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1. Introduction

The quality of stevedoring activities in a port is largely 
determined by the organization of coordinated interac-
tion of vehicle flows for loading and unloading. For exam-
ple, the charterer of the ship arriving at a port terminal to 
load cargo delivered by ground transport should not be at 
risk of exceeding the so-called laytime (i. e. contractual) 
due to waiting for cargo delivery during loading. This 
risk is reduced to a certain extent if cargo is loaded on 
the ship from the warehouse (i. e., under the warehouse 
option), but the rate of cargo loading is reduced. During 
cargo transshipment directly from loaded vehicles on the 
ship (i. e., under the direct option), transshipment rate 
increases. However, there are risks of downtime of ground 
transport vehicles due to waiting for the arrival of ships in 
violation of the schedule. Given the specifics of maritime 
transport (objectively existing іrregular arrival of ships 
in the port), these risks cannot be completely avoided, so 
they should be taken into account when organizing steve-
doring operations in the port. In addition, the loading rate 

of the fleet and rolling stock depends on many factors. 
These include cargo transportability, weather conditions, 
fluctuations in the output of port workers, organization of 
transshipment operations, as well as organization of tech-
nical operation of transshipment equipment in the event 
of sudden failures of the latter. For these reasons, the real 
rate is variable and may deviate at any time from the level 
established by contractual obligations, for example, gross 
ship handling rate.

Therefore, in the described situation, there are risks 
of the charterer (or port operator) associated with the 
possibility that the actual berthing time of the ship ex-
ceeds the laytime. This kind of risk can be quantified 
by the probability that the actual time of ship loading 
exceeds the laytime. Finding the indicated probability as 
a function of some controlled parameters will reduce this 
risk. However, finding the mentioned probability presents 
certain analytical difficulties, which require a special  
study.

From the foregoing, the problem described is relevant to 
the theory and practice of stevedoring in the port.
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Розроблено метод визначення функцiї розподiлу часу 
стоянцi судна пiд навантаженням згiдно прямого варiан-
ту (тобто без участi складу) виконання навантажувальних 
робiт на портовому термiналi в умовах нерiвномiрностi заве-
зення вантажу залiзничним транспортом. Враховуються 
фактори невизначеностi та ризику (випадковi моменти при-
буття вагонiв з вантажем на термiнал та обсяг вантажiв 
у вагонах). Запропоновано використання апарату лiнiйча-
тих марковських процесiв, якi описують динамiку прибут-
тя вагонних партiй та навантаження судна. При цьому 
вважається, що iнтервали мiж сусiднiми моментами часу, 
в якi вагонi з вантажем прибувають на термiнал, є випад-
ковими величинами, що розподiленi згiдно експоненцiйного 
закону. Перевантаження вантажу iз вагонiв на судно вико-
нується iз постiйною iнтенсивнiстю. Детально розглянуто 
випадки, коли обсяг вантажу у вагонах є випадковою величи-
ною або фiксований (постiйний). Для знаходження щiльно-
стей ймовiрностей та ймовiрностей станiв вiдповiдного мар-
ковського процесу виведено систему лiнiйних диференцiальних 
рiвнянь та початкових умов. Знайдено вирiшення цiєї системи 
рiвнянь в термiнах перетворення Лапласу, зокрема функцiю 
розподiлу часу стоянцi судна з урахуванням можливих перерв 
в очiкуваннi пiдвозу вантажу вагонами. Для випадку постiй-
ного розмiру вантажних партiй на вагонах також знайде-
но вiдповiдну функцiю розподiлу часу стоянцi судна та знай-
дена iї асимптотика при великої вантажопiдйомностi судна 
на пiдставi центральної граничної теореми. На основi одер-
жаних результатiв сформульовано задачу знаходження кри-
терiю доцiльностi страхування ризику перевищення сталiй-
ного (договiрного) часу стоянцi судна. Доведено, що отриманi 
результати важливi для практики роботи портового опера-
тора та судноплавних компанiй, оскiльки дозволяють змен-
шити ризик перевищення часу стоянцi судна пiд вантажними 
операцiями. Наведено числову iлюстрацiю методу, що пропо-
нується
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2. Literature review and problem statement

This problem has been given considerable attention in 
the scientific literature during the last decade [1–8]. This 
is due to the increased interest of businesses and research-
ers in risk management in maritime transport as a whole 
and organizing multimodal (intermodal) transportation, in 
particular.

So, in [1], the functioning of the “port terminal – trans-
shipment fleet” logistics system is investigated by the meth-
ods of Markov processes. This system is presented as some 
kind of service system with randomly fluctuating service 
capacity. For it, the problem of determining the optimum 
volume of warehouse replenishment with spare parts (SP) 
for the repair of failed transshipment machines is formulat-
ed. The goal of the “port terminal – transshipment fleet” 
logistics system is achieved by performing logistics functions 
related to transshipment, storage of cargo, maintenance of 
port transshipment equipment, etc. For this service system, 
a system of algebraic equations for stationary state probabil-
ities of the introduced Markov process is derived. A method 
is developed to control the operational reliability of trans-
shipment fleet of the port terminal based on determining the 
supply volume of SP. As a criterion of optimality, minimum 
average total costs per unit of time for the purchase, delivery 
and storage of SP, machine repair, as well as losses due to 
ship demurrage caused by machine failures, is chosen. How-
ever, the factor of cargo delivery (pickup) for the ship is not 
taken into account.

In [2], a probabilistic model of port terminal operation is 
developed, taking into account the irregular cargo delivery 
by ground transport and pickup by ships in order to find a 
number of indicators of port terminal capacity. At the same 
time, the task of assessing the increase in the berthing time 
of individual ships, taking into account the possible lack of 
cargo in the warehouse is not considered there.

Since the studied problems relate to the organization of 
effective interaction of different means of transport within 
intermodal transportation, it should be noted that the the-
oretical level of research in this area of transport science is 
still not sufficient [3–5].

The review papers on this issue [3, 4] discuss the prob-
lems associated with the operational and strategic planning 
of multimodal hubs and classify them in terms of logistics 
principles. It is noted that perfect coordination of intermod-
al transport modes, especially maritime and land, cannot be 
achieved in practice because of the complexity of organizing 
a strict traffic schedule. At the same time, the cited works 
hardly address such an important problem as management 
of risks encountered in multimodal systems. When solving 
certain problems, either scheduling theory (which implies a 
clear traffic schedule of vehicles, which is usually not true) 
[5], or simulation is used [6]. In the latter case, a reliable 
forecast of possible additional demurrage of the ship under 
loading operations, taking into account the operation of in-
termodal transport means cannot be made. In [7], the prob-
lem of incurring additional costs of the shipowner caused by 
the relocation of ships between the port berths in order to 
reduce the total berthing time of ships, is considered close to 
the main topic of this work. But the work does not take into 
account the possible interaction of ships and land transport.

The monograph [8] describes the mathematical appara-
tus and some physical concepts that can be used to create 
(modernize) an integrated intelligent transport system. 

However, these concepts do not take into account random 
factors typical for the operation of port terminals, where 
there is an interaction of different transport modes, as well as 
the objectively inherent irregular arrival of vehicles.

3. The aim and objectives of the study

The aim of the study is to develop a method for finding 
the probability that the actual loading time of the ship 
exceeds the laytime for the case of the direct option of the 
transshipment process, as well as recommendations for 
reducing the financial consequences of this excess. The 
practical result of finding the probability distribution of the 
actual ship berthing time is that before cargo loading the 
charterer (or shipowner) can predict possible ship demurrage 
and associated losses, as well as take appropriate measures 
to reduce the corresponding losses, for example, by insuring 
the specified risk.

To achieve the aim, the following tasks were set:
– to develop a probabilistic model of port terminal opera-

tion to account for irregular cargo delivery by rail to the port 
terminal using linear Markov processes;

– to find an analytical expression for calculating the 
probability of ship demurrage under loading operations 
caused by the late cargo delivery by rail organized under the 
direct option (i. e., without cargo warehousing);

– to develop an asymptotic formula for the specified de-
murrage probability for large deadweight tonnage values and 
to conduct numerical analysis;

– to develop a criterion of expediency of insuring the risk 
of additional ship demurrage due to excessive waiting for 
cargo delivery to the terminal.

4. Prerequisites for building a probabilistic model of  
the port terminal

First, we consider the formal statement of the problem. 
Suppose that at the initial moment of time, at the terminal 
berth there is a ship for cargo loading and its net deadweight 
tonnage is a random variable with the distribution function 
H(x). The ship is loaded under the direct option, that is, di-
rectly from railcars, at a predetermined rate W. At the initial 
moment of time, there are no loaded cars at the terminal, so 
the ship is waiting for their arrival. It is considered that load-
ed trains arrive at the terminal regularly in time, moreover, 
the train flow is described by the recovery-accumulation 
process model [9, 10]. This assumption means the following:

a) time intervals between arrivals of trains are mutually 
independent random variables τ1, τ2,…, subordinate to the 
same distribution law A(t);

b) train capacities are mutually independent random vari-
ables distributed according to the same law G(x) (and inde-
pendent of random time intervals between train arrivals).

It follows from the assumptions that the ship loading 
time (denoted by θ) is a random variable, since it may be 
interrupted with a positive probability several times for a 
random period due to waiting for cargo delivery by trains. In 
addition, because train capacities can also fluctuate random-
ly. Thus, there is a risk that the ship berthing time exceeds 
the laytime stipulated by the contract with the stevedoring 
company. The problem is to find an analytical expression for 
the distribution function of the ship loading time.
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5. Solution to the problem of finding the probability of 
ship demurrage under loading using linear  

Markov processes

Consider the case when

( ) { }1 1 , 0,tA t P t e t-λ= t < = - >

where 1/λ is the average time interval between arrivals of 
loaded trains to the terminal.

We also assume that
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i. e., train capacities are subordinate to the m-th order Erlang 
distribution with an average value of mg. Note that in this 
case, the time of cargo loading from the train on the ship is 
also distributed according to the m-th order Erlang law with 
an average value of m/μ, where μ=W/g. Only one train can be 
unloaded at a time. The queue length of the trains waiting for 
unloading is limited by the number R.

To solve the formulated problem, we use the fact that the 
ship loading process, by virtue of the above assumptions, 
can be reduced to the linear Markov process [9] if we use the 
Erlang pseudo-phase method [10].

In what follows, we limit ourselves to studying the case 
of R=0 (i. e., only one train can be at the terminal at any 
time). This assumption can also be interpreted as follows. 
Cargo is brought to the terminal periodically by one train, 
wherein the time interval from the end of unloading to the 
next moment of arrival with cargo is distributed exponen-
tially with the parameter λ.

We introduce the following symbols:
– p0(x, t)dx, x>0 − the probability that at time t the 

ship is under loading, but waiting for the train to arrive at 
the terminal, and the amount of cargo loaded on the ship is 
within (x, x+dx);

– pi1(x, t)dx, x>0, i=0, 1, …, m−1, – the probability of the 
next event. At time t, the ship is under loading, the number of 
the current phase of the Erlang distribution of the amount of 
cargo in the cars is i, and from the beginning of loading, the 
amount of cargo within (x, x+dx) is loaded;

– p(t) – the probability that by the time t ship handling 
is completed (this state of the Markov process under consid-
eration is absorbing).

It’s obvious that
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where H(x)=P{γ≤x}, γ is the deadweight tonnage of the ship.
To determine the functions πi(x, t), p(t) using standard 

probabilistic reasoning [9], the following system of differen-
tial equations can be derived:

(∂/∂t)π0(x, t)=−λπ0(x, t)+μπm−1,1(x, t),

(∂/∂t+W∂/∂х)π01(x, t)=−μπ01(x, t)+λπ0(x, t),	 (1)

(∂/∂t+W∂/∂х)πi1(x, t)=−μπi1(x, t)+μπi-1,1(x, t), 

x>0, i=0, 1, …, m−1,
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Initial and boundary conditions for the system (1), (2) 
are as follows:

π0(x, 0)=δ(х), πi1(x, 0)=0, i=0, 1, …, m−1, 	 (3)

p(0)=0, Wπ0(0, t)=δ(t), πi1(0, t)=0, i=0, 1, …, m−1, 	 (4)

where δ(х) is the Dirac delta function. According to (3), at 
the initial time t=0, there is no loaded train at the terminal 
and the ship is waiting for arrival.

Applying the Laplace transform of the variable t to the 
system of equations (1), we obtain the following system of 
ordinary differential equations:
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The system (5) shall be solved under the initial condi-
tions ((3), (4)):

( )1 00∗π = di iW , s ,  0,1 1,m= -i , ..., 	  		  (7)

where δi0 is the Kronecker delta.
The solution of the system of equations (5) under (7) and 

arbitrary m can be found by standard methods for solving 
systems of first-order linear differential equations, for ex-
ample, by the Laplace transform of the variable x. For small 
values of m, the solution is quite simple. We give this solution 
for two special cases m=1 and m=2.

If m=1, then from (5) we get

( ) ( ) ( )* *
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Integration of this system with allowance for (7) gives
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Using these equalities, from (6) we find
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where h(s) is the Laplace-Stieltjes transform of H(x).
From (8), in particular, it follows that the first two initial 

distribution moments of the random variable θ are equal to

( )( )* 1

0

d
1 ,

d s

h
M sp s

s W=

µ θ = - = +  λ

( )( )
2

2 * 1 2
2 2 2

0

2d
1 ,

d
s

h h
M sp s

s W W
=

µ µ θ = = + +  λ λ
		  (9)

where h1, h2 are the first two moments of the distribution 
function H(x).

With the help of (9), the lower bound of the distribution 
of the random variable θ can be found using one of the mod-
ifications of the Chebyshev inequality [10]:
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If the deadweight tonnage of the ship is known in ad-
vance and is D, then

 
Н(х)=0, if х<D, Н(х)=1 otherwise, 

and from (8) we get

sp*(s)=exp[−sT(1+μ/(s+λ))],

where T=D/W. This expression is the Laplace transform of 
the following function
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Note that in the formula (11), the parameter μТ=D/g.
For m=2, the system (5) takes the following form:
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Expressing ( )*
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11 ,x sπ  from (12) and 
substituting in the first equation of the system (13), we come 

to the following system of two first-order linear differential 
equations:
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To solve the system of equations (14), we use the Laplace 
transform of the variable x. After applying this transform, 
taking into account (7), we come to the following system of 
algebraic equations with respect to the functions
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The solution to the last system of equations is:
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Using the rules of recovery of the original time function 
from its transform for the Laplace transform of the variable z, 
from (15) we find:
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From the last equalities, in particular, it follows that
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From (16), by virtue of the theorem of Laplace convolu-
tion transform, the equality follows
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Therefore, taking into account (15), (16), after integra-
tion, we find
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Now, using the expressions (17), (19) from the relation (6), 
we find the Laplace transform of the desired distribution 
function of the ship berthing time (θ) under loading opera-
tions, taking into account possible loading interruptions due 
to the lack of cargo at the terminal:
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The formula (20) gives the desired solution for m=2. The 
expression (20) can also be reversed using the appropriate 
technique of recovery of the original time function from the 
Laplace transform [11]. However, the corresponding original 
function will have a very complex look.

From (20), by differentiating the variable s at the point 
s=0, it is possible to find the moments of distribution of the 
random variable θ. For example, for mathematical expecta-
tion, taking into account the equations (18), we have 
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h W
=

µ θ = - = + +  λ

µµ + + -  λ µ λ
 		  (21)

Using (21), it is possible to determine the upper bound 
of the probability that θ exceeds the given time t using the 
Markov inequality:

Р{θ≥t}≤Mθ/t.

However, the upper bound obtained is very rough.

6. Finding an asymptotic formula of demurrage 
probability for large values of ship deadweight tonnage. 

Numerical illustration of the results

As a numerical illustration, we consider two examples:
a) The case of constant train capacity.
The results obtained above (11) are inconvenient for nu-

merical calculations, since it becomes necessary to find the 
sum of an infinite functional series. Therefore, it is desirable 
to have an approximate formula to simplify the calculations. 
This can be done if, for example, cargo is assumed to be pe-
riodically delivered to the terminal by the same train with a 
constant capacity (i. e. load) equal to d. Let τ1, τ2, … be ran-
dom time intervals between the arrivals of the loaded train 
to the terminal. We assume, as above, that the random vari-

ables τ1, τ2, … are mutually independent and obey the expo-
nential distribution law with the parameter λ. Thus, the only 
risk factor is the duration of intervals between train arrivals.

Let the ship deadweight tonnage be fixed and equal to D, 
then exactly N trains will be required for full loading, where

N=<D/d>,

<z>=z, if z − integer, [z]+1, if − fractional; [z] is the integer 
part of z.

In this case, the ship berthing time θ will be equal to

θ=τ1+...+τN+Т.	 			    (22)

In practical cases, the number N can be considered quite 
large. For example, for D=30 thousand tons, d=1 thousand 
tons, N=30, i. e., the sum of 30 random variables should be 
considered in (22). In such a situation, it is natural to use the 
central limit theorem, according to which the random vari-
able τ1+...+τN for large N is approximately normal. Therefore, 
according to (22), we can write

( ) { } ( )
,

t T N
p t P t

N

 λ - -
= θ £ ≈ Φ  

 ,N → ∞  ,t T> 	 (23)
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( ) 2 /21
d .

2

x
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-∞
Φ = ∫

π

In (23), the parameter 1/λ=Mτ1 is the average time in-
terval between adjacent arrivals of the loaded train to the 
terminal. It follows from (23) that for large values of N, the 
most probable values of the random variable θ belong to the 
interval (the three sigma rule for the normal distribution law):

3 3
,  .

N N N N
T T

 - +
+ + λ λ 

Note that the middle of this interval is equal to the aver-
age value of the random variable θ, i. e.

Mθ=Т+N/λ.

If we take the last expression as laytime, then it follows 
from (23) that

р(tl)=Ф(0)=0.5,

i. e., the probability of exceeding it is very high (=0.5). Given 
this, the following value can be taken as laytime

3
= .l

N N
t T

+
+

λ
		   (24) 

Taking into account (24), from (23) we find the probabil-
ity that the ship berthing time does not exceed tl:

( ) ( ) ( )3 0.9999,l
l

t T N
p t

N

 λ - -
≈ Φ = Φ ≈  

 ,N → ∞

i. e., the probability of exceeding the laytime is almost zero. 
However, the value of tl, calculated by (24), significantly 
exceeds the duration of actually loading operations T. There-
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fore, to determine tl, additional economic justification is 
required.

Table 1 shows the values of the confidence limits of the 
ship berthing time for different values of N, λ, T. The data 
correspond to the actual reporting data on bulk carriers 
for transporting bulk cargo handled at berths 5, 6, 7, 8 of 
the Yuzhny sea trade port in 2019. Loaded cargo – iron ore 
concentrate and pellets.

Table 1

Confidence limit values

N
T, 

days
λ,  

1/day
Т+(N−3√N)/λ, 

days
Т+(N+3√N)/λ, 

days
Mθ, days

9 3 1 3 21 12

9 3 2 3 12 7.5

9 3 3 3 9 6

16 5 2 7 19 13

16 6 2 8 20 14

16 4 3 5.3 13.3 9.3

25 5 2 10 25 17.5

25 6 2 11 26 18.5

25 7 3 10.3 20.3 15.3

36 4 2 13 31 22

36 6 2 15 33 24

36 6 3 12 24 18

 
Table 1 shows that with an increase in N with a fixed 

value of the parameter λ (rate of trains arrival to the ter-
minal), the confidence limits also increase. Moreover, the 
width of the interval grows as .N  In addition, the upper 
limit of the confidence interval and Mθ with increasing N 
significantly exceed the net loading time of the ship T. This 
is a consequence of a significant irregularity of the arrival of 
loaded trains to the port (time intervals between arrivals of 
loaded trains are distributed exponentially). With a greater 
degree of regularity, these intervals can be distributed, for 
example, by Erlang’s law.

The data in Table 1 indicate that the risk of exceeding 
Mθ increases with increasing N and certain organizational 
and economic measures to reduce it need to be taken. This 
issue is addressed in the problem below.

b) Insurance of the laytime exceeding risk.
Due to the possible additional demurrage of the ship 

due to waiting for cargo delivery by ground transport, the 
charterer of the ship runs the risk of exceeding the laytime 
and paying the corresponding fines (so-called demurrage) by 
the shipowner. In fact, these financial losses can be reduced 
by insuring the specified risk on certain conditions. In such 
a situation, it is necessary to be able to quantify possible 
(expected) gain of the charterer from insurance using mod-
els similar to those discussed above. Below we demonstrate 
such a possibility.

Let us first estimate the shipowner’s possible losses upon 
the occurrence of an insured event, i. e., for θ>tl. If we desig-
nate daily berthing costs of the ship by еb, then the indicated 
losses will amount to

еb max(0, θ−tl). 			    (25)
 
The charterer can insure himself against these losses 

by paying an insurance premium in the amount of c to the 
insurer. The problem is to compare с with the random vari-

able (25). The simplest criterion for insurance expediency 
is to compare the charterer’s expected benefits in case of 
insurance (Pins) and non-insurance (Рnins) of the indicated 
losses. Obviously

МРins=−с+еinsМmax(0, θ−tins),

МРnins=с−еinsМmax(0, θ−tins). 		   	 (26)

Note that the variances of the random variables Pins and 
Рnins coincide, which gives the basis when deciding on insur-
ance to be limited only to the average gain (26).

Further, from (26) it can be seen that

( ) ( ) ( )max 0, d .
l

l l
t

M t t p
∞

θ - = t - t∫  		 (27) 

Thus, risk insurance is advisable if the following condi-
tion holds

МPins>МРnins

or, taking into account (27),

( ) ( )d / .
l
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t

t p c e
∞

t - t >∫ 		   (28) 

For the practical use of the criterion (28), it is necessary 
to know the explicit form of the probability ( ).p t  For ex-
ample, for (11) from (28) we get the following condition of 
insurance expediency
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However, as noted above, practical calculations of the 
left side of the last inequality involve significant compu-
tational difficulties with real values of the parameter μТ. 
Therefore, for the numerical illustration of the criterion (28), 
we use the asymptotic formula (23).

Substituting the expression (23) into the left side of the 
inequality (28), we  get
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It can be shown that after some transformations, the last 
integral is reduced to the following form:
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 	 (29)

Table 2 shows numerical values of the expression (29) for 
different values of the parameters N, λ, tl−Т. Here

ρ=[λ(tl−Т)−N]/√N.
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Table 2

Numerical values of the expression (29)

N λ, 1/day (1/λ)√N/2π Tl−T, days ρ I, days

9 0.5 2.394 2 −2.667 5.854

9 1.0 1.197 1 –2.667 3.214

9 2.0 0.599 1 –2.333 0.132

16 1.0 1.596 1 –3.500 5.584

16 1.5 1.064 2 –3.250 3.460

16 2.0 0.798 2 –3.000 2.400

20 1.0 1.772 2 –4.025 7.132

20 1.5 1.189 2 –3.081 4.519

20 2.0 0.892 2 –2.530 2.257

From Table 2 it can be seen that for the fixed values of N, 
the value of I decreases with increasing flow rate of loaded 
trains λ. Comparison of I with the ratio c/eb leads to the 
conclusion about the expediency of insuring the risk that the 
total ship loading time exceeds the laytime tl. If, for example, 
eb=5 thousand c. u. per day, then for the last row of Table 2 
insurance will be appropriate if the insurance premium is 
less than 5·2, 257=11,285 thousand c. u. For these reasons, 
the charterer may take 2+Т as laytime in the contract of 
carriage.

7. Discussion of the developed method for finding  
the distribution of the ship berthing time under loading

As a result of the study, a practically important and 
theoretically difficult problem is solved. It concerns find-
ing the time distribution function of ship berthing under 
loading operations, taking into account possible increase in 
berthing time under handling due to the irregular cargo de-
livery by trains when organizing transshipment operations 
under the direct option. Knowing the specified distribution 
function allows the charterer (or shipowner) to predict the 
possible excess of laytime and resulting losses. To solve this 
problem, a method based on the use of linear Markov pro-
cesses, which describe random variation of cargo delivery 
to the terminal and volume of the cargo lot is developed. 
The proposed approach allows quantifying the feasibility 
of insuring financial losses of the charterer. As a result of 
the study, exact (in terms of the Laplace transform) and as-
ymptotic formulas for calculating the distribution function 
of the total ship berthing time are obtained, taking into 
account possible interruptions in loading due to the lack of 
loaded trains at the terminal. For this purpose, a system of 
differential equations of the probability densities of the cor-
responding Markov process is derived and solved. For the 
practical use of the described method, simple asymptotic 
formulas are found and the criterion for the feasibility of 
insuring the risk of ship demurrage due to waiting for cargo 
delivery is developed.

Although only the simplest case is considered above, the 
approach used allows solving similar problems in a more 
general formulation (several ships, limited reliability of 
transshipment equipment, etc.). The practical implementa-
tion of the developed method will reduce charterer’s risks 
associated with the laytime excess by actual berthing time.

The proposed approach for estimating the ship demur-
rage probability can be used in further studies on this prob-
lem. For example, to take into account varying regularity of 
cargo delivery by land transport, the Erlang distribution to 
simulate time intervals between adjacent arrivals of loaded 
trains to the terminal can be used. This will allow taking 
into account the varying regularity of cargo delivery to the 
terminal − from completely random (for example, Poisson) 
to completely regular (i. e., at constant intervals between 
car arrivals) flow.

An important factor is also possible random fluctuations 
in the rate of cargo transshipment from the trains to the ship, 
caused by weather conditions or sudden failures of transship-
ment equipment. This circumstance can also be taken into 
account in further studies using the above approach.

A more accurate method for assessing the laytime ex-
ceeding probability will allow the charterer and port opera-
tor to reduce losses associated with additional unproductive 
demurrage of the ship.

8. Conclusions

1. To study the transshipment process, the model of port 
terminal operation that takes into account irregular cargo 
delivery to the port terminal by rail is developed. This model 
is built using linear Markov processes, which allows taking 
into account objectively existing irregular arrival of loaded 
trains to the terminal. This irregularity is caused by the 
impossibility of perfect coordination of the dates of cargo 
delivery by rail and ship readiness for loading due to many 
objective and subjective factors.

2. In order to find an analytical dependence of the prob-
ability of ship demurrage under loading operations due to 
untimely cargo delivery by trains, the system of differential 
equations of the probability densities and state probabilities of 
the specified Markov process is derived and solved. The solu-
tion found to the indicated system of equations made it possi-
ble to determine the desired time distribution of ship berthing 
under loading operations and waiting for cargo delivery.

3. The asymptotic formula for the indicated ship demur-
rage probability for large values of deadweight tonnage is 
obtained and numerical analysis is carried out. The numeri-
cal illustration of this formula on the basis of realistic initial 
data shows that it gives acceptable practical results.

4. The quantitative criterion for the economic feasibil-
ity of insuring the risk of additional ship demurrage due 
to excessive waiting for cargo delivery to the terminal is 
developed.
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