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Pospobaerno memod eusnauenns Qynxuii po3nodiny uacy
cmosnyi cyoHa ni0 HABAHMANCEHHAM 32i0HO NPAMO20 éapiaw-
my (mobmo Ge3 yuacmi cknady) 6UKOHAHHS HABAHMANCYEATOHUX
POGIm Ha NOPMOBOMY MEPMIHAILL 6 YMOBAX HEPIBHOMIPHOCMI 3a8e-
3enns eamwmaoicy 3aniznHuuHum mpancnopmom. Bpaxoeyromwvcs
(axmopu nesusnavenocmi ma pusuxy (6unadxosi momenmu npu-
Oymms 6azomnie 3 eanmasicem HA MepMiHAL ma 00cA2 6AHMAIHCIG
Y 6azonax). 3anponoHoeano GUKOPUCMAHHA anapamy JiHilva-
MUX MapKo6CLKUX NPOUecie, AKi ONUCyromv OUHAMIKY npudym-
ms eazonHux napmii ma naeanmavicenus cyona. Ilpu uvomy
86AICAECMBCS, WO THMEPBANU MINC CYCIOHIMU MOMEHMAMU HACY,
6 AKI 6a20Hi 3 eanmadicem npudyeaiomv Ha mepminan, € eunao-
KOBUMU GEUMUHAMU, WO PO3NOOINEHI 3210HO eKCNOHEHUIUNHO020
saxony. Ilepesanmadicenns eanmasncy iz 6az0ni6 HA CYOHO GUKO-
HYEMbCA 13 NOCMIUHONW iHmeHcusHicmio. /Jemanvno po3ensanymo
eunaoxu, Koau 06csaz2 6AHMAINCY Y 8A20HAX € 6UNAOK0BOIO B UM~
Ho10 abo ¢ixcosanuii (nocmivinuil). [Ins 3HAX00HCEHHA WITLHO-
cmeil Umogiprocmeti ma UMmogiprocmeti cmamnie 6i0n06i0H020 map-
K0BCbK020 NPouecy 6u6eoeno cucmemy JHiUHux oudepenyiansnux
PiBHAHbD MA NOMAMKOBUX YMOE. FHATUOeHO Supiuents yiei cucmemu
piensans 6 mepminax nepemeopenns Jlannacy, 30xkpema Qpynxuyiro
PO3n00iny uacy cmosHyi cyona 3 YpaxyeanHsam MONCIUSUX Nepepe
6 ouiKyeani nideosy eanmaicy eazonamu. /lns eunaoxy nocmii-
H020 PO3IMIpY 8AHMANCHUX NAPMill HA 6A20HAX MAKONC 3HAlOe-
HO 610n06i0nYy Qynruito po3nodiny wacy cmosnyi cyona ma 3Hau-
dena ii acumnmomuxa npu 6eauUKoi 6aHMANCONIOUOMHOCHE CYoHa
Ha nidcmasi yenmpanvioi epanuvnoi meopemu. Ha ocnosi odep-
JHCAHUX Pe3yomanis cPhopmyav08ano 3a0auy 3HAX00IHCEHHA KPU-
mepito 0oUiNLHOCMI CMPAXYBANHA PUSUKY NePeCUULEeHH CMAJii-
H020 (0o0206ipHo20) wacy cmosnui cyona. /loedeno, wo ompumani
pe3ynvmamu 6axcau6i 0t NPAKXmMuKu pobomu nOpmoeozo onepa-
mopa ma cyoHonNAGHUX KOMNAHIl, OCKIIbKU 00360710Mb 3MeH-
WUMU PU3UK NEPEBUNEHHS ACY CIMOSHUL CYOHA N0 BAHMANCHUMU
onepauismu. Hasedeno wucnogy imocmpauiio memooy, wo npono-
HYyemvcs

Kmouosi croga: cyono, nopmoeuii mepminai, eazonu 3 eawma-
JceM, pU3UK NePeSUUeHHIL CMAJlLi, CMPaxyeanns pusuKy
u] m,
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1. Introduction

The quality of stevedoring activities in a port is largely
determined by the organization of coordinated interac-
tion of vehicle flows for loading and unloading. For exam-
ple, the charterer of the ship arriving at a port terminal to
load cargo delivered by ground transport should not be at
risk of exceeding the so-called laytime (i. e. contractual)
due to waiting for cargo delivery during loading. This
risk is reduced to a certain extent if cargo is loaded on
the ship from the warehouse (i. e., under the warehouse
option), but the rate of cargo loading is reduced. During
cargo transshipment directly from loaded vehicles on the
ship (i.e., under the direct option), transshipment rate
increases. However, there are risks of downtime of ground
transport vehicles due to waiting for the arrival of ships in
violation of the schedule. Given the specifics of maritime
transport (objectively existing irregular arrival of ships
in the port), these risks cannot be completely avoided, so
they should be taken into account when organizing steve-
doring operations in the port. In addition, the loading rate

of the fleet and rolling stock depends on many factors.
These include cargo transportability, weather conditions,
fluctuations in the output of port workers, organization of
transshipment operations, as well as organization of tech-
nical operation of transshipment equipment in the event
of sudden failures of the latter. For these reasons, the real
rate is variable and may deviate at any time from the level
established by contractual obligations, for example, gross
ship handling rate.

Therefore, in the described situation, there are risks
of the charterer (or port operator) associated with the
possibility that the actual berthing time of the ship ex-
ceeds the laytime. This kind of risk can be quantified
by the probability that the actual time of ship loading
exceeds the laytime. Finding the indicated probability as
a function of some controlled parameters will reduce this
risk. However, finding the mentioned probability presents
certain analytical difficulties, which require a special
study.

From the foregoing, the problem described is relevant to
the theory and practice of stevedoring in the port.



2. Literature review and problem statement

This problem has been given considerable attention in
the scientific literature during the last decade [1-8]. This
is due to the increased interest of businesses and research-
ers in risk management in maritime transport as a whole
and organizing multimodal (intermodal) transportation, in
particular.

So, in [1], the functioning of the “port terminal — trans-
shipment fleet” logistics system is investigated by the meth-
ods of Markov processes. This system is presented as some
kind of service system with randomly fluctuating service
capacity. For it, the problem of determining the optimum
volume of warehouse replenishment with spare parts (SP)
for the repair of failed transshipment machines is formulat-
ed. The goal of the “port terminal — transshipment fleet”
logistics system is achieved by performing logistics functions
related to transshipment, storage of cargo, maintenance of
port transshipment equipment, etc. For this service system,
a system of algebraic equations for stationary state probabil-
ities of the introduced Markov process is derived. A method
is developed to control the operational reliability of trans-
shipment fleet of the port terminal based on determining the
supply volume of SP. As a criterion of optimality, minimum
average total costs per unit of time for the purchase, delivery
and storage of SP, machine repair, as well as losses due to
ship demurrage caused by machine failures, is chosen. How-
ever, the factor of cargo delivery (pickup) for the ship is not
taken into account.

In [2], a probabilistic model of port terminal operation is
developed, taking into account the irregular cargo delivery
by ground transport and pickup by ships in order to find a
number of indicators of port terminal capacity. At the same
time, the task of assessing the increase in the berthing time
of individual ships, taking into account the possible lack of
cargo in the warehouse is not considered there.

Since the studied problems relate to the organization of
effective interaction of different means of transport within
intermodal transportation, it should be noted that the the-
oretical level of research in this area of transport science is
still not sufficient [3—5].

The review papers on this issue [3, 4] discuss the prob-
lems associated with the operational and strategic planning
of multimodal hubs and classify them in terms of logistics
principles. It is noted that perfect coordination of intermod-
al transport modes, especially maritime and land, cannot be
achieved in practice because of the complexity of organizing
a strict traffic schedule. At the same time, the cited works
hardly address such an important problem as management
of risks encountered in multimodal systems. When solving
certain problems, either scheduling theory (which implies a
clear traffic schedule of vehicles, which is usually not true)
[5], or simulation is used [6]. In the latter case, a reliable
forecast of possible additional demurrage of the ship under
loading operations, taking into account the operation of in-
termodal transport means cannot be made. In [7], the prob-
lem of incurring additional costs of the shipowner caused by
the relocation of ships between the port berths in order to
reduce the total berthing time of ships, is considered close to
the main topic of this work. But the work does not take into
account the possible interaction of ships and land transport.

The monograph [8] describes the mathematical appara-
tus and some physical concepts that can be used to create
(modernize) an integrated intelligent transport system.

However, these concepts do not take into account random
factors typical for the operation of port terminals, where
there is an interaction of different transport modes, as well as
the objectively inherent irregular arrival of vehicles.

3. The aim and objectives of the study

The aim of the study is to develop a method for finding
the probability that the actual loading time of the ship
exceeds the laytime for the case of the direct option of the
transshipment process, as well as recommendations for
reducing the financial consequences of this excess. The
practical result of finding the probability distribution of the
actual ship berthing time is that before cargo loading the
charterer (or shipowner) can predict possible ship demurrage
and associated losses, as well as take appropriate measures
to reduce the corresponding losses, for example, by insuring
the specified risk.

To achieve the aim, the following tasks were set:

— to develop a probabilistic model of port terminal opera-
tion to account for irregular cargo delivery by rail to the port
terminal using linear Markov processes;

—to find an analytical expression for calculating the
probability of ship demurrage under loading operations
caused by the late cargo delivery by rail organized under the
direct option (i. e., without cargo warehousing);

— to develop an asymptotic formula for the specified de-
murrage probability for large deadweight tonnage values and
to conduct numerical analysis;

— to develop a criterion of expediency of insuring the risk
of additional ship demurrage due to excessive waiting for
cargo delivery to the terminal.

4. Prerequisites for building a probabilistic model of
the port terminal

First, we consider the formal statement of the problem.
Suppose that at the initial moment of time, at the terminal
berth there is a ship for cargo loading and its net deadweight
tonnage is a random variable with the distribution function
H(x). The ship is loaded under the direct option, that is, di-
rectly from railcars, at a predetermined rate W. At the initial
moment of time, there are no loaded cars at the terminal, so
the ship is waiting for their arrival. It is considered that load-
ed trains arrive at the terminal regularly in time, moreover,
the train flow is described by the recovery-accumulation
process model [9, 10]. This assumption means the following:

a) time intervals between arrivals of trains are mutually
independent random variables ty, 1s,..., subordinate to the
same distribution law A(%);

b) train capacities are mutually independent random vari-
ables distributed according to the same law G(x) (and inde-
pendent of random time intervals between train arrivals).

It follows from the assumptions that the ship loading
time (denoted by 0) is a random variable, since it may be
interrupted with a positive probability several times for a
random period due to waiting for cargo delivery by trains. In
addition, because train capacities can also fluctuate random-
ly. Thus, there is a risk that the ship berthing time exceeds
the laytime stipulated by the contract with the stevedoring
company. The problem is to find an analytical expression for
the distribution function of the ship loading time.



3. Solution to the problem of finding the probability of
ship demurrage under loading using linear
Markov processes

Consider the case when
A(t)=P{r, <t}=1-¢"t>0,

where 1/M is the average time interval between arrivals of
loaded trains to the terminal.
We also assume that

k
_q_ fx/g”H(x/g)
G(x)=1-e TR x>0,

i. e., train capacities are subordinate to the m-th order Erlang
distribution with an average value of mg. Note that in this
case, the time of cargo loading from the train on the ship is
also distributed according to the m-th order Erlang law with
an average value of m/u, where u=W/g. Only one train can be
unloaded at a time. The queue length of the trains waiting for
unloading is limited by the number R.

To solve the formulated problem, we use the fact that the
ship loading process, by virtue of the above assumptions,
can be reduced to the linear Markov process [9] if we use the
Erlang pseudo-phase method [10].

In what follows, we limit ourselves to studying the case
of R=0 (i.e., only one train can be at the terminal at any
time). This assumption can also be interpreted as follows.
Cargo is brought to the terminal periodically by one train,
wherein the time interval from the end of unloading to the
next moment of arrival with cargo is distributed exponen-
tially with the parameter A.

We introduce the following symbols:

- po(x, )dx, x>0 — the probability that at time ¢ the
ship is under loading, but waiting for the train to arrive at
the terminal, and the amount of cargo loaded on the ship is
within (x, x+dx);

- pit(x, )dx, x>0, i=0, 1, ..., m—1, — the probability of the
next event. At time ¢, the ship is under loading, the number of
the current phase of the Erlang distribution of the amount of
cargo in the cars is 4, and from the beginning of loading, the
amount of cargo within (x, x+dx) is loaded,;

— p(t) — the probability that by the time ¢ ship handling
is completed (this state of the Markov process under consid-
eration is absorbing).

It’s obvious that

P{o<t}=p(2).
Denote

po(x,t)

R 11 S Y
1—H(x)

m(:0)= - H(x)

where H(x)=P{y<x}, y is the deadweight tonnage of the ship.

To determine the functions m;(x, £), p(¢) using standard
probabilistic reasoning [9], the following system of differen-
tial equations can be derived:

(0/0t)mo(x, £)=—Amo(x, £)+UTy—1,1(X, L),

(6/0t+Wo/0x)mor (x, £)=—umo1 (X, £) FAmo(¥, 1), O

(0/0t+Wo/0x)mit (x, t)=—umit (x, ) +umig1(x, 1),
x>0,i=0,1, .., m—1,

d

TPO=W](m(x O+ S, (x.0)dH (x), 1>0. )

Initial and boundary conditions for the system (1), (2)
are as follows:

TCO(‘X; 0):6(x)) T[i1(xr O):O) i:07 1) ] m_1v (3)
p(0)=0, Wry(0, ©)=3(¢), m;1(0, £)=0,i=0, 1, .., m—1,  (4)

where 3(x) is the Dirac delta function. According to (3), at
the initial time ¢=0, there is no loaded train at the terminal
and the ship is waiting for arrival.

Applying the Laplace transform of the variable ¢ to the
system of equations (1), we obtain the following system of
ordinary differential equations:

0=—(s+A)m,(x, s)+um,  (x,s),
Wa / dxmy, (x, s) = —pumy, (x, )+ Amy (0, 5), 5)
W /0 (1.5 =4, (1.5)+ 0, x:),

x>0, i=0,1,..,m—1,
oo m-1
qza*(s)=W£§(,)7tf1 (x.s)dH (x), (6)

where

T, (x5)= D(j:e"”ﬂ:l.1 (x,2)dt, i=0,1,....m;

p(s)= Te’”p(t)dt, Res>0.

0

The system (5) shall be solved under the initial condi-
tions ((3), (4)):

wn,(0,5)=8,, i=0,1,..,m-1, (7

where §; is the Kronecker delta.

The solution of the system of equations (5) under (7) and
arbitrary m can be found by standard methods for solving
systems of first-order linear differential equations, for ex-
ample, by the Laplace transform of the variable x. For small
values of m, the solution is quite simple. We give this solution
for two special cases m=1 and m=2.

If m=1, then from (5) we get

0= 7(X+s) n; (x, s)+p.1r:)1 (x, s),

Wa / oxmy, (x, s)=

=—(u+s)my, (2, 5)+Amy (x,5), 2>0.

Integration of this system with allowance for (7) gives

Ty, (, 5) :L:/exp[(—s—u+;fs)x /W], Res>0.



Using these equalities, from (6) we find

sp'(s)= W”(y:n; (x,s)dH (x) =

- Ie'“(““/(”””/‘”dH(x) =h(s(t+p/(s+1))/ W), ®)

where A(s) is the Laplace-Stieltjes transform of H(x).
From (8), in particular, it follows that the first two initial
distribution moments of the random variable # are equal to

d, . h u
Mo=-< R P
] % (sp (s)) . ( +7»)’
d*, . 2hu  h, u
2 _ _ = 2
M= (s (S))5:o Tt 2(1+ x)’ 9)

where Ay, hy are the first two moments of the distribution
function H(x).

With the help of (9), the lower bound of the distribution
of the random variable 6 can be found using one of the mod-
ifications of the Chebyshev inequality [10]:

(Mo—t)’
(MB—t)' + M6 —(M8)
[h(t+u/2)-we]

plo<t}>

2:

to the following system of two first-order linear differential
equations:

Wa / oxmy, (x,5)=—(1+5) 1y, (2, 5)+
+aum, (x,s) /(A +s),

Wa /dxmy, (x,5)=

— (e $)1 (. 5) e (1,5), x>0

(14)

To solve the system of equations (14), we use the Laplace
transform of the variable x. After applying this transform,
taking into account (7), we come to the following system of
algebraic equations with respect to the functions

T, (z,5)=Je ™ n,(x,s)dx, Rez>0; i=0,1;

0
(W s+10) 5 (2,5) =5 (15) =1,

ury, (z, )= (Wz+s+p)mn,,(x.5)=0, Rez>0, Res>0.

The solution to the last system of equations is:

[h (1 /A)=We ] +2hpW /22 4k, (140 /)~ (14 /A)

If the deadweight tonnage of the ship is known in ad-
vance and is D, then

H(x)=0, if x<D, H(x)=1 otherwise,
and from (8) we get
sp"(s)=exp[=sT(1+p/(s+1))],

where T=D/W. This expression is the Laplace transform of
the following function

-ur S (“T)n
W _
)= e {1+§1 . E (¢-T)|, ¢>T, ()
0, (<T,
where
&
E () =1-e5 )

=0kl

Note that in the formula (11), the parameter uT=D/g.
For m=2, the system (5) takes the following form:

0=—(r+s)m,(x,s)+um,, (x,s), (12)
W9 /dxmy, (x,5) =—(u+s)my, (x,5)+Am, (x,5),
Wa /oxm,, (x,5)=—(u+s)m, (x, s)+umy, (x,5), (13)

Expressing m,(x,s) through =, (x,s) from (12) and
substituting in the first equation of the system (13), we come

o (25)= 2(7»+s)(s+u+:/Vz) , (15)
(10 M —(Wz+s+u) (A+s)
71::‘1 (Z, S):mn;; (Z,S). (16)

Using the rules of recovery of the original time function
from its transform for the Laplace transform of the variable z,
from (15) we find:

1 |A+s
— x
2uW N A
x[(s+u+z1W)e“ —(s+u+22W)eZZ":|,

n;1(x,8)=

(17)

(18)

From (16), by virtue of the theorem of Laplace convolu-
tion transform, the equality follows



T, (v, s)= %g iy, (g, s)e MV dy,

Therefore, taking into account (15), (16), after integra-
tion, we find

1 m(em

— —e”), x20.
2WN A

1t11(x,s)=

(19)

Now, using the expressions (17), (19) from the relation (6),
we find the Laplace transform of the desired distribution
function of the ship berthing time (6) under loading opera-
tions, taking into account possible loading interruptions due
to the lack of cargo at the terminal:

sp*(s):Wg[n;(x,an;(x,s)]dH(x):
| (2 W)e** —

_ 1 [aws (2u+s+zW)e 4 (x)=

2uN A ol —(2u+s+z,W)e”

1 k+s[(2H+S+Z1W)h(—21)—:|
BTN —(2u+s+22W)h(—z2)'

(20)

The formula (20) gives the desired solution for m=2. The
expression (20) can also be reversed using the appropriate
technique of recovery of the original time function from the
Laplace transform [11]. However, the corresponding original
function will have a very complex look.

From (20), by differentiating the variable s at the point
s=0, it is possible to find the moments of distribution of the
random variable 0. For example, for mathematical expecta-
tion, taking into account the equations (18), we have

Yo A
Me= ds(sp (S))g_o_W(1+27\')+

+(4+“)h(2”/ w)_ 1 @1)
o) 2 4A

Using (21), it is possible to determine the upper bound
of the probability that 0 exceeds the given time ¢ using the
Markov inequality:

P{0>(}<M0/L.

However, the upper bound obtained is very rough.

6. Finding an asymptotic formula of demurrage
probability for large values of ship deadweight tonnage.
Numerical illustration of the results

As a numerical illustration, we consider two examples:

a) The case of constant train capacity.

The results obtained above (11) are inconvenient for nu-
merical calculations, since it becomes necessary to find the
sum of an infinite functional series. Therefore, it is desirable
to have an approximate formula to simplify the calculations.
This can be done if, for example, cargo is assumed to be pe-
riodically delivered to the terminal by the same train with a
constant capacity (i. e. load) equal to d. Let 1y, 1, ... be ran-
dom time intervals between the arrivals of the loaded train
to the terminal. We assume, as above, that the random vari-

ables 14, 1y, ... are mutually independent and obey the expo-
nential distribution law with the parameter L. Thus, the only
risk factor is the duration of intervals between train arrivals.

Let the ship deadweight tonnage be fixed and equal to D,
then exactly N trains will be required for full loading, where

N=<D/d>,

<z>=z, if z — integer, [z]*+1, if — fractional; [z] is the integer
part of z.

In this case, the ship berthing time 6 will be equal to

e=‘E1+...+TN+T. (22)

In practical cases, the number N can be considered quite
large. For example, for D=30 thousand tons, d=1 thousand
tons, N=30, i.e., the sum of 30 random variables should be
considered in (22). In such a situation, it is natural to use the
central limit theorem, according to which the random vari-
able ty+...+1y for large N is approximately normal. Therefore,
according to (22), we can write

p(t):P{GSt}zq{x([—\/Tﬁ)_N], N, t>T, (23)
where
1« 9
O(x) [ e *du.

=

In (23), the parameter 1/A=Mr; is the average time in-
terval between adjacent arrivals of the loaded train to the
terminal. It follows from (23) that for large values of N, the
most probable values of the random variable 6 belong to the
interval (the three sigma rule for the normal distribution law):

N-3JN .. N+3JN
T+ X , T+ n .

Note that the middle of this interval is equal to the aver-
age value of the random variable 6, i. e.

MO=T+N/A.

If we take the last expression as laytime, then it follows
from (23) that

p(t)=®(0)=0.5,

i. e., the probability of exceeding it is very high (=0.5). Given
this, the following value can be taken as laytime

+N+3\/ﬁ

t=T
! A

(24)

Taking into account (24), from (23) we find the probabil-
ity that the ship berthing time does not exceed ¢

Mt -T)-N

p(t,)z(l)[ N

i. e, the probability of exceeding the laytime is almost zero.
However, the value of 7, calculated by (24), significantly
exceeds the duration of actually loading operations T. There-

]: ®(3)=0.9999, N —>es,



fore, to determine ¢;, additional economic justification is
required.

Table 1 shows the values of the confidence limits of the
ship berthing time for different values of N, A, T. The data
correspond to the actual reporting data on bulk carriers
for transporting bulk cargo handled at berths 5, 6, 7, 8 of
the Yuzhny sea trade port in 2019. Loaded cargo — iron ore
concentrate and pellets.

Table 1

Confidence limit values

+(N- +(N+
N dzt‘}’/s 1/)(;ay ' (NdasyiN)/}h g (NdaifiM/k, M, days
9 3 1 3 21 12
9 3 2 3 12 7.5
9 3 3 3 9 6
16 5 2 7 19 13
16 6 2 8 20 14
16 4 3 5.3 13.3 9.3
25 5 2 10 25 17.5
25 6 2 11 26 18.5
25 7 3 10.3 20.3 15.3
36 4 2 13 31 22
36 6 2 15 33 24
36| 6 3 12 24 18

Table 1 shows that with an increase in N with a fixed
value of the parameter A (rate of trains arrival to the ter-
minal), the confidence limits also increase. Moreover, the
width of the interval grows as ~/N. In addition, the upper
limit of the confidence interval and M0 with increasing N
significantly exceed the net loading time of the ship 7. This
is a consequence of a significant irregularity of the arrival of
loaded trains to the port (time intervals between arrivals of
loaded trains are distributed exponentially). With a greater
degree of regularity, these intervals can be distributed, for
example, by Erlang’s law.

The data in Table 1 indicate that the risk of exceeding
M6 increases with increasing N and certain organizational
and economic measures to reduce it need to be taken. This
issue is addressed in the problem below.

b) Insurance of the laytime exceeding risk.

Due to the possible additional demurrage of the ship
due to waiting for cargo delivery by ground transport, the
charterer of the ship runs the risk of exceeding the laytime
and paying the corresponding fines (so-called demurrage) by
the shipowner. In fact, these financial losses can be reduced
by insuring the specified risk on certain conditions. In such
a situation, it is necessary to be able to quantify possible
(expected) gain of the charterer from insurance using mod-
els similar to those discussed above. Below we demonstrate
such a possibility.

Let us first estimate the shipowner’s possible losses upon
the occurrence of an insured event, i. e., for 0>¢;. If we desig-
nate daily berthing costs of the ship by e, then the indicated
losses will amount to

ep max(0, 6-1)). (25)

The charterer can insure himself against these losses
by paying an insurance premium in the amount of ¢ to the
insurer. The problem is to compare ¢ with the random vari-

able (25). The simplest criterion for insurance expediency
is to compare the charterer’s expected benefits in case of
insurance (Pj,s) and non-insurance (Py;,s) of the indicated
losses. Obviously

Mpins:_C+einstaX(Oy 0—tins),

MP,ins=c—einsMmax(0, 0—t;,). (26)
Note that the variances of the random variables P;,s and
Pyins coincide, which gives the basis when deciding on insur-
ance to be limited only to the average gain (26).
Further, from (26) it can be seen that

M max (0, 9—t1)=T(T—[,)dp(T).

4

27)

Thus, risk insurance is advisable if the following condi-
tion holds

MPins>MPnins

or, taking into account (27),

H(x=2,)dp(z)>c /e, (28)

&

For the practical use of the criterion (28), it is necessary
to know the explicit form of the probability p(¢). For ex-
ample, for (11) from (28) we get the following condition of
insurance expediency

e_uTT(T_tl)i@E;(T—T)dT> c/e,.
n!

7 n=1

However, as noted above, practical calculations of the
left side of the last inequality involve significant compu-
tational difficulties with real values of the parameter pT.
Therefore, for the numerical illustration of the criterion (28),
we use the asymptotic formula (23).

Substituting the expression (23) into the left side of the
inequality (28), we get

\/2_Jxexp{ Sl -1 )—N]Q}dx,

To
N — o,

It can be shown that after some transformations, the last
integral is reduced to the following form:

1= IN . (29)

a2 +N—%(tz—T){1—<D[k(tl:/§)_NH

N

Table 2 shows numerical values of the expression (29) for
different values of the parameters N, A, {1—T. Here

p=[1(t~T)-N]/IN.



Table 2
Numerical values of the expression (29)
N | & 1/day | (1/M)VN/2r | T~T, days p I, days
9 0.5 2.394 2 —2.667 5.854
9 1.0 1.197 1 —2.667 3.214
9 2.0 0.599 1 -2.333 0.132
16 1.0 1.596 1 -3.500 5.584
16 1.5 1.064 2 —-3.250 3.460
16 2.0 0.798 2 —-3.000 2.400
20 1.0 1.772 2 —4.025 7.132
20 1.5 1.189 2 -3.081 4.519
20 2.0 0.892 2 —-2.530 2.257

From Table 2 it can be seen that for the fixed values of N,
the value of I decreases with increasing flow rate of loaded
trains A. Comparison of I with the ratio c¢/e; leads to the
conclusion about the expediency of insuring the risk that the
total ship loading time exceeds the laytime ¢,. If, for example,
ep=5 thousand c. u. per day, then for the last row of Table 2
insurance will be appropriate if the insurance premium is
less than 5-2, 257=11,285 thousand c. u. For these reasons,
the charterer may take 2+7T as laytime in the contract of
carriage.

Although only the simplest case is considered above, the
approach used allows solving similar problems in a more
general formulation (several ships, limited reliability of
transshipment equipment, etc.). The practical implementa-
tion of the developed method will reduce charterer’s risks
associated with the laytime excess by actual berthing time.

The proposed approach for estimating the ship demur-
rage probability can be used in further studies on this prob-
lem. For example, to take into account varying regularity of
cargo delivery by land transport, the Erlang distribution to
simulate time intervals between adjacent arrivals of loaded
trains to the terminal can be used. This will allow taking
into account the varying regularity of cargo delivery to the
terminal — from completely random (for example, Poisson)
to completely regular (i.e., at constant intervals between
car arrivals) flow.

An important factor is also possible random fluctuations
in the rate of cargo transshipment from the trains to the ship,
caused by weather conditions or sudden failures of transship-
ment equipment. This circumstance can also be taken into
account in further studies using the above approach.

A more accurate method for assessing the laytime ex-
ceeding probability will allow the charterer and port opera-
tor to reduce losses associated with additional unproductive
demurrage of the ship.

7. Discussion of the developed method for finding
the distribution of the ship berthing time under loading

As a result of the study, a practically important and
theoretically difficult problem is solved. It concerns find-
ing the time distribution function of ship berthing under
loading operations, taking into account possible increase in
berthing time under handling due to the irregular cargo de-
livery by trains when organizing transshipment operations
under the direct option. Knowing the specified distribution
function allows the charterer (or shipowner) to predict the
possible excess of laytime and resulting losses. To solve this
problem, a method based on the use of linear Markov pro-
cesses, which describe random variation of cargo delivery
to the terminal and volume of the cargo lot is developed.
The proposed approach allows quantifying the feasibility
of insuring financial losses of the charterer. As a result of
the study, exact (in terms of the Laplace transform) and as-
ymptotic formulas for calculating the distribution function
of the total ship berthing time are obtained, taking into
account possible interruptions in loading due to the lack of
loaded trains at the terminal. For this purpose, a system of
differential equations of the probability densities of the cor-
responding Markov process is derived and solved. For the
practical use of the described method, simple asymptotic
formulas are found and the criterion for the feasibility of
insuring the risk of ship demurrage due to waiting for cargo
delivery is developed.

8. Conclusions

1. To study the transshipment process, the model of port
terminal operation that takes into account irregular cargo
delivery to the port terminal by rail is developed. This model
is built using linear Markov processes, which allows taking
into account objectively existing irregular arrival of loaded
trains to the terminal. This irregularity is caused by the
impossibility of perfect coordination of the dates of cargo
delivery by rail and ship readiness for loading due to many
objective and subjective factors.

2. In order to find an analytical dependence of the prob-
ability of ship demurrage under loading operations due to
untimely cargo delivery by trains, the system of differential
equations of the probability densities and state probabilities of
the specified Markov process is derived and solved. The solu-
tion found to the indicated system of equations made it possi-
ble to determine the desired time distribution of ship berthing
under loading operations and waiting for cargo delivery.

3. The asymptotic formula for the indicated ship demur-
rage probability for large values of deadweight tonnage is
obtained and numerical analysis is carried out. The numeri-
cal illustration of this formula on the basis of realistic initial
data shows that it gives acceptable practical results.

4. The quantitative criterion for the economic feasibil-
ity of insuring the risk of additional ship demurrage due
to excessive waiting for cargo delivery to the terminal is
developed.
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