Hystory ="H";
sole purpose of solving the task of representing a : staticetring Syl ="

style by an ontology, the design and construction

phases have been completed. The absence of stud-

ies investigating the use of an ontology to represent a style
in different phases of the lifecycle, as well as studies on im-
plementing ontology-driven style control tools, suggests that
research proposed by the authors of the use of ontology to
automate the execution of both processes is appropriate when
it is related to the use of a style in any phase of the lifecycle.

3. The aim and objectives of the study

The aim of the study is to solve the problems of applying
styles in the phases of the software lifecycle by using ontolo-
gy as a modern form of knowledge representation.

To achieve this aim, the following objectives were set
and done:

—to develop an approach to the application of a style
in the work products of the phases of the software lifecycle
through the use of an ontology;

— to create ontology templates for the presentation and
application of a style in the work products of the software
lifecycle phases in the context of the approach;

— to apply the style of programming in the work products
of the construction phase to investigate the approach by
implementing the ontology of style knowledge and the ontolo-
gy-driven style application when using the created templates.

4. An ontology-driven approach to the application of a
style in software engineering

Based on the WPPA pattern, the involvement of the
Style artefact in software engineering can be of three types.
First, the creation of a style; second, the application of the
style; and third, the change of the style. We will consider the
latter as a style creation. Thus, to build a kernel ontology in
the study, three kernel ontology templates were created by
applying the results of the style domain research and the
W PPA pattern. One template is intended to describe the no-
tion of style (Fig. 1), and the other two are aimed at describ-
ing the basic processes associated with the style in domains.

Fig. 1. An ontology of a style concept template

The templates are based on reusing the following stereo-
types of the basic ontology (ELDM [18]): Kind, Event, Cate-
gory, Dependent, and Associative. In addition, the concept of
Business Area was used to refer to the domain and the term
Party designated a social group or an individual. This explains
that Party has the stereotype Category [18]. The Style concept
is used to indicate a style in the template of the notion of style
(Fig. 1). With the term Style Standard, the style concept
template describes the style; in software engineering, it may
be standard. In the template there is an association of the com-
position type to one of the concepts, namely Style Standard
(Fig. 1). Individuals belonging to this concept are descriptions
of the style or modifications thereof. These descriptions are pre-
sented either verbally, in relevant standard guides, or formally,
for example in descriptive logic, when the appropriate processes
of a style application are automated. For each template, a body
was created, that is, an appropriate knowledge base, and formal
parameters were defined, and the values of the corresponding
actual parameters were determined to apply the templates in
the construction of the programming style ontology. For exam-
ple, the description of a style concept template would look like
this (using ALCQ logic, or rather ALCQIkey, because the con-
ceptual model is described in UML [19]). The template head is

TStyle(Business _Area, Style, SN, P, I, T, S, H, Y, E) ::
TBOXTSty[e,

where Business Area, Style, SN, P, I, T, S, H, Y, and F are
the list of formal parameters of the T'Style template, and the
template body TBoxrg. (knowledge base) is described by
the following TBox:

CN={Kind, Dependent, Business_Area, Style, Attributes,
Property, Factors, Means, Style Standard}, RN={has_Style,
has_Attributes, contains}, Business_Area & Kind,

Style = Kind, Attributes = Dependent, Style Standard
C Dependent, Property = Dependent, Factors = Dependent,
Means = Dependent, 3has_StyleT = Business_Area, TE V
has_Style. Style, Business Area = > 0 has_Style.Style, Style

C > 0 has_Style .Business _Area, 3has_AttributesT E Style,
T £V has_Attributes. Attributes, Style © <1 has_Attributes.
Attributes, Attributes ©=1 has_Attributes . Style, 3 containsT
C Style, T £V contains. Style _Standard, Style & >0 contains.
Style_Standard, Style Standard ==1 contains . Style, Prop-
erty E Attributes, Factors E Attributes, Means & Attributes,
Property © — Factors, Factors & — Means, Property & —

Means, Attributes = Property U Factors U
Means, Style_Standard ==1 StyleName.
string N 3AStyleName. {SN}, Property
C=1Principle.string T 3IPrinciple. {P},
Property ==1ldea.string N 3ldea. {1},
Property ==1Time.string N 3ATime. {T},

Factors E=1Sociale.string 1 3So-
ciale. {S}, Factors E=1Hystory.string T
IHystory. {H}, Factors E=1Style.string
n 3Style. {Y}, Means E=1Elements.
string N AElements. {E}

}

The same descriptions are created
for process templates. Using these de-
scriptions and the reasoner, the template
knowledge bases were tested for compat-
ibility. When a style ontology is created
for the kernel of the corresponding do-
main, then, by parameterizing the actual
parameter values from the domain, the
template body TBoxys;. is completed for
the corresponding Business Area. In this
case, the parameterization of the template
is performed in accordance with the con-
cept of style in the Business Area that is
being currently considered. The types of
values that formal parameters can take
are not specified at this time, because the
study has not considered the task of con-
structing template calculation software.
However, this task can be accomplished
by implementing a suitable macroproces-
sor for a language that will be used to de-
scribe knowledge (such as OWL or RDF).

To apply a style to any Business
Area, it must be created. Therefore, an
ontology template was developed for
the style creation process (Fig. 2).

By creating a style, we primarily
mean the process of determining the at-
tributes of the style notion for a specific
domain (for example, an individual of
the Business_Area concept), and second-
ly, the creation of a description (stan-
dard) of a style (an individual of the
Style Standard concept, Fig. 1) for the
individual of the Style concept (Fig. 3).
Details of the style creation process are
given in the corresponding individual
belonging to the Created Style Guide
concept (Fig.2). Thus, the above-de-
scribed TStyle template call was used to
describe the ontology template for the
style creation process. The created Busi-
ness_Area_Style (Fig.3) is used in the
construction of an artefact (an individual

of the Artefact concept) of the corresponding domain. Thus, the
object acquires the property of having the corresponding Style.
To describe the process of applying the style, a template of the
corresponding ontology is created (Fig. 3).

The description of the ontology template for the style

application process will look like this: UsingStyle(Busi-
ness_Area, Style) :: TBoxXysingsyie.-

<< category>>

has_Knowledge_in

1 is_ Part _of
<<kind>> :
Business_area
*
<<kind>>
Style
<<event>> L

Created_style

Party
1
1 uses
governs
1

is_Created_to

<< associative>
Created_Style_Guide

Fig. 2. An ontology template for the style creation process

has_Knowledge_in 1 1 is_Part_of
<<kind>>
. o
* Business_area
* *
<<event>>
Using_Business_
<<category> area_style <<kind>>
Party B Artifact
1
1 1
governs
acquire
1
uses
1 << associative>> 1
Style_Party_Using_guide

1 for

Business_area_style

<<kind>>

is_Created_According_to

Fig. 3. An ontology template for the style application process

Style and process templates will l

Ontology of style 1 ‘

[Ontology of style 2 |

] Ontology of style N

be used to build the ontology of the

kernel of any domain from the soft-
ware engineering ontology network

Ontology of software engineering core

(Fig. 4). Therefore, the domain style
in process templates is referred to as

Templates of the core ontology

Business Area Style.
Using kernel templates, we create

Basic universal ontology

a kernel style ontology for the Busi-
ness Area, with the Software_Engi-
neering concept in terms of the use of
a style in software engineering (Fig. 5).

In this case, for example, the values for the
corresponding parameters Property, Factors,
and Means of the TStyle style concept template
(Fig. 1) for the design domain can be used from
Table 1, which is based on [2].

In the ontology of the software engineering
core, in its part regarding the style creation pro-
cess (Fig. 6), the Party concept is considered as
consisting of Team and Person concepts, since a
style can be created by both a team and an indi-
vidual performer of the software creation process.

It is assumed that a style is created for the
relevant type of work product (the concept of
Work_Product_Style, Fig. 6), that is, the result of
any phase of the software lifecycle such as require-
ments, architecture, testing, and the programme
text. In this case, the ontology of the style of a
corresponding work product, for example, the style
of a programme, is created by applying the style
ontology and, in particular, the individual Style
Standard concept for the appropriate programming
language and a description of the desired TBox. Of
course, this creates an ontology of that part of the
work product that represents the concept of Work
Product _Style, which is described by the individual
concept of Style Standard (Fig. 2).

Part of the ontology of the software engineer-
ing kernel regarding the style application process
is presented in Fig. 7.

Fig. 4.

An ontology network

<<kind>>

Software_engineering

1
is_ Part_ of
*
<<kind>>
1
Software_engineering P
style
Contains
1
has_Atributes 1 «
<<dependent>> <<dependent>>
Attributes Style standard
I
<<dependent>> <<dependentss
Property <<dependent>> I\F;I
Factors eans

Fig. 5. Part of the kernel ontology regarding the concept of style for

software engineering

has_Knowledge_in is_Part_of
1 <<kind>> 1
" Software_ *
* engineering
<<category>> <<kind>>
Party Work_ product_
<<event>> style
Creating_work_
product_ style
1
<<kind>> <<kind>> 1
Team Person governs
1
:l <<associative>> 1
1 Style_ party_create_guide
uses 1

is_ Created_according_to

Fig. 6. Part of the core ontology as to creating a style

Epochs and characteristics of styles

Table 1

Characteristics
Epoch Property Factors Means
Term Idea The prln(élarillgcof 1mpor Historical Social Stylistic Elements
before structur- | 1951— - Techniques of running a A processor, A PIOSTAMMET, 1 1\ Jevel pro- | An operator
. Efficiency a programme but all is from .
al programming | 1975 programme operator scratch gramming GO TO
of structural | 1975— Higibili Techniques of program- A human pro- Severalbproglrlam) Structural A structur-
rogramming | 1990 Intelligibility ming grammer, pro- mers, but a is programming | al operator
P i gramme reader from scratch i
after structural | 1990— . Techniques of using A human A team O.t pro- Modula.r and
. Reusability . programme grammers; there | object-oriented | A module
programming | 1996 experience . . .
developer is experience programming
of software Creat.lon of 50 ft- Techniques of proven A software A team of pro- Empirical pro-
. . 1996 | ware in the given . . . grammers; there . Documents
engineering . software engineering engineer . gramming
conditions are requirements
has_Knowledge_in is_part_of code analysis in IDE, such as Net-
. Beans, Eclipse, Intelli] IDEA, Xcode,
<<kind>>
1 1 and Microsoft Visual Studio, which
Software
* . engineering * * check some rules of the use of a pro-
. gramming style. In such cases, knowl-
<<ca;egory>> <<kind>> edge of a programming style (coding
arty Work_product standard) is provided by a description
--------------------------------------- Usin <T$Ifl?t>r>o duct in a so-called configuration file in
g styﬂap : 1 XML or HTML, but there are tools
- I that present knowledge in a different
"""""""""""""""""""" : form, such as DLL. Of course, such a
<<kind>> <<kind>> 111 : aquire presentation is inconvenient in terms
Team Person governs | of setting the tool for the appropriate
1 : coding standard. The study, based
| on the approach under consideration,
\—|——‘* <<associative>> 1! proposed a method of ontology-driven
! Style party using guide | programming styles [20].
uses IiS_ created_according_to Using the entered templates, let us
| build an ontology of creating a style
1 : in a domain (Fig. 8) and an ontology
use I of using a programming style (Fig. 9).
1 : A key function in these processes
I is performed by the description of the
<<kind>> : programming language style, which
]

Work_product_style

Fig. 7. Part of the core ontology as to the style application process

Part of the ontology of the software engineering core
(Fig. 7) describes that the work product style is used when
creating the work product (programme, architecture, or doc-
ument). That is, the work product is created according to a
style, by directly using the style description that was created
(the Work_Product Style concept). The work product (the
Work_Product concept) acquires the properties of having a
work product style (the Work_Product_Style concept).

5. Implementation of the approach by using
a programming style

Table 1 shows that the concept of a programming style and
its application in software engineering began to take shape
as early as the 1970s. Today, there are known tools of static

is usually represented by a coding
standard (the concept of Standard in
the description of the ontology). The
coding standard is represented by a
set of rules that govern the style of
the programming language.

Thus, the programmer, when coding a programme, uses a
programming style ontology, both to study the style and to
check the style compliance in the programme. Therefore, two
tools are needed — one to create an appropriate ontology and
to support the programmer during coding [21] and the other
to control the application of the programming style in the
programme’s derivative text (Fig. 10) [22].

Applying Protégé, a style analyst adjusts the ontology
to the appropriate programming style and creates the TBox.
After the set-up, the programmer learns the programming
style with the help of Protégé while using the ontology. The
second tool in terms of performing functions is similar to the
reasoner. In terms of descriptive logic, the reasoner verifies
the ontology compatibility (Fig. 11). In the tool created, this
feature is added to the Style Errors feature.

Has-Knowledge-in

1 <<kind>> Is-part-of %
,7 Coding phase]
* * 1
<<kind>>
<<category>> Programming
Party language
<«<event> | [
Creating work N
products style
-- <<kind>> Is-part-of
<<kind>> <<kind>> 1 Programming
Team Person Governs language style *
1
:l <<associative>> 1 1
Style party create guide
Is- created-according-to
uses
1
<<category>>
Style
Fig. 8. An ontology of creating a programming style
Has-Knowledge-in Is-part-of
1 <<kind>> 1
,7 Coding phase <>—‘
* * *
<<kind>> aquire <<category>> <<kind>>
Party style [—<@ Party Program
_______________________________________ <<event>>
Using work product |
style : 1 1
--------------------------------------- : aquire
<«<kind>> <«<kind>> | aquire
Team Person Governs | 1
|
|
| <<kind>>
|_|——|* <<associative>> 1! Program style
1 Style party using guide [——————
uses |
| Is- created-according-to
|
1 |
Use :
|
1 |
|
|
<<kind>> |
Programming __ _!

language style

Fig. 9. An ontology of using a programming style

Protégé is used to create the TBox, a part of an ontology
that contains terms that describe a programming style. As-
sertions about a target code (ABox) written by a program-
mer are created by the appropriate part of the tool called
a reasoner, as it provides the appropriate service using a
knowledge base (TBox and ABox). The service includes,
first, verification of the ontology compatibility (a direct
function of the reasoner), and second, the search for sty-

listic errors in the programme’s target text. It is because of
the necessity to implement the second function that the use
of the ‘regular’ reasoner becomes impossible. Therefore, the
study has produced a reasoner that performs this function —
a Style Ontology Reasoner (SOReasoner). In addition, this
reasoner provides an ontology template for standard rules
for flexible construction of ontologies of different styles and
programming languages.

Style Artifacts Use Protece Creating
(Documentation) &
Assist /
% Checking
Task

Requirements

Programmer

Fig. 10. A flowchart of using the tools

Ontology —> Consistency

Style Ontology

Reasoner

Reasoner | Inconsistency (Style Errors)
Style Knowledge Base
TBox ABox

Terminology Axioms Individual assertions

Conventions

Fig. 11. A base of the programming style knowledge

",

Sourse Code

In order to develop the appropriate soft-
ware, it is necessary to create requirements
for the SOReasoner, which must do the fol-
lowing:

— create a template of the ontology style
rules and ensure its flexible structure;

— scan to process the ontology to create a
set of rules of a programming style;

— check the target code (for example, in
the Java language) and verify it for compli-
ance with the rules of the programming style;

— provide a clear and detailed feedback to
the programmer.

The following SOReasoner structure was
chosen to satisfy the aforementioned func-
tional requirements (Fig. 12).

OWL API Java Parser API |
<<usfes >> << usfes >>
‘ OWLParser ‘ ‘ SourceCodeParser ‘
[
| SOReasoner |

Fig. 12. A chart for the SOReasoner

Fig. 13 shows a sequence diagram of the representing the
full functionality of the SOReasoner.

Styl
Programmer Anayl;s " Protege SOReasoner OWLParser SourceCodeParser
| | Get Template Ontology | - Get Ontology | !
I I g d I
I U I Create I
| | < | Return Ontology Return Ontology P Ontology |
| r~ -~~~ —7—77— 5 I NG T |
| | | | |
: Adding RUIESJ Add Rules to Ontology : : : :
: [Convention] > : } :
: : | :
| | | |
| | | |
| Pass Ontology ~_ Return Ontology | ! | !
s ———————— L with Rules ‘ | | |
| I | Get Rules | |
| Check Source Code | | from Ontology | |
: : Parse :
| | |
\ [Return Rules Ontology I
I I Ke—mm ===~ I
| | | |
| | |
i : Check Source Code :
! : ! d Parse
| | |
I I I Return Result Source
| | < ,_ eturn Resuts | Code
! Show Results ! ! !
S LRI SRR 0 | |
. | | | | |

6. The check-up of implementing the approach while
using a programming style

Two types of tests were performed to verify the results
of the suggested method on the basis of the described ap-
proach. First, the workability of the method and means
was investigated, and second, the effectiveness of the tools
developed was tested against the manual use of coding
standards.

The results of the first type of research are discussed
below. To test the performance of the method and the
developed SOReasoner, an example of its application is
considered for the use and control of the naming rules of
Java Convention. As it has been noted, an ontology rule
template was created and all rules describing the standards
of naming were added. Then samples of the target code
were verified and feedback was obtained through both the
SOReasoner interface and the target code comments. In
the Protégé interface, the corresponding structures can be
visualized as OntoGraf (Fig. 14).

owl: Thing
— 7\“\

~

RulePart

—

Once created, the ontology and the derived Java text
are transmitted to the SOReasoner (Fig. 15).

As aresult of text processing, the SOReasoner produces
an error log (Fig. 16).

The log shows the percentage of correct identifiers and
erroneous spots in the text, dividing them into groups by
the rule types. Error messages are also posted in the target
text in the form of comments.

Thus, the study performed to test using the program-
ming style shows the correctness of the proposed approach
and method based on it as well as the efficiency of the ap-
propriate tools implemented. The use of ontology instead
of the broadly used so-called XML or HTML configuration
files ensures greater efficiency of the created tools.

In order to test the effectiveness of the tools by the second
type of research, an experiment was conducted. The Phillips
Healthcare — C# coding standard was selected for this exper-
iment, and a model with appropriate metrics was created to
investigate the results using the Goal Question Metric (GQM)
method [23]. The following was done for the experiment:

Anyldentifier
Rule

~—_

RuleForCode

Classldentifier

Rule
7" _{ @ Constantldenti

v g P - | fierRule
@ [elnterfaceldenti
~['® staChar | L i

r > B E ierRule

NamlngRulePartL:\x | ®NamingRule|

—~— 4 [@ MethodIdenti

ZK~\\ \\\: AL . fierRule

B N ~

AcceptableChar} m\\ T

N fierRule

AN
~

Variableldenti
fierRule

Fig. 14. An OntoGraf presentation of the rules of naming in Protégé

public class SimpleClass{
public int count;

//Problems with idetifier ¢ value’ [Start char, Acceptable Chars]

private int value;

//Problems with idetifier ‘Noun’ [Name type, Start Char]

public double Noun() {

double d - (doble)(count+_value)

return d;

}
}

Fig. 15. An example of a snippet of a derivative text before verification

Parse Log: 87.5% (7/8)
* Log from Identifiervisitor *

of identifiers is correct):

- [Variable] _value is BAD -> [Start Char, Acceptable Chars]
- [Method] Noun is BAD -> [Name Type, Start Char]

Fig. 16. A snippet of an error log from the SOReasoner

1. Two teams of programmers (5th year students) were
selected.

2. A task was set to maintain the style of programming
(in terms of names), which was the same for everyone.

3. One group of the programmers was provided with a
paper description of the Philips Healthcare Coding Stan-
dards for reference.

4. The second group of the programmers was provided
with the Protégé tool and the ontology developed by the
approach.

5. Both groups performed the task according to the
created GQM model.

The results of the experiment show that the efforts spent
on applying the standard (on studying the standard, coding,
error identification, and defect correction) were generally
reduced when using the ontology and the developed tool.
However, the slight decrease in the efforts spent on the
standard coding in verbal representation, as opposed to the
efforts spent on standard coding when using the tool prob-
ably indicates that some time was spent on using the tool’s
interface and a small number of rules required to solve the
task. Of course, the efficiency will be higher when specialists
accumulate demand for the use of the tool, and the number of
standard rules to be used will increase.

7. Discussion of the results of the ontology-driven
approach to the use of styles in software engineering

The developed approach provides the style application
to work products of the software lifecycle phases by using
a single ontology representation tool. This demonstrates
the possibility of creating a unified perspective on both the
knowledge base design tools that describe the work product
styles of the different phases and the specialist support tools
for applying styles.

The proposed use of style templates and their application
processes in the context of an ontology network shortens the
time to create it. In particular, this was confirmed during the
implementation of the ontology for the application of a style
in the design phase to test the approach using an example of
a programming style.

Automating the style control process by creating tools
based on descriptive logic, unlike the known tools based on
XML and HTML, simplifies the mechanism of customization

controls, which in turn makes it possible to automate the
processes of applying style in the work products of different
phases of the software lifecycle.

To continue the implementation of the proposed ap-
proach, research is also performed on applying the ontology
of style use in architectural design and documentation of
software as well as in reverse engineering of software [24].
In general, the goal is to create a unified approach for all do-
mains related to software creation and maintenance.

It is clear that the use of the approach in phases other
than design and construction, on the one hand, requires
preliminary research on the concept of style and the pro-
cesses of applying it in these phases. For example, this
concerns requirements specification, testing, or domain
analysis. On the other hand, the problem of using non-ver-
bal representation, such as UML graphics, of work products
has not been investigated. This, however, is not an obstacle
to using the approach.

8. Conclusion

1. An ontology-driven approach to the application of styles
in software engineering has been suggested in the study. The
essence of the approach is to use an ontology to represent styles
when creating and maintaining work products of the phases of
the software lifecycle. In the context of the approach, it is pro-
posed to use the ontology network and its construction by ap-
plying style ontology templates. The use of ontology paves the
way for the automation of style application processes in work
products, which promotes the use of styles in software lifecycle
processes, the creation of comprehensible work products, and it
consequently increases the efficiency of professionals.

2. The Work Product Pattern Application pattern was
applied to determine the number and nature of the style
ontology templates for their use in software engineering
ontology networks. The established templates of the network
core style ontology were the concepts of style and processes
of creating and applying a style. The use of the templates
provides the construction of a core ontology for the network
domains of the software engineering ontology.

3. The approach was tested on the example of a program-
ming style for work products of the construction phase through
the implementation of the ontology of style knowledge and the
tools of the ontology-driven application of the style.

References

Sidorov, N. (2006). Software stylistic. Problems of programming, 2-3, 245-254.
2. Sidorova, N. (2015). Programming style ontologies and automated reasoning — systematic mapping study. Software Engineering,

3, 38—44.

3. Boehm, B. (2007). Software Engineering. John Wiley & Sons, 832.
. Hazzan, O., Dubinsky, Y. (2009). Agile Software Engineering. Springer. doi: https://doi.org/10.1007 /978-1-84800-198-5
5. Behera, C. K., Bhaskari, D. L. (2015). Different Obfuscation Techniques for Code Protection. Procedia Computer Science, 70,

757-763. doi: https://doi.org/10.1016/j.procs.2015.10.114

. Weinberg, G. (1971). The Psychology of Computer Programming. Van Nostrand Reinhold, 276.
7. Raijlich, V., Wilde, N., Buckellew, M., Page, H. (2001). Software cultures and evolution. Computer, 34 (9), 24-28. doi: https://doi.org/

10.1109/2.947084

8. Holovatyi, M. (2014). Multiculturalism as a means of nations and countries interethnic unity achieving. Economic Annals-XXI,

11-12, 15-18.

9. Calero, C, Ruiz, F, Piattini, M. (Eds.) (2006). Ontologies for Software Engineering and Software Technology. Berlin, 343. doi:

https://doi.org/10.1007 /3-540-34518-3

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.
20.
21.
22.

23.
24.

Pahl, C., Giesecke, S., Hasselbring, W. (2009). Ontology-based modelling of architectural styles. Information and Software
Technology, 51 (12), 1739—1749. doi: https://doi.org/10.1016 /j.infsof.2009.06.001

Abuhassan, 1., AlMashaykhi, A. (2012). Domain Ontology for Programming Languages. Journal of Computations & Modelling,
2 (4), 75-91.

Sydorov, N. A., Sydorova, N. N., Mendzebryovsky, I. B. (2018). Software engineering ontologies categorization. Problems in
Programming, 1, 55—64. doi: https://doi.org/10.15407 /pp2018.01.055

Suérez-Figueroa, M. C., Gémez-Pérez, A., Motta, E., Gangemi, A. (Eds.) (2012). Ontology Engineering in a Networked World.
Berlin, 446. doi: https://doi.org/10.1007 /978-3-642-24794-1

Ghosh, M. E., Naja, H., Abdulrab, H., Khalil, M. (2016). Towards a Middle-out Approach for Building Legal Domain Reference
Ontology. International Journal of Knowledge Engineering, 2 (3), 109—114. doi: https://doi.org/10.18178/ijke.2016.2.3.063
Clark, P, Thompson, J., Porter, B. (2000). Knowledge patterns. KR, 591-600.

Guizzardi, G., Wagner, G., Almeida, J. P. A., Guizzardi, R. S. S. (2015). Towards ontological foundations for conceptual modeling:
The unified foundational ontology (UFO) story. Applied Ontology, 10 (3-4), 259-271. doi: https://doi.org/10.3233/a0-150157
Skjeveland, M., Forssell, H., Kliwer, J., Lupp, D. (2017) Pattern-Based Ontology Design and Instantiation with Reasonable
Ontology Templates. Workshop on Ontology Design and Patterns (WODP2017), 15.

Department of Defense (2011). Data modelling guide (DMG) for an enterprise logical data model (ELDM). Version 2.3, USA, 184.
Calvanese, D. (2003). Description logic for conceptual data modelling in UML. ESSLLI, 23.

Sidorova, N. (2015). Ontology-Drived Method Using Programming Styles. Software Engineering, 2 (22), 19-28.

Sidorova, N. (2015). Ontology-Driven Programming Style Assistant. Software Engineering, 2 (24), 10—19.

Sidorov, N., Sidorova, N., Pirog, A. (2017). Ontology-driven tool for utilizing programming styles. Proceedings of the National
Aviation University, 71 (2), 84-92. doi: https://doi.org/10.18372,/2306-1472.71.11751

Basili, V,, Caldiera, G. (1994). Goal Question Metric Paradigm. Maryland, 60.

Sidorov, N., Chomenko, V., Sidorov, E. (2008). Reengineering of the Legacy Software: the air simulator case study. Proceedings of
the third world Congress “Aviation in the XXI-ST century, Safety in a aviation and space technology”, 2, 33.88.—33.96.

