
Information technology

41

1. Introduction

To date, methods and tools have become widely common
in creating and maintaining reusable software products. The
application of these methods and tools requires the program-
mer (software developer) to read, analyse and understand
a significant number of work product representations of
various phases of the lifecycle. Reusability is now largely ex-
pected from the specifications of the requirements as well as
derivative texts and documentation. Therefore, it is primar-

ily essential for software to be clear. The developer activity
will be more efficient, the software will be clearer, and the
programme development and maintenance will be cheaper
when styles (standards) are applied while creating software
to make the work products of different phases of the lifecycle
understandable.

The use of a style in software engineering has tradition-
ally been associated with construction, but today, due to the
aforementioned circumstances, styles should be applied to
all other software lifecycle processes. This is required by the

DEVELOPMENT OF
AN APPROACH TO

USING A STYLE
IN SOFTWARE
ENGINEERING

N . S y d o r o v
Doctor	of	Technical	Sciences,	Professor,	

Head	of	Department*
E-mail:	nyksydorov@gmail.com

N . S y d o r o v a
PhD,	Associate	Professor*

E-mail:	nika.sidorova@gmail.com
E . S y d o r o v

PhD,	Associate	Professor,		
Senior	Principal	Software	Engineer

P&S	Integrated	Media	Enterprise
Avid	Development	GmbH

Paul-Heyse-Straße,	29,		
München,	Germany,	80336

E-mail:	Eugen.sidorov@live.com
O . C h o l y s h k i n a

PhD,	Dean**
E-mail:	greenhelga5@gmail.com

I . B a t s u r o v s k a
Doctor	of	Pedagogical	Sciences,	

Associate	Professor
Department	of	Information	Security**

E-mail:	batsurovska_ilona@outlook.com
**Interregional	Academy		

of	Personnel	Management
Frometivska	str.,	2,	Kyiv,	Ukraine,	03039

*Department	of	Computer	and	
Information	Technologies**

Розроблено пiдхiд керованого онтологiєю застосування сти-
лiв в iнженерiї програмного забезпечення. Сутнiсть пiдхо-
ду полягає у використаннi онтологiї не тiльки для представ-
лення стилiв, но також для контролю застосування стилiв
пiд час створення i супроводження програмного забезпечення.
При цьому, для представлення стилю створюється вiдповiд-
на онтологiя та засоби пiдтримки розробника, а для контро-
лю застосування стилю в робочих продуктах фаз життєвого
циклу програмного забезпечення створюються засоби (ризо-
нери) на основi онтологiчної бази знань. За представленням у
дескриптивнiй логiкi база знань мiстить двi складовi – термi-
нологiчну (TBox) та фактичну (ABox). Перша складова ство-
рюється заздалегiдь, шляхом виконання доменного аналiзу.
Друга складова створюється пiд час аналiзу представлення
вiдповiдного робочого продукту.

З метою типiзацiї, в контекстi пiдходу, що розроблено,
створено шаблони стилю онтологiї ядра iнженерiї програм-
ного забезпечення, шляхом аналiзу поняття стилю в рiзних
доменах. Сформульованi основнi характеристики стилю як
доменне незалежного поняття, якi представлено в шаблонах.
При цьому, для обрання кiлькостi шаблонiв, що необхiднi для
представлення стилю, застосовано паттерн Work Product
Pattern Application з Unified Foundational Ontology. Паттерн
описує дiї, що можуть iснувати вiдносно стилю робочого про-
дукту (Work product).

Розглянуто приклад реалiзацiї пiдходу, шляхом дослiджен-
ня запропонованого методу, керованого онтологiєю засто-
сування стилю програмування в iнженерiї програмного
забезпечення та архiтектури засобу, що його реалiзує. З
застосуванням Protege показано побудову онтологiї стиля
програмування i асистування програмiсту. Розроблено i реалi-
зовано архiтектуру засобу контролю застосування стилю
в робочому продуктi фази конструювання – текстi програ-
ми. Основу архiтектури складає база знань про вiдповiдний
стиль. Термiнологiчна складова бази знань мiстить iнформа-
цiю вiдносно мов i стилю програмування i створюється заз-
далегiдь розробником онтологiї. Фактична складова ство-
рюється ризонером для кожного представлення робочого
продукту – тексту програми.

Засоби, що створено в контекстi запропонованого пiдходу,
автоматизують процеси, якi мають мiсце пiд час застосуван-
ня стилiв в робочих продуктах фаз життєвого циклу програм-
ного забезпечення

Ключовi слова: iнженерiя програмного забезпечення, шаблон
стиля, онтологiя, дескриптивна логiка, стиль програмування

UDC 004.415.2(043.3)
DOI: 10.15587/1729-4061.2019.175665

Copyright © 2019, N. Sydorov, N. Sydorova, E. Sydorov, O. Cholyshkina, I. Batsurovska.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

Received date 04.07.2019

Accepted date 25.07.2019

Published date 23.08.2019

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (100) 2019

42

special nature of software creation and maintenance pro-
cesses, namely collective development and reuse. Applying a
style means improving the quality and efficiency of software
creation and maintenance. Therefore, the use of a style is
very important, but it involves additional spending while
solving the problems of learning the style description and
adhering to it when creating work products of the lifecycle
phases. These tasks are virtually unsolved except for indi-
vidual construction phase processes.

A style description is a representation of the knowledge
of a style, and it depends on the form of that representation,
in particular the convenience of learning the style, the effec-
tiveness of the appropriate means of its observance, and the
ability to apply the style in different phases of the software
lifecycle. It is proposed to use ontologies as a form of repre-
senting style knowledge, regardless of the lifecycle phase, to
solve the problems of studying the description of a style and
adherence to it when creating software products.

2. Literature review and problem statement

The notion of style has historically evolved in two sci-
entific disciplines, namely philology and art. Nevertheless,
the notion of style is now widely used and researched. In
general, in terms of a style as a domain-independent concept,
style is defined as a means of expressing an ideology or idea
in a human activity [1]. The literature review shows [2] that
there is no definition of style in the fields of human activity
that could be used in software engineering. However, draw-
ing on the main studies in these fields, the authors formulate
general provisions that are the basis for developing such a
concept of style. According to the literature analysis [2],
there are three characteristics of styles: properties, tools,
and factors. The properties of a style include the following:
unity, ideology, task (creativity), emergence-disintegration,
and value (aesthetic); the style tools presuppose media and
elements as well as categories. A style as a complex system of
elements arises under the influence of factors such as histor-
ical, social, stylistic, and style forming. Engineering methods
for designing advanced software and lifecycle models based
on component development and reuse have now become
widespread [3]. Besides, software development also entails
agile methodologies (such as extreme programming) [4],
obfuscation [5] and egoless programming [6].

In this connection, tasks are posed to be related not
only to reading the texts of software written by different
programmers, in different programming languages and at
different times but also representations of other work prod-
ucts created in the same way. It is known that the nature of
representations is influenced by decisions made about a work
product, such as architecture, algorithm, and programming
language. In addition, the nature of the presentations is af-
fected by the ideological, cultural and gender characteristics
of the developer and the time period in which the software
is created [7, 8]. Two documents are considered by the de-
veloper when applying a style – a description of the style
and presentation of the work product in which the style is
applied. Therefore, there are two processes, namely studying
the description of an appropriate style and controlling the
use of the style in the representation of the work product.
The style description consists of rules and restrictions ad-
opted to represent a particular work product. The impact
of both processes on the efficiency and cost of development

requires their automation, which is missing today. Of partic-
ular importance is the form of providing knowledge about
both the style and the representation of the work product.
This form can be an ontology. In [9], the results of ontology
applications in software engineering are presented. Soft-
ware engineering work products and software products are
knowledge-oriented and are the result of knowledge-orient-
ed actions.

Therefore, knowledge is a major component of software
engineering, and forms of representation, methods, and tools
for processing and applying knowledge play a significant role
in software development [9]. Ontologies have been shown to
be an effective means of representing the diverse knowledge
that is used in software creation and maintenance processes.
Today, ontologies are the best means of presenting and pro-
cessing software engineering knowledge [1]. However, the
question of using an ontology to solve style application prob-
lems in all phases of the software lifecycle remains unsolved,
which is a consequence of traditional style application only
in the coding phase and partly in the design phase when
knowledge of the programming style (coding standard)
is provided in the so-called configuration file in XML or
HTML. Therefore, there are several studies dedicated to the
use of ontology for applying a style in the design and coding
phases [2, 10, 11]. However, they are aimed at solving the
problem of presenting the appropriate style. The use of an on-
tology to control the use of a style in relevant work products
in these studies was not investigated. This is often the reason
for abandoning the style in lifecycle processes and leading to
loss of productivity. Thus, ontologies play an important role
in the implementation of stylesheets and, unlike common
stylesheets such as XML, ensure improved software develop-
ment and maintenance.

The sources of knowledge in software engineering are
three types of domains – application, implementation, and
problem [12]. In the process of building a domain ontology,
it is preferable to use categorization, which constitutes a hi-
erarchy or a network of ontologies, namely from the top-level
ontology to the ontology of use in the application domain.
There are also three approaches to building a domain ontol-
ogy [13, 14]. The above categorization and approach are ap-
plied to building the ontology of software engineering styles.
Building a top-level ontology is based on the use of existing,
so-called foundational or formal ontologies [15]. Such a use
is seen as a promising approach to building an ontology be-
cause it greatly accelerates the process of its construction.
Only the basic ontology can now be used for a style domain.
However, after building an ontology network for software
engineering styles that is partially implemented in the study,
applying the approach will ensure its effective development.

Given that there are many domains that can apply the
notion of style in software engineering, although the general
notion of style does not depend on the domain, it is advisable
to use pattern-based templates to build an ontology [15].
Therefore, using the Work Product Pattern Application
(WPPA) pattern of [16], which describes the Style artefact
actions existing with respect to the Work Product in the
case under consideration, style kernel ontology templates
were created. Thus, the templates were established for do-
main-independent style concepts and processes for creating
and applying the style. By reusing the style templates, it
will be possible to build a kernel ontology for many relevant
domains. Knowledge templates were introduced in [15]
by applying the notion of a software engineering design

Information technology

43

template to denote a classified, parameterized
representation of knowledge. Templates were sug-
gested to retain the best practices in knowledge
modelling. Later, in [17], a formal representation
of the ontology template was given as follows:
Ƭ(p1, …, pn) :: QƬ, here Ƭ(p1, …, pn) is called the
head and it contains the designation of the tem-
plate Ƭ and a list of formal template parameters;
QƬ is called the body and is a knowledge base.
When applying a template, an instance of the
head is created as Ƭ(f1, …, fn), which contains a
list of actual parameters (f1, …, fn) whose val-
ues replace the notation of formal parameters
(p1, …, pn) in the template body for 1≤i≤n when
processing the instance denoted by Ƭ.

Thus, a style representation is a form of knowl-
edge of the agreed rules for creating a work prod-
uct in the relevant aspect. Meanwhile, the tasks of
using modern ontology representations to support
professionals both in the study of a style and in
its application remain unsolved. In part, for the
sole purpose of solving the task of representing a
style by an ontology, the design and construction
phases have been completed. The absence of stud-
ies investigating the use of an ontology to represent a style
in different phases of the lifecycle, as well as studies on im-
plementing ontology-driven style control tools, suggests that
research proposed by the authors of the use of ontology to
automate the execution of both processes is appropriate when
it is related to the use of a style in any phase of the lifecycle.

3. The aim and objectives of the study

The aim of the study is to solve the problems of applying
styles in the phases of the software lifecycle by using ontolo-
gy as a modern form of knowledge representation.

To achieve this aim, the following objectives were set
and done:

– to develop an approach to the application of a style
in the work products of the phases of the software lifecycle
through the use of an ontology;

– to create ontology templates for the presentation and
application of a style in the work products of the software
lifecycle phases in the context of the approach;

– to apply the style of programming in the work products
of the construction phase to investigate the approach by
implementing the ontology of style knowledge and the ontolo-
gy-driven style application when using the created templates.

4. An ontology-driven approach to the application of a
style in software engineering

Based on the WPPA pattern, the involvement of the
Style artefact in software engineering can be of three types.
First, the creation of a style; second, the application of the
style; and third, the change of the style. We will consider the
latter as a style creation. Thus, to build a kernel ontology in
the study, three kernel ontology templates were created by
applying the results of the style domain research and the
WPPA pattern. One template is intended to describe the no-
tion of style (Fig. 1), and the other two are aimed at describ-
ing the basic processes associated with the style in domains.

The templates are based on reusing the following stereo-
types of the basic ontology (ELDM [18]): Kind, Event, Cate-
gory, Dependent, and Associative. In addition, the concept of
Business Area was used to refer to the domain and the term
Party designated a social group or an individual. This explains
that Party has the stereotype Category [18]. The Style concept
is used to indicate a style in the template of the notion of style
(Fig. 1). With the term Style_Standard, the style concept
template describes the style; in software engineering, it may
be standard. In the template there is an association of the com-
position type to one of the concepts, namely Style_Standard
(Fig. 1). Individuals belonging to this concept are descriptions
of the style or modifications thereof. These descriptions are pre-
sented either verbally, in relevant standard guides, or formally,
for example in descriptive logic, when the appropriate processes
of a style application are automated. For each template, a body
was created, that is, an appropriate knowledge base, and formal
parameters were defined, and the values of the corresponding
actual parameters were determined to apply the templates in
the construction of the programming style ontology. For exam-
ple, the description of a style concept template would look like
this (using ALCQ logic, or rather ALCQIkey, because the con-
ceptual model is described in UML [19]). The template head is

TStyle(Business_Area, Style, SN, P, I, T, S, H, Y, E) ::
:: TBoxTStyle,

where Business_Area, Style, SN, P, I, T, S, H, Y, and E are
the list of formal parameters of the TStyle template, and the
template body TBoxTStyle (knowledge base) is described by
the following TBox:

{
CN={Kind, Dependent, Business_Area, Style, Attributes,

Property, Factors, Means, Style_Standard}, RN={has_Style,
has_Attributes, contains}, Business_Area ⊑ Kind,

Style ⊑ Kind, Attributes ⊑ Dependent, Style_Standard
⊑ Dependent, Property ⊑ Dependent, Factors ⊑ Dependent,
Means ⊑ Dependent, ∃has_Style.⊤ ⊑ Business_Area, ⊤ ⊑ ∀
has_Style. Style, Business_Area ⊑ ³ 0 has_Style.Style, Style

contains<<kind>>
Style

<<dependent>>
Attributes

has_Attributes
0 1

1

<<kind>>
Business_Area

*
* has_Style

<<dependent>>
Property

static string Principle = "P";
static string Idea = "I";
static string Time = "T";

<<dependent>>
Factors

static string Sociale = "S";
static string Hystory = "H";
static string Style = "Y";

<<dependent>>
Means

static string Elements = "E";

<<dependent>>
Style_Standard

static string StyleName = "SN";

1

*

Fig.	1.	An	ontology	of	a	style	concept	template

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (100) 2019

44

⊑ ³ 0 has_Stylē .Business_Area, ∃has_Attributes.⊤ ⊑ Style,
⊤ ⊑ ∀ has_Attributes. Attributes, Style ⊑ ≤1 has_Attributes.
Attributes, Attributes ⊑=1 has_Attributes̄ . Style, ∃ contains.⊤
⊑ Style, ⊤ ⊑ ∀ contains. Style_Standard, Style ⊑ ³0 contains.
Style_Standard, Style_Standard ⊑=1 contains̄ . Style, Prop-
erty ⊑ Attributes, Factors ⊑ Attributes, Means ⊑ Attributes,
Property ⊑ Ø Factors, Factors ⊑ Ø Means, Property ⊑ Ø
Means,Attributes ⊑ Property ⊔ Factors ⊔
Means, Style_Standard ⊑=1 StyleName.
string ⊓ ∃StyleName. {SN}, Property
⊑=1Principle.string ⊓ ∃Principle. {P},
Property ⊑=1Idea.string ⊓ ∃Idea. {I},
Property ⊑=1Time.string ⊓ ∃Time. {T},

Factors ⊑=1Sociale.string ⊓ ∃So-
ciale. {S}, Factors ⊑=1Hystory.string ⊓
∃Hystory. {H}, Factors ⊑=1Style.string
⊓ ∃Style. {Y}, Means ⊑=1Elements.
string ⊓ ∃Elements. {E}

}

The same descriptions are created
for process templates. Using these de-
scriptions and the reasoner, the template
knowledge bases were tested for compat-
ibility. When a style ontology is created
for the kernel of the corresponding do-
main, then, by parameterizing the actual
parameter values from the domain, the
template body TBoxTStyle is completed for
the corresponding Business Area. In this
case, the parameterization of the template
is performed in accordance with the con-
cept of style in the Business Area that is
being currently considered. The types of
values that formal parameters can take
are not specified at this time, because the
study has not considered the task of con-
structing template calculation software.
However, this task can be accomplished
by implementing a suitable macroproces-
sor for a language that will be used to de-
scribe knowledge (such as OWL or RDF).

To apply a style to any Business
Area, it must be created. Therefore, an
ontology template was developed for
the style creation process (Fig. 2).

By creating a style, we primarily
mean the process of determining the at-
tributes of the style notion for a specific
domain (for example, an individual of
the Business_Area concept), and second-
ly, the creation of a description (stan-
dard) of a style (an individual of the
Style_Standard concept, Fig. 1) for the
individual of the Style concept (Fig. 3).
Details of the style creation process are
given in the corresponding individual
belonging to the Created_Style_Guide
concept (Fig. 2). Thus, the above-de-
scribed TStyle template call was used to
describe the ontology template for the
style creation process. The created Busi-
ness_Area_Style (Fig. 3) is used in the
construction of an artefact (an individual

of the Artefact concept) of the corresponding domain. Thus, the
object acquires the property of having the corresponding Style.
To describe the process of applying the style, a template of the
corresponding ontology is created (Fig. 3).

The description of the ontology template for the style
application process will look like this: UsingStyle(Busi-
ness_Area, Style) :: TBoxUsingStyle..

has_Knowledge_in

<< category>>
Party

<< associative>>
Created_Style_Guide

governs

<<kind>>
Business_area

*

1

*

<<event>>
Created_style

1

1
1

1

*

uses

is_Created_to

<<kind>>
Style

1

1

is _ Part _ of1

*

Fig.	2.	An	ontology	template	for	the	style	creation	process

Fig.	3.	An	ontology	template	for	the	style	application	process

is_Created_According_to

has_Knowledge_in

<< category>>
Party

<<kind>>
Artifact

<<kind>>
Business_area_style

<< associative>>
Style_Party_Using_guide

is_Part_of

governs

 for

<<kind>>
Business_area

*

1

*

<<event>>
Using_Business_

area_style

1

1
1

1

1

1

*

uses

1

1

acquire

1

*

Information technology

45

Style and process templates will
be used to build the ontology of the
kernel of any domain from the soft-
ware engineering ontology network
(Fig. 4). Therefore, the domain style
in process templates is referred to as
Business Area Style.

Using kernel templates, we create
a kernel style ontology for the Busi-
ness Area, with the Software_Engi-
neering concept in terms of the use of
a style in software engineering (Fig. 5).

In this case, for example, the values for the
corresponding parameters Property, Factors,
and Means of the TStyle style concept template
(Fig. 1) for the design domain can be used from
Table 1, which is based on [2].

In the ontology of the software engineering
core, in its part regarding the style creation pro-
cess (Fig. 6), the Party concept is considered as
consisting of Team and Person concepts, since a
style can be created by both a team and an indi-
vidual performer of the software creation process.

It is assumed that a style is created for the
relevant type of work product (the concept of
Work_Product_Style, Fig. 6), that is, the result of
any phase of the software lifecycle such as require-
ments, architecture, testing, and the programme
text. In this case, the ontology of the style of a
corresponding work product, for example, the style
of a programme, is created by applying the style
ontology and, in particular, the individual Style_
Standard concept for the appropriate programming
language and a description of the desired TBox. Of
course, this creates an ontology of that part of the
work product that represents the concept of Work_
Product_Style, which is described by the individual
concept of Style_Standard (Fig. 2).

Part of the ontology of the software engineer-
ing kernel regarding the style application process
is presented in Fig. 7.

Basic universal ontology

Templates of the core ontology

Ontology of style 1

Ontology of software engineering core

Ontology of style 2 Ontology of style N

Fig.	4.	An	ontology	network

<<dependent>>
Attributes

<<dependent>>
Style standard

<<dependent>>
Property <<dependent>>

Factors

<<dependent>>
Means

has_Atributes

Contains

<<kind>>

Software_engineering

is_ Part_ of

<<kind>>

Software_engineering
style

*

1

1
1

1

*

Fig.	5.	Part	of	the	kernel	ontology	regarding	the	concept	of	style	for	
software	engineering

has_Knowledge_in

<<kind>>
Software_

engineering

<<category>>
Party

<<kind>>
Work_ product_

style<<event>>
Creating_work_
product_ style

<<associative>>
Style_ party_create_guide

1

1

1

1

is_Part_of

<<kind>>
Team

<<kind>>
Person

uses is_ Created_according_to

*
1

*
*

1

governs

1
1

Fig.	6.	Part	of	the	core	ontology	as	to	creating	a	style

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (100) 2019

46

Part of the ontology of the software engineering core
(Fig. 7) describes that the work product style is used when
creating the work product (programme, architecture, or doc-
ument). That is, the work product is created according to a
style, by directly using the style description that was created
(the Work_Product_Style concept). The work product (the
Work_Product concept) acquires the properties of having a
work product style (the Work_Product_Style concept).

5. Implementation of the approach by using
a programming style

Table 1 shows that the concept of a programming style and
its application in software engineering began to take shape
as early as the 1970s. Today, there are known tools of static

code analysis in IDE, such as Net-
Beans, Eclipse, IntelliJ IDEA, Xcode,
and Microsoft Visual Studio, which
check some rules of the use of a pro-
gramming style. In such cases, knowl-
edge of a programming style (coding
standard) is provided by a description
in a so-called configuration file in
XML or HTML, but there are tools
that present knowledge in a different
form, such as DLL. Of course, such a
presentation is inconvenient in terms
of setting the tool for the appropriate
coding standard. The study, based
on the approach under consideration,
proposed a method of ontology-driven
programming styles [20].

Using the entered templates, let us
build an ontology of creating a style
in a domain (Fig. 8) and an ontology
of using a programming style (Fig. 9).

A key function in these processes
is performed by the description of the
programming language style, which
is usually represented by a coding
standard (the concept of Standard in
the description of the ontology). The
coding standard is represented by a
set of rules that govern the style of
the programming language.

Thus, the programmer, when coding a programme, uses a
programming style ontology, both to study the style and to
check the style compliance in the programme. Therefore, two
tools are needed – one to create an appropriate ontology and
to support the programmer during coding [21] and the other
to control the application of the programming style in the
programme’s derivative text (Fig. 10) [22].

Applying Protégé, a style analyst adjusts the ontology
to the appropriate programming style and creates the TBox.
After the set-up, the programmer learns the programming
style with the help of Protégé while using the ontology. The
second tool in terms of performing functions is similar to the
reasoner. In terms of descriptive logic, the reasoner verifies
the ontology compatibility (Fig. 11). In the tool created, this
feature is added to the Style Errors feature.

Table	1

Epochs	and	characteristics	of	styles

Epoch

Characteristics

Property Factors Means

Term Idea
The principle of impor-

tance
Historical Social Stylistic Elements

before structur-
al programming

1951–
1975

Efficiency
Techniques of running a

programme

A processor,
a programme

operator

A programmer,
but all is from

scratch

Low level pro-
gramming

An operator
GO TO

of structural
programming

1975–
1990

Intelligibility
Techniques of program-

ming

A human pro-
grammer, a pro-
gramme reader

Several program-
mers, but all is
from scratch

Structural
programming

A structur-
al operator

after structural
programming

1990–
1996

Reusability
Techniques of using

experience

A human
programme
developer

A team of pro-
grammers; there

is experience

Modular and
object-oriented
programming

A module

of software
engineering

1996
Creation of soft-
ware in the given

conditions

Techniques of proven
software engineering

A software
engineer

A team of pro-
grammers; there
are requirements

Empirical pro-
gramming

Documents

is_part_ofhas_Knowledge_in

<<kind>>
Software_

engineering

<<category>>
Party

<<kind>>
Work_product

<<kind>>
Work_product_style

<<event>>
Using_work_product

_ style

<<associative>>
Style party using guide

11

1

1

1

1

1

 use

<<kind>>
Team

<<kind>>
Person

1
*

uses is_ created_according_to

1

**

governs
aquire

1
*

Fig.	7.	Part	of	the	core	ontology	as	to	the	style	application	process

Information technology

47

Protégé is used to create the TBox, a part of an ontology
that contains terms that describe a programming style. As-
sertions about a target code (ABox) written by a program-
mer are created by the appropriate part of the tool called
a reasoner, as it provides the appropriate service using a
knowledge base (TBox and ABox). The service includes,
first, verification of the ontology compatibility (a direct
function of the reasoner), and second, the search for sty-

listic errors in the programme’s target text. It is because of
the necessity to implement the second function that the use
of the ‘regular’ reasoner becomes impossible. Therefore, the
study has produced a reasoner that performs this function –
a Style Ontology Reasoner (SOReasoner). In addition, this
reasoner provides an ontology template for standard rules
for flexible construction of ontologies of different styles and
programming languages.

Has-Knowledge-in

<<kind>>
Coding phase

<<category>>
Party

<<event>>
Creating work
products style

<<associative>>
Style party create guide

1

1

11

Is-part-of

<<kind>>
Team

<<kind>>
Person

uses
Is- created-according-to

1

**

Governs

<<kind>>
Programming
language style

*

*

Is-part-of

1

*

<<kind>>
Programming

language

<<category>>
Style

1
1

Fig.	8.	An	ontology	of	creating	a	programming	style

Has-Knowledge-in

<<kind>>
Coding phase

<<category>>
Party

<<kind>>
Program

<<kind>>
Programming
language style

<<event>>
Using work product

style

<<associative>>
Style party using guide

1

1

1

1

Is-part-of

 Use

<<kind>>
Team

<<kind>>
Person

1
*

uses
Is- created-according-to

1

**

Governs
aquire

<<kind>>
Program style

1

1

aquire

<<kind>>
Party style

aquire

1

*

Fig.	9.	An	ontology	of	using	a	programming	style

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (100) 2019

48

In order to develop the appropriate soft-
ware, it is necessary to create requirements
for the SOReasoner, which must do the fol-
lowing:

– create a template of the ontology style
rules and ensure its flexible structure;

– scan to process the ontology to create a
set of rules of a programming style;

– check the target code (for example, in
the Java language) and verify it for compli-
ance with the rules of the programming style;

– provide a clear and detailed feedback to
the programmer.

The following SOReasoner structure was
chosen to satisfy the aforementioned func-
tional requirements (Fig. 12).

Fig. 13 shows a sequence diagram of the representing the
full functionality of the SOReasoner.

Fig.	11.	A	base	of	the	programming	style	knowledge

Fig.	12.	A	chart	for	the	SOReasoner

Fig.	13.	A	sequence	diagram	of	the	SOReasoner	

Fig.	10.	A	flowchart	of	using	the	tools

Information technology

49

6. The check-up of implementing the approach while
using a programming style

Two types of tests were performed to verify the results
of the suggested method on the basis of the described ap-
proach. First, the workability of the method and means
was investigated, and second, the effectiveness of the tools
developed was tested against the manual use of coding
standards.

The results of the first type of research are discussed
below. To test the performance of the method and the
developed SOReasoner, an example of its application is
considered for the use and control of the naming rules of
Java Convention. As it has been noted, an ontology rule
template was created and all rules describing the standards
of naming were added. Then samples of the target code
were verified and feedback was obtained through both the
SOReasoner interface and the target code comments. In
the Protégé interface, the corresponding structures can be
visualized as OntoGraf (Fig. 14).

Once created, the ontology and the derived Java text
are transmitted to the SOReasoner (Fig. 15).

As a result of text processing, the SOReasoner produces
an error log (Fig. 16).

The log shows the percentage of correct identifiers and
erroneous spots in the text, dividing them into groups by
the rule types. Error messages are also posted in the target
text in the form of comments.

Thus, the study performed to test using the program-
ming style shows the correctness of the proposed approach
and method based on it as well as the efficiency of the ap-
propriate tools implemented. The use of ontology instead
of the broadly used so-called XML or HTML configuration
files ensures greater efficiency of the created tools.

In order to test the effectiveness of the tools by the second
type of research, an experiment was conducted. The Phillips
Healthcare – C# coding standard was selected for this exper-
iment, and a model with appropriate metrics was created to
investigate the results using the Goal Question Metric (GQM)
method [23]. The following was done for the experiment:

Fig.	14.	An	OntoGraf	presentation	of	the	rules	of	naming	in	Protégé

Fig.	15.	An	example	of	a	snippet	of	a	derivative	text	before	verification

Fig.	16.	A	snippet	of	an	error	log	from	the	SOReasoner

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (100) 2019

50

1. Two teams of programmers (5th year students) were
selected.

2. A task was set to maintain the style of programming
(in terms of names), which was the same for everyone.

3. One group of the programmers was provided with a
paper description of the Philips Healthcare Coding Stan-
dards for reference.

4. The second group of the programmers was provided
with the Protégé tool and the ontology developed by the
approach.

5. Both groups performed the task according to the
created GQM model.

The results of the experiment show that the efforts spent
on applying the standard (on studying the standard, coding,
error identification, and defect correction) were generally
reduced when using the ontology and the developed tool.
However, the slight decrease in the efforts spent on the
standard coding in verbal representation, as opposed to the
efforts spent on standard coding when using the tool prob-
ably indicates that some time was spent on using the tool’s
interface and a small number of rules required to solve the
task. Of course, the efficiency will be higher when specialists
accumulate demand for the use of the tool, and the number of
standard rules to be used will increase.

7. Discussion of the results of the ontology-driven
approach to the use of styles in software engineering

The developed approach provides the style application
to work products of the software lifecycle phases by using
a single ontology representation tool. This demonstrates
the possibility of creating a unified perspective on both the
knowledge base design tools that describe the work product
styles of the different phases and the specialist support tools
for applying styles.

The proposed use of style templates and their application
processes in the context of an ontology network shortens the
time to create it. In particular, this was confirmed during the
implementation of the ontology for the application of a style
in the design phase to test the approach using an example of
a programming style.

Automating the style control process by creating tools
based on descriptive logic, unlike the known tools based on
XML and HTML, simplifies the mechanism of customization

controls, which in turn makes it possible to automate the
processes of applying style in the work products of different
phases of the software lifecycle.

To continue the implementation of the proposed ap-
proach, research is also performed on applying the ontology
of style use in architectural design and documentation of
software as well as in reverse engineering of software [24].
In general, the goal is to create a unified approach for all do-
mains related to software creation and maintenance.

It is clear that the use of the approach in phases other
than design and construction, on the one hand, requires
preliminary research on the concept of style and the pro-
cesses of applying it in these phases. For example, this
concerns requirements specification, testing, or domain
analysis. On the other hand, the problem of using non-ver-
bal representation, such as UML graphics, of work products
has not been investigated. This, however, is not an obstacle
to using the approach.

8. Conclusion

1. An ontology-driven approach to the application of styles
in software engineering has been suggested in the study. The
essence of the approach is to use an ontology to represent styles
when creating and maintaining work products of the phases of
the software lifecycle. In the context of the approach, it is pro-
posed to use the ontology network and its construction by ap-
plying style ontology templates. The use of ontology paves the
way for the automation of style application processes in work
products, which promotes the use of styles in software lifecycle
processes, the creation of comprehensible work products, and it
consequently increases the efficiency of professionals.

2. The Work Product Pattern Application pattern was
applied to determine the number and nature of the style
ontology templates for their use in software engineering
ontology networks. The established templates of the network
core style ontology were the concepts of style and processes
of creating and applying a style. The use of the templates
provides the construction of a core ontology for the network
domains of the software engineering ontology.

3. The approach was tested on the example of a program-
ming style for work products of the construction phase through
the implementation of the ontology of style knowledge and the
tools of the ontology-driven application of the style.

References

1. Sidorov, N. (2006). Software stylistic. Problems of programming, 2-3, 245–254.

2. Sidorova, N. (2015). Programming style ontologies and automated reasoning – systematic mapping study. Software Engineering,

3, 38–44.

3. Boehm, B. (2007). Software Engineering. John Wiley & Sons, 832.

4. Hazzan, O., Dubinsky, Y. (2009). Agile Software Engineering. Springer. doi: https://doi.org/10.1007/978-1-84800-198-5

5. Behera, C. K., Bhaskari, D. L. (2015). Different Obfuscation Techniques for Code Protection. Procedia Computer Science, 70,

757–763. doi: https://doi.org/10.1016/j.procs.2015.10.114

6. Weinberg, G. (1971). The Psychology of Computer Programming. Van Nostrand Reinhold, 276.

7. Raijlich, V., Wilde, N., Buckellew, M., Page, H. (2001). Software cultures and evolution. Computer, 34 (9), 24–28. doi: https://doi.org/

10.1109/2.947084

8. Holovatyi, M. (2014). Multiculturalism as a means of nations and countries interethnic unity achieving. Economic Annals-XXI,

11-12, 15–18.

9. Calero, C., Ruiz, F., Piattini, M. (Eds.) (2006). Ontologies for Software Engineering and Software Technology. Berlin, 343. doi:

https://doi.org/10.1007/3-540-34518-3

Information technology

51

10. Pahl, C., Giesecke, S., Hasselbring, W. (2009). Ontology-based modelling of architectural styles. Information and Software

Technology, 51 (12), 1739–1749. doi: https://doi.org/10.1016/j.infsof.2009.06.001

11. Abuhassan, I., AlMashaykhi, A. (2012). Domain Ontology for Programming Languages. Journal of Computations & Modelling,

2 (4), 75–91.

12. Sydorov, N. A., Sydorova, N. N., Mendzebryovsky, I. B. (2018). Software engineering ontologies categorization. Problems in

Programming, 1, 55–64. doi: https://doi.org/10.15407/pp2018.01.055

13. Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E., Gangemi, A. (Eds.) (2012). Ontology Engineering in a Networked World.

Berlin, 446. doi: https://doi.org/10.1007/978-3-642-24794-1

14. Ghosh, M. E., Naja, H., Abdulrab, H., Khalil, M. (2016). Towards a Middle-out Approach for Building Legal Domain Reference

Ontology. International Journal of Knowledge Engineering, 2 (3), 109–114. doi: https://doi.org/10.18178/ijke.2016.2.3.063

15. Clark, P., Thompson, J., Porter, B. (2000). Knowledge patterns. KR, 591–600.

16. Guizzardi, G., Wagner, G., Almeida, J. P. A., Guizzardi, R. S. S. (2015). Towards ontological foundations for conceptual modeling:

The unified foundational ontology (UFO) story. Applied Ontology, 10 (3-4), 259–271. doi: https://doi.org/10.3233/ao-150157

17. Skjæveland, M., Forssell, H., Klüwer, J., Lupp, D. (2017) Pattern-Based Ontology Design and Instantiation with Reasonable

Ontology Templates. Workshop on Ontology Design and Patterns (WODP2017), 15.

18. Department of Defense (2011). Data modelling guide (DMG) for an enterprise logical data model (ELDM). Version 2.3, USA, 184.

19. Calvanese, D. (2003). Description logic for conceptual data modelling in UML. ESSLLI, 23.

20. Sidorova, N. (2015). Ontology-Drived Method Using Programming Styles. Software Engineering, 2 (22), 19–28.

21. Sidorova, N. (2015). Ontology-Driven Programming Style Assistant. Software Engineering, 2 (24), 10–19.

22. Sidorov, N., Sidorova, N., Pirog, A. (2017). Ontology-driven tool for utilizing programming styles. Proceedings of the National

Aviation University, 71 (2), 84–92. doi: https://doi.org/10.18372/2306-1472.71.11751

23. Basili, V., Caldiera, G. (1994). Goal Question Metric Paradigm. Maryland, 60.

24. Sidorov, N., Chomenko, V., Sidorov, E. (2008). Reengineering of the Legacy Software: the air simulator case study. Proceedings of

the third world Congress “Aviation in the XXI–ST century, Safety in a aviation and space technology”, 2, 33.88.–33.96.

