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1. Introduction

It was historically predetermined that a considerable 
body of scientific research is largely focused on the study of 
properties of linear systems, in particular, systems of linear 
algebraic equations (SLAE) [1–3]. This is explained by the 
fact that linearity is an initial basic structure on which more 
complex structures are further “fit”. Quite often, a nonlinear 
problem is replaced in some determined neighborhood by 
a linear (simplified) problem at each step of the algorithm 
under study. For example, Newton’s classical method of solv-
ing systems of nonlinear equations contains in its structure 
(as simplification or linearization) solution of a system of 
linear algebraic equations. SLAE and linear programming 
problems (LPP) were used, for example, in first industrial im-
plementations for military and economy needs as an auxiliary 
decision-making tool using information technology [3, 4].  
It is not difficult to be convinced that typical SLAE (as LPP 
iteration) were implemented for a rectangular constraint 
matrix on an assumption of rank completeness [1–3]. Com-

patibility of SLAE with a rectangular constraint matrix 
is studied, for example, by application of the well-known 
Kronecker-Capelli theorem. In this case, solvability of the 
problem is reduced to comparison of rank magnitudes of 
matrices of main and extended constraint systems. When 
constructing a fundamental system of solutions (FSS), rank 
magnitude remains a fundamental problem of establishing 
the system properties [3]. The rank magnitude is defined as 
the highest order of a non-zero minor (analysis of sequence 
of the “framing” rectangular matrices). The rank magnitude 
correlates with the number of iterations at which leading 
element is non-zero in the Gaussian type methods.

On the other hand, the problem of determining rank 
magnitude of a linear system has turned out to be dependent 
on organization of computing technology. In particular, cal-
culation practice revealed distinctions between mathematical 
(theoretical or exact) and machine (computer) representation 
of the model [1]. These distinctions (as irreversible errors) are 
an additional source of model and process inadequacy (for 
example, task inaccuracy). Moreover, in different computa-
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Удосконалено алгоритм методу базисних матриць 
для проведення аналiзу властивостей лiнiйної системи 
(СЛАР) при рiзноманiтних змiнах в моделi. Зокрема, 
при включеннi-виключеннi групи рядкiв та стовпцiв (на 
основi "окаямлювання") без перерозв’язання задачi спо-
чатку. Встановлено умови сумiсностi (несумiсностi) 
обмежень та побудовано вектори фундаментальної 
системи розв’язкiв у випадку сумiсностi. Дослiджено 
вплив точностi подання елементiв моделi (довжина 
мантиси, величина порядку, порогу машинного нуля 
та переповнення) та варiантiв органiзацiї проведення 
обчислень на властивостi розв’язкiв. Зокрема, вплив на 
величину та повноту рангу на прикладi СЛАР з погано 
обумовленою матрицею обмежень. Програмна реалiза-
цiя була розвинута на проведення обчислень за метода-
ми базисних матриць (МБМ) та Гауса, тобто викори-
стано довгу арифметику для моделей з рацiональними 
елементами. Запропоновано алгоритми та комп'ютер-
ну реалiзацiю методiв типу Гауса та штучних базисних 
матриць (варiант методу базисних матриць) в середо-
вищах Мatlab та Visual С++ з використанням техноло-
гiї точних обчислень елементiв методiв, в першу чергу, 
для погано обумовлених систем рiзної розмiрностi. 

На прикладi матриць Гiльберта, якi характеризу-
ються як "незручнi", проведено експеримент з метою 
аналiзу властивостей лiнiйної системи при рiзних 
розмiрностях, точностi подання вхiдних даних та 
сценарiях проведення обчислень. Розвинуто формати 
("точний" та "неточний") подання елементiв моделi 
(довжина мантиси, величина порядку, порогу машинно-
го нуля та переповнення) та варiанти органiзацiї вико-
нання основних операцiй при проведеннi обчислень та їх 
вплив на властивостi розв’язкiв. Зокрема, простежено 
вплив на величину та повноту рангу на прикладi СЛАР з 
погано обумовленою матрицею обмежень 

Ключовi слова: метод базисних матриць, прямокут-
на матриця обмежень, погано обумовлена СЛАР
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tion scenarios, this inadequacy manifests itself in different 
ways both quantitatively and qualitatively (because of mantis 
length, order magnitude, rounding methods and computation 
organization). For example, in IEEE standard [1, 2], machine 
zero is a certain interval of belonging to a set of subnormal 
numbers in calculations. It can acquire specific (reference) 
boundaries at a given computation configuration. In general, 
mathematical (analytical) zero can be regarded as an exact 
assignment and machine (computer) one as an inaccurate as-
signment. On the other hand, fulfillment of the zero-non-zero 
condition is essential in organization of many algorithms, in 
particular, in the Gauss method (leading element) or in the 
simplex method as a condition of independence of the vector 
system (resistance), etc., and can acquire “own” quantitative 
content depending on computation process organization. In 
general, sequence of operations is also important when per-
forming calculations because commutativity is not always 
met. Through “delineation” of the machine zero, influence on 
the rank magnitude and other model parameters are deter-
mined in calculations. As a mathematical category, the rank 
magnitude is a key property in analysis of structure properties 
of a problem (representation of a multifaceted set) which also 
depends on fulfillment of this condition. Quantitative inaccu-
racies in representation of model elements can cause qualita-
tive distinctions in geometric structure (multifaceted set), in 
particular, dimension of the set, minimal face, etc.

These properties can be of significance in conditions of 
poor conditionality. Some poorly conditioned constraint 
matrices have a typical structure with their intrinsic pe-
culiarities (embedded features of formation). In particular, 
the Hilbert matrix is mathematically fully ranked and non-
degenerate. Conduction of calculations using this matrix 
can bring about contradictory (unpredictable) results, both 
accurate and with a great error. In this regard, approaches to 
construction of preconditioners aimed to “correct” such sys-
tem property by directed transformation of the constraint 
matrix were proposed [5–8].

Some typical matrices (including those mentioned above) 
can serve as components when solving a series of problems of 
the same type in conditions of different dimensions. In this 
case, constraint matrices of larger dimension can be consid-
ered as sequences of column-row inclusions to matrices of 
smaller dimension. In particular, in the Galorkin scheme for 
the boundary-value problem, the basis function system can 
be expanded by inclusion of new functions to achieve greater 
solution precision which determines the process of increas-
ing dimension of the SLAE constraint matrix by framing the 
Hilbert matrices.

It is getting important to establish both the rank magni-
tude and connections between solutions of the problems of 
different dimension in such changes.

It seems appropriate to develop new and improve ex-
isting methods and algorithms of analyzing the impact of 
changes in presentation of SLAE elements whose values are 
in the “zone” close to the machine zero, in particular, when 
solving systems of equations in different variants of model 
representation (mantis length, order value, etc.) taking into 
account peculiarities of the constraint matrix structure.

2. Literature review and problem statement

Today, there are dozens of versions of exact and probably 
hundreds of versions of iteration methods and algorithms of 

SLAE solution. The most common and applied of them are 
given in [1, 3]. In some cases, application of certain iterative 
methods in solving SLAE can lead to a loss of “continuity” 
(depending on initial solutions) which limits their use in anal-
ysis of system properties in a context of the given problem. 
This, in particular, can be traced in [1, 3]. However, important 
aspects concerning determination of the rank magnitude and 
its effect on properties have been neglected and not studied 
enough by the authors. In theoretical studies, the category 
of rank is key in establishing properties of the system, and 
in practical calculations, it depends on computation process 
organization and the problem properties. It seems appropriate 
to use the SLAE solution which thoroughly evaluates and 
considers magnitude of the rank and its completeness. There-
fore, from the point of view of applicability in analysis of the 
problem properties, it is advisable to take the classic exact 
methods in which such a possibility is embedded as a basis. 
The Kramer and Gauss methods, including their adaptation 
to the structure of the constraint and generalization matrices 
are the most famous [1–3]. If we consider an SLAE with an ar-
bitrary row to column ratio, then the Gaussian method can be 
considered as a universal one. The method allows one to solve 
the problem without limitations on structure and dimensions 
of the corresponding matrix. Such variants of this method are 
imbedded in some implementations of SLAE and LLP [3, 4]. 
The theoretical backgrounds of the SLAE solution methods 
proposed in both well-known [1, 3] and more recent [5–7] 
publications suggest the following. For their correct applica-
tion, for example in calculations, it is important to determine 
magnitude of the rank and properties of its completeness, 
finding an appropriate rank matrix (basic), fulfillment of 
conditions of resistance, non-degeneracy of the basic matrix. 
In general, establishing these properties is a separate auxiliary 
problem of analysis.

The abovementioned classic methods of SLAE solution 
have some universal properties that make it possible to move 
in the course of iterations from the initial constraint matrix 
to one of a simple structure without limiting its dimensions. 
During these iterations (non-zero leading element in itera-
tions is the condition of transition accuracy), all important 
parameters of the system (solvability, rank magnitude) can 
be established which makes it possible to find common solu-
tions or establish incompatibility of the problem constraints. 
In the case of rank completeness, this approach was taken as 
a basis of the matrix rotation procedure and construction of 
variants of implementation of the simplex method for finding 
an optimal solution [3, 4]. However, specificity of the Gauss-
ian method, as a tool for solving SLAEs [8], somewhat limits 
its use in analyzing properties of the system when solving 
other related problems. It should be noted that computa-
tional intensity of iterations of the method decreases in the 
course of calculations.

Along with the classical (Gaussian) scheme of studying 
SLAE and ZLP, there are variants using the basic matrix 
method (BMM) whose computational scheme works, ten-
tatively speaking, on the contrary [9–11]. Transition is 
made to the initial model from the auxiliary SLAE with 
a trivial constraint matrix and known solution by means 
of equivalent transformations (sequential inclusion of the 
initial problem constraints). In the course of iterations, all 
important parameters are monitored such as condition of re-
sistance (the leading element of transformation is non-zero), 
completeness of rank, non-degeneracy of the straight and 
inverted matrices, intermediate solutions, establishment of 
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the problem solvability, control of the system conditionality. 
But what is the most valuable, ability to analyze impact of 
change of individual elements (rows, columns) in the model 
without having to solve the problem with making changes 
to the model. This reduces time spent in finding the best 
solution. Thus, the use of BMM not only enables solution of 
problems but also conduction of analysis.

The solution found by one of the methods can also deter-
mine statement of a number of new problems. For example, 
when establishing property of incompleteness of the con-
straint matrix rank or insolubility of SLAE or LPP, it may 
be necessary to restore the rank completeness by purposeful 
changes to the constraint matrix, identification of the con-
straints that cause incompatibly and their elimination from 
consideration or, if possible, restore solvability by purposeful 
changes in the model. This is characteristic in the case where 
simple rejection of constraints that create insolubility is un-
acceptable. If the SLAE as a process model is refined when it 
undergoes changes, then the problem of analyzing the SLAE 
properties as a result of changes in the model may be relevant 
but without re-solving. The problems in this formulation 
were investigated in [11], in particular, when expanding (or 
narrowing) the constraints matrix by inclusion (exclusion) 
of rows or columns. This may be relevant when using SLAE, 
for example, when solving a boundary value problem using 
the Galorkin method. Here, the system of basic functions can 
be expanded which causes a change in the constraint matrix 
(“framing” of the current one).

From a mathematical point of view, the category of rank 
(its magnitude, completeness) as the order of a maximum 
non-zero minor is determined by checking fulfillment of the 
condition of independence of the system of vectors (resis-
tance) in iterations of a number of methods (the leading ele-
ment is non-zero). It is significant in theoretical studies when 
analyzing properties of linear systems. On the other hand, 
practice of implementing methods and algorithms opens up 
significance of the rank category, however in the context of 
computer representation of the mathematical model [1, 2].

It is well known that accumulation of errors in round-
ing and performing basic operations using a computer is 
generally an irreversible source of errors and inadequacy 
of the process model in studies. Content of the category of 
machine zero was revealed in [1, 2] as a counterpart of math-
ematical zero which can be interpreted in some sense as an 
inaccurately set value (a certain membership interval). It is 
also known that rounding and computing operations can be 
organized differently in general. In particular, according to 
the IEEE format, when representing a model, the machine 
zero corresponds mathematically to a certain set (interval). 
For example, when calculating a mathematical master ele-
ment and its machine counterpart (as an interval dependent 
on the chosen standard of representation of model numbers 
and organization of calculations), distinctions may arise 
when checking fulfillment of the “zero-non-zero” condition. 
In particular, inconsistencies appear between mathematical 
and machine representation of the model with different ac-
curacy in the number of “fulfillments” of the conditions of in-
dependence of the vector system (the leading element of trans-
formation is non-zero) at iterations in the zones close to the 
machine zero. For example, when calculating with the use of 
the Hilbert matrix, significant errors were detected: devia-
tion of the found solution for different accuracy options [10].  
Thus, it can be stated that the methods of investigating the 
model properties and relationship of the results at various 

parameters (especially close to ‘zero-non-zero’ transients) of 
experiments have not been developed sufficiently.

Accumulation of errors in calculations is promoted by 
poor conditionality of the system [1]. In conditions of poor 
conditionality, presence of the control of occurrence of cal-
culations in a state of poor conditionality is the desirable 
property of methods and algorithms [1, 5–8]. It is known 
that conditionality estimation implies presence of norms (or 
their estimates) of straight and inverse matrices which is not 
always embedded in capabilities of a concrete computational 
scheme. Study [10] provides an overview of methods and 
algorithms for calculating variants of model accuracy, in 
particular, in exact numbers for poorly conditioned systems 
(with structure features).

Also, presence of a reference solution and a set of test 
tasks using specific methods to verify their properties is im-
portant in calculations. References to the respective libraries 
are given in [1, 8].

Development of so-called exact algorithms within the 
methods of calculating in rational numbers is another approach 
proposed in [10]. This makes it possible to directly check effi-
ciency of calculations according to the algorithm, in particular, 
combined use of variants of implementation of algorithms and 
methods [1–3, 8–10] in different programming languages, for 
different levels of accuracy (mantis length, order value) in exact 
numbers for a typical problem. For example, using the Hilbert 
constraint matrix one can identify important regularities for 
further construction of the membership function [12, 13]. A 
well-constructed membership function can be used later in 
making decisions on how organize calculations to achieve a 
given level of calculation parameters.

Finding magnitude of the rank, establishing its complete-
ness, the scheme of restoring its completeness and analysis of 
resolvability are imbedded in BMM [9–1]. Implementations 
have been developed in environment of various software 
products, different computation scenarios, in particular, in 
exact numbers, and for “growing-up” the accounting mecha-
nism and fuzziness in model representation.

There is an obvious need to improve existing and develop 
new methods and algorithms that would provide an oppor-
tunity to analyze linear systems using a single methodology. 
In particular, this applies to the models further applicable 
in solution of SLAEs with a poorly conditioned constraint 
matrix, different scenarios of representation of the model 
elements (mantis lengths, order magnitude, etc.). Not only 
the fact of solving the problem but also availability of tools 
to analyze properties of the model in changes, different sce-
narios of calculation and establishing their relationships is 
very important. It is also important to study possibilities of 
influence (“from the inside”) of such parameters as the lead-
ing element of iteration, conditions of the value resistance 
and the rank completeness taking into account thresholds of 
machine zero and overflow on key parameters of the methods 
and algorithms of analysis. This also applies to the ways of 
analyzing and processing transient situations (“near zero”). 
Pre-checked and confirmed consistency between all parame-
ters of calculation should be considered as an important sign 
of computation correctness.

3. The aim and objectives of the study

The study objective is development of theoretical provi-
sions for construction of algorithms of compatibility analysis 
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and solution of linear systems (SLAE) which are provided 
with additional types of data (“accurate” and “inaccurate”) 
to represent the model parameters, organize various options 
for performing basic operations during calculation, in par-
ticular, when values of the model elements in the “zone” are 
close to the machine zero when establishing properties of 
poorly conditioned linear systems.

To achieve this objective, the following tasks were set:
– improve SLAE solution algorithms as regards analysis 

of compatibility (incompatibility) of constraints, construc-
tion of structure of vectors of fundamental solution system in 
the case of compatibility and impact of changes in the model 
using the basic matrix method, in particular, when including 
and axcluding a group of rows and columns without re-solv-
ing the problem from beginning;

– study the effect of “exact” and “inexact” types of data 
entered to perform calculation of properties using the basic 
matrix method, in particular, effect on the magnitude and 
completeness of the rank on an example of a SLAE with a 
poorly conditioned constraint matrix;

– perform a computational experiment to analyze prop-
erties of a linear system with a poorly conditioned constraint 
matrix (the Hilbert matrix) for different parameters of data 
representation (mantis length, model dimensionalty) and 
variants of computation (including the case of computation 
in exact numbers).

4. Theoretical aspects of analysis of compatibility of 
constraints and construction of the linear system solution 

structure

It is known [4] that finding common solutions of a sys-
tem of linear algebraic inhomogeneous equations involves a 
step of constructing a fundamental system of vectors, that is, 
a subspace of general solutions of the corresponding system 
of homogeneous equations shifted to the vector of inho-
mogeneous system solution. For overconditioned SLAEs, a 
problem of analyzing solvability in terms of compatibility 
appears as well.

It follows that the problem consists not only in devel-
opment of a standard procedure for constructing common 
solutions (at compatibility of constraints) but also in estab-
lishment of the system solvability in general. When using 
SLAE models, a need arises to analyze effects from changes 
in elements, rows or columns of the constraint matrix on the 
structure of common solutions [9–11].

Let us there is a SLAE: 

Ах=В,				    (1)

where 

{ }
1, , 1,ij i m j n

A a
= =

=  

are elements; 

{ } { }1 21, 1,
, ,....,i i i ini m i m

a a a a
= =

=  

are rows; 

{ } { }1 21, 1,
, ,....,j j j mjj n j n

A a a a
= =

=  

are columns of a matrix with dimensions (m, n); 

x=(x1, x2,…, xn)T=(xb, xn)T

is vector of variables; 

B=(b1, b2,… , bm)T=(Bb, Bn)T 

is vector of the right-hand sides of constraints; T is transpo-
sition sign. 

Model (1) is studied in En.
Introduce sets of indices 

I=(1, 2,…, m), J=(1, 2,…, n), Ib=(i1, i2,…, ir), 

Jb=(j1, j2,…, jr), Jn=J/Jb, In=I/Ib 

are sets of indices of rows and columns (linearly indepen-
dent) and the remaining rows (columns).

In the general case, for a rectangular constraint matrix, 
the rank R=rank(A)<min (m, n).

Assume that model (1) is studied in En space. Assuming 
the sets Ib, Jb are known, introduce the following into the 
matrix consideration:

{ } { } { }1 2
, ( ) , ,...., ;

b j jrb bb

i Ib ij b i ij i ii I i Ij J
A a a a a aÎ Î ÎÎ

= = =

{ }
1 2

T
, ,...., ;

r
b

bj i j i j i j j J
A a a a

Î
=

{ } { }
{ }

1 2

,

, ,...., ;

b
bb

j j jr
b

b bii Iij i Ij J

i i i
i I

A a a

a a a

∉
∉Î

∉

= = =

=

{ } , .
b

b

н i Iij
j J

A a ∉
∉

=

Introduce main definitions.
Definition 1. Call a rectangular matrix Ab, formed by 

intersection of r linearly independent rows 
1 2
, , ... ,

ri i ia a a   
(i1, i2,… , ir)=IbÌI and columns 

1 2
, , ... ,

rj j jA A A ( j1, j2, … , jr)= 
=JbÌJ (1) an r-basic matrix and call the solution 

( )
1 20 , ,...,

ri i ix x x x=  

of the corresponding system of equations Abxb=Bb, BbÌB an 
r-basic solution.

Definition 2. Call two r-basic matrices with one different 
row or column adjacent matrices. 

Basic matrices (r=m) are successively changed in BMM 
iterations by substitution of rows. Let eri are elements of the 
matrix 1,bА-  inverted to Ab; ar=(ar1, ar2,…, arm) is the vector 
of development of ar by the rows of the basic matrix Ab; 
xj=(x1j, x2j, …, xmj) be the vector of development of the col-
umn Aj, jÎJ by columns of the basic matrix Ab. Elements of 
the BMM are coefficients of development of the normals to 
constraints. Denote coefficients of the inverted matrix by a 
bar at the top, i. e. Ab, ar, eri, ar. 

According to Theorem 1 [9], corresponding relations 
were established between coefficients of development of con-
straint normals (1) by rows of the basic matrix and elements 
of the inverted matrices in two adjacent basic matrices. Con-
ditions of nondegeneracy of the basic matrix when substitut-
ing normal al for the k-th row of the basic matrix Ab (alk¹0) 
were also established.
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Let values of the matrix A rank and its r-basic matrix Ab 
be known.

Without limiting generality, according to the notation 
introduced, the system (1) can be rewritten in an equiva-
lent form:

Abxb=Bb-Anxn;					    (2)

.n b n n nA x B A x= -  				    (3)

Let us study property of solvability of (1) for basic, 
non-trivial relations of dimension of the constraint matrix 
and the rank magnitude.

I. Let 

r=rank(A)=min(m,n)=m, m<n. 

With such constraints, rows 

aj=(aj1, aj2,…, ajm) 

and columns 

Aj=(a1j, a2j,…,amj), jÎJb 

are linearly independent 

Ib=I=(i1,i2,…,ir), Jn=J/Jb, In=I/Ib=Æ, 

vector of variables is 

x=(x1, x2,…, xn)T=(xb, xn)T, xb=(xi1, xi2,…,xir)TÌx, 

vector of the right-hand sides of the constraints is 

B=(b1, b2, …, bm)T=Bb.

In this case, system (1) can be rewritten in an equivalent 
form and will be solvable by compatibility.

Аbxb=B-Аnxn.				    (4)

The r-basic matrix Ab will be determined by intersection 
of rows and columns (Ib=I, Jb=(i1, i2,…, ir)ÌJ). 

Denote vectors (x10, x20,…, xm0)T, (x1j, x2j,…, xmj)T, jÎJn as 
solutions of the following SLAEs with a rectangular nonde-
generate matrix Аb of the form:

Abxb=Bb,					     (5)

Abxb=-Aj, jÎJn 				    	 (6)

and form the following vector system on their basis

0 10 20 0, ,..., ,0,0,...,0 ,m

n r

X x x x
-

 
=  

 



1 2, ,..., ,0,...,0,1,0,...,0 ,
i

i i i mi

n r

X x x x
-

 
=  

 

1, ,i n r= -  

where i is sequence number of column j in the set Jn. Ac-
cording to [4], such vector system defines a fundamental 
system of vectors, a variety of common solutions of (1) in the 
following form

0
1

,
n r

s s
s

X X
-

=

+ b∑  					     

where b1, b2, … , br are arbitrary real numbers.
Computational difficulty in finding a general solution 

of (1) lies not only in determining the rank magnitude but 
also in formation of a basic matrix and matrices inverted 
to it. This also applies to formation of a set of linearly in-
dependent rows and columns Ab, row and column develop-
ment vectors, components of the vectors X0, Xi, 1, .i n r= -  
Determination of the rank, construction of the basic matrix 
inverted to Ab (r-basic) can be made based on BMM by sub-
stitution of rows using relations of Theorem 1 [9].

Carrying out r simplex BMM iterations according to [9] 
for substituting rows (algorithm 1 in [9]) of the matrix A for 
rows of the matrix E=E-1 (an auxiliary matrix of order n)  
determines basic matrix Ab. Inverted matrix 1

bA-  of the sys-
tem (1) is also determined by deleting corresponding rows 
and columns and the matrix nondegeneracy is controlled 
in steps.

Vectors

( ) 1
0 10 20 0, , ..., ,m b bx x x x A B-= =

( ) 1
1 2, , ..., ,i j j mi b jx x x x A A-= =  jÎJn

are solutions of the SLAE of the form (5), (6) and, on the 
other hand, components of vectors X0, Xi, 1,i n r= -  are 
determined.

II. Study of the system solvability when condition m>n, 
r=rank(A)=min(n, m)=n is met determines an equivalent 
system (1):

Abxb=Bb, 					     (7)

.b b nA x B=  					     (8)

The matrix Ab (r-basic) will be determined by intersec-
tion of rows and columns (Ib=I and Jb=( j1, j2,… , jr)ÌJ).

System (7) has a unique solution 1 .b b bx A B-=  Collectively 
for (7), (8), overconditioning (of the constraint system (1)) 
BbÌB is its characteristic feature. Additional complexity con-
sists in analysis of the system (7), (8) for solvability in terms 
of compatibility, that is, admissibility of solution of (7) in the 
constraint system (8). To analyze this case, assume that 

ai=(ai1, ai2,…, aim), iÎIn, 1,i i bA-a = a  

Bb=(bi1, bi2,…, bir)TÌB, i i bb B= a  

are known and can be determined, for example, by BMM. It 
turns out that the following is true for this case.

Violation of at least one and the following relations is 
a necessary and sufficient condition for incompatibility of 
constraints (insolvability of the system (7), (8)) for which 
m>n, r=rank(A)=min(n, m)=n:

,i∃  ,iib b
-

=  .ni IÎ 			   (9)



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 ( 102 ) 2019

62

Fulfillment of the following relation is a necessary and suf-
ficient condition for compatibility of constraints (solvability 
of the system (1)) for which m>n, r=rank(A)=min(n,m)=n:

,iib b
-

=  .ni IÎ 					     (10)

III. Let 

r=rank(A)<min(n, m). 

The matrix Ab (r-basic) is determined by inter-
section of rows and columns ( ( )1 2, , ...,r

b rJ j j j J= Ì  and 
( )1 2, , ...,r

b rI i i i I= Ì ).
It is characteristic that a system equivalent to (1) takes 

the form of (2), (3), that is, analysis of its solvability is 
carried out in two steps. A common solution of (2) is con-
structed in the first step (case 1) and solvability of (2), (3) is 
analyzed in the second step. It should be noted that the solv-
ability conditions (case II) can be extended to the general 
case of structural properties of the constraint matrix and the 
rank magnitude, that is, r=rank(A)<min(n, m).

Study of cases 

r=rank(A)<min(n, m), n=m 

and 

r=rank(A)=min(n, m), n=m 

reduces to the previous cases.
The above solvability conditions are constructive in an-

alyzing the linear system properties when there are changes 
in individual elements, groups of rows and columns, or the 
constraint vector. In general, changes in the system deter-
mine magnitude of the constraint matrix rank, i. e. increase 
(decrease), re-formation of the new basic matrix (change in 
elements) and development of corresponding rows or columns 
i. e. structure of vectors of the fundamental solution system.

The theorem conditions do not contradict provisions of 
the well-known Kronecker-Capelli theorem on solvability of 
equation systems.

The use of BMM [9] provides analysis of impact of 
changes in the model (1) on overall solution. This can reduce 
total computation volume with slight changes in non-Ab 
elements (1). In this case, the problem is actually solved. In 
particular, changes in the vector B and components of the 
vectors Aj, jÎJn only determine recalculation of a perturbed 
subvector components and the compatibility check. Changes 
in the components of the basic matrix have a somewhat more 
complex mechanism of influence on the solution structure. 
In these circumstances, typical simplex iterations should be 
carried out to check rank and property of the matrix nonde-
generacy resulting from the changes.

5. Algorithms for analyzing completeness of rank of  
the constraint matrices of linear systems by the method 

of basic matrices

In this section, the method of basic matrices was devel-
oped for analysis of rank completeness [9].

Let us consider a SLAE of the form:

Au=C,	 (11)

where A is matrix with dimensions (n×m); 

C=(c1, c2,…, cn)T 

is a vector-column of dimension n; 

u=(u1, u2,…, un)T; u=(u1, u2,…, un)T 

is the sought dimension vector m; T is transposition sign; 

aj=(aj1, aj2,… , ajm), j=1, 2,…, n 

are matrix A rows. Equation (1) is supplemented by an aux-
iliary SLAE of the form:

Iu=K,	 (12)

where I is the unit-diagonal dimension matrix (m×m) and

( )T
1,1,....,1

m

K =


is the vector of dimension m. It is assumed that system (12) is 
usually trivial, with known properties. It plays only an auxil-
iary role, namely, construction of initial values of the BMM 
elements, in particular, of the inverted matrix and solution.

Method of basic matrices was taken as the basis for con-
struction of the algorithm of analyzing the SLAE properties 
since, according to [9], it has the ability of:

– finding value of rank of the matrix of system con-
straints (11);

– finding SLAE solution (11);
– controlling conditionality of the system;
– analyzing the impact of changes in the model (11) as a 

result of refinements (without re-solving);
– building initial solutions of the problems based on 

trivial basic matrices (12) which excludes initial time-con-
suming computation.

Recall [9] where the idea of an ordinal basic matrix is 
the basis of the proposed method of artificial basic matrices 
(BMM variant). During iterations, the basic matrices are 
successively changed by inclusion/exclusion of row-normals 
of the problem constraints.

Submatrix Ab composed of m linearly independent 
row-normals (i1,i2,…,im) of constraints will be called artifi-
cial basic submatrix and solution of u0 of the corresponding 
system of equations Abu=C0 where C0=(ci1, ci2,…, cin)T will be 
called artificial basic solution.

Rank of the constraint matrix A will be considered com-
plete if the condition rank(A)=min(n, m) is satisfied; m, n, 
are numbers of rows and columns of the constraint matrix, 
respectively.

Let eri be elements of the matrix 1
bA-  inverted to Ab; 

u0=(u01, u01,…, u0m)T is the basic solution; αr=(αr1, αr2, …, αrm) 
is the vector of development of the vector-normal restriction 
αru≤cr by rows of the basic matrix Ab; Δr=αru0 – cr is residual 
of the r-th constraint (1) at the vertex. All elements intro-
duced in the new basic matrix ,bА  other than ,bА  in one row 
will be marked with a bar at the top.

According to Theorem 1 [9], corresponding relations 
were established between the coefficients of development of 
normals of constraints, elements of inverted matrices, basic 
solutions and residuals of constraints in two adjacent basic 
matrices.
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On their basis, a scheme is constructed for determining 
the system (1) rank and solution of the system of equations 
by means of successive changes in basic matrices and corre-
sponding artificial solutions.

According to Lemma 1 [9], fulfillment of the condition 
αlk¹0 is a necessary and sufficient condition of linear inde-
pendence of the system of vectors 

1 2 1 1
, ,..., , , ,...,

k k mi i i l i ia a a a a a
- +

 
formed by substitution of the vector α1 for the vector 

ki
a  that 

occupies the k-th row in the basic matrix Ab. The lemma is 
fundamental in analysis of completeness of the constraint 
matrix rank and construction of new algorithms of the basic 
matrix method.

Corollary 1 (of Lemma 1 [9]). For existence of a unique 
solution (11), it is necessary and sufficient that ( ) 0,i

lka ¹  
1, ,i r=  r=m=n where i is the iteration number; ( )i

lka  are lead-
ing elements of the BMM simplex iteration for substitution of 
normals of constraints (11) for rows of the basic matrix (12).

Corollary 2 (of Lemma 1 [9]). Matrix A of the main sys-
tem (11) is not degenerate if ( ) 0,i

lka ¹  1, ,i m
----

=  r=m=n.
Corollary 3 (of Lemma 1 [9]). Rank of the system (11) 

is determined by the number of correct (as regards satis-
faction of Lemma 1 conditions) substitutions of vector-nor-
mals (11) for rows of the constraint matrix (12) (according 
to Theorem 1 [9]).

The below are main stages of the algorithmic scheme for 
finding value of rank, corresponding basic matrix and solu-
tion of the system (11) based on known properties (12) of the 
system built according to the number of columns (variables) 
of the constraint matrix:

1. Perform simplex iterations for substitution of rows 
of constraints of the system (11) for rows of the basic 
matrix of the system (12) (algorithm 1 [11]) according to 
relations (5)–(9) [9].

2. Check that conditions of nondegeneracy are fulfilled  
( ( ) ( ) 0,r rl k
a ¹  r is the iteration number).

3. Find appropriate elements of the method: vectors of 
expansion by rows of the basic constraint matrices (12), in-
verted basic matrix, basic solutions ( )

0 ,ru  where r is iteration 
number.

4. Control the number of iterations r  in substitution of 
rows of the main system (11) for which conditions of non-de-
generacy are satisfied for rows of the auxiliary system (12).

If the number of iterations of substitution of rows of the 
basic system (11) for which conditions of non-degeneracy 
( )( ) 0i

lka ¹  is equal to r and r=m=n, that is, for a rectangular 
matrix, for rows of the auxiliary system (12), a unique solu-
tion will be found according to the relation 1 0 0.bA c u- ⋅ =

If the number of iterations of substitution of rows of the 
basic system (1) for which conditions of non-degeneracy 
( )( ) 0i

lka ¹  are satisfied for the rows of the auxiliary system (2) 
is equal to r and r=m<n, that is, the constraint matrix (11) 
is “long” full-rank constraint matrix. The matrix Ab (r-basic) 
and the matrix inverted to it will be determined from the 
full-rank matrices (straight and inverted) (12) transformed 
in r iterations by deleting the substituted rows and columns, 
respectively, (Ib=I and Jb=(i1, i2,…, ir)ÌJ) (Case I from the 
previous section). Next, find the FSS (a set of solutions) or 
one of the solutions can be separated.

If the number of iterations for which ( ) 0i
lka ¹  is equal to 

r and r=n <m, it is a high constraint matrix. The matrix Ab 
(r-basic) and the matrix inverted to it will be determined 
from the full-rank matrices (straight and inverted) (12) 
transformed in r iterations by deleting substituted rows and 
columns, respectively ( Jb=J and Ib=(i1, i2,…, ir)ÌI) (Case II). 

The following is analysis of the problem solvability.
If the number of iterations for which ( ) 0i

lka ¹  is equal 
to r and conditions r<m, r<n are fulfilled, this means rank 
incompleteness for the SLAE (1), that is, the model needs 
further analysis for resolvability (Case III from the previous 
Section), namely, the matrix Ab (r-basic) and the matrix 
inverted to it will be determined from the full-rank matri-
ces transformed in r iterations (straight and inverted) (12) 
by deleting substituted rows and columns, respectively,  
( ( )1 2, , ...,r

b rJ j j j J= Ì  and ( )1 2, , ...,r
b rI i i i I= Ì ) (Case III). 

Conditions of solvability shall be checked. In they are ful-
filled, find the FSS (solution set).

5. 1. On completeness of the SLAE constraint matrix 
rank

Let the restriction alu=cl from (11) is fulfilled, that is, 
alk=0 (the k-th component of decomposition of the vector 
αl in rows of Ab is zero). That is, “inclusion” of such a row 
into the basic matrix violates the condition of non-degen-
eracy of the “new” constraint matrix (indicating a possible 
incompleteness of the rank magnitude). Accordingly, for 
the perturbed restriction  ,lla u c≤   in the form  ' ,l l la a a= +  


' ,l l lc c c= +  we can write that 

  

'
0l l l l la u c∆ = ∆ + ∆ = -  and ' ' 1( ) ( ) .l l l l l ba a A-a = a + a = +

Corollary 4. The condition of non-degeneracy of the ma-
trix bA  formed by substitution of row la  for row αl which 
occupies the k-th row in the basic matrix is fulfillment of the 
condition ∃i eik¹0 where eik is an element of the inverse ma-
trix 1

bA-  such that .lia′  The new solution will be determined 
by the ratio 



0 0
jk

lj j
lk

e
u u= - ∆

a
 

if  0,l∆ =  then 0 0 ,j ju u=  1,j m=  (remains unchanged).
This is the condition of aimed recovery of nondegenera-

cy (rank completeness) of the basic matrix in the course of 
computation. 

Corollary 5. If the leading element of simplex iteration 
αlk¹0, then the condition 0li lka + a =′  must be satisfied for 
the perturbation that preserves nondegeneracy of the “new” 
basic matrix (rank magnitude).

This is the condition of restoration of nondegeneracy 
(rank completeness).of the basic matrix with changes in the 
course of computation. 

Corollary 6. Fulfillment of  0lka ¹  is a necessary and suffi-
cient condition for preserving nondegeneracy (rank complete-
ness) of the new basic matrix Ab  formed by substitution of 
the row  la  for the row αl  occupying the k-th row in the basic 
matrix.

Validity of the corollaries follows directly from The-
orem 1 [9] and organization of an algorithmic scheme for 
solving SLAE (11).

6. Analysis of the rank magnitude in “extension” and 
“narrowing” of the constraint matrix by “framing”  

the constraint matrix of the linear system

It is known that magnitude of the constraint matrix 
rank can be judged from properties of determinants of the 
major minors of the constraint matrix [1–3]. This is where 
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the procedure of framing the minors applies. There are 
constraint matrices (for example Hilbert matrix) that are 
mathematically nondegenerate (full-rank matrices) but “can 
become” “non-rank matrices” in the case of “poor” organi-
zation of computation. It should be noted that the case of 
rank incompleteness (if the number of iterations for which 

( ) 0i
lka ¹  equals to r and conditions r<m, r<n are fulfilled) 

can be considered as the most general one. This means that 
the property of rank completeness for SLAE (11) can be a 
starting property for its further study and, in particular, 
for restoring its completeness. The model may undergo 
further changes. Because of this, analysis of solvability 
when expanding (narrowing) dimension of the constraint 
matrix, i. e. including (excluding) new rows and columns or 
changing individual model elements [9, 11] can be consid-
ered as a variant of successive changes: the changes made 
for restoration of rank completeness and the like. Natural-
ly, change in the model properties must be traced in such 
transformations.

The Ab (r-basic) matrix can be considered as a submaty-
rix of a matrix of larger dimension.

Elemental “portion” of changes in the model will be de-
termined by framing of the basic (r-basic) matrix as well (by 
inclusion of a row and a column when expanding).

The next matrix will include the previous one, that is, we 
have a sequence of major minors of the matrix (order of such 
minors’ changes). In a general case (Case III), the finite ma-
trix Ab (r-basic) and the matrix inverse to it are determined 
by transformations in r iterations from the A matrix (12) by 
deleting substituted column-rows, respectively, 

Jb=(i1, i2, …, ir)ÌJ, Ib=(i1, i2, …, ir)ÌI.

Properties of a SLAE (11) with a rectangular matrix of 
constraints in perturbations taking place in the elements of a 
“group” of rows were studied in [11]. The algorithm provides 
for sequential replacement of rows of basic matrices respec-
tively perturbed and calculation (replacement) of elements 
of the method in iterations. An important condition during 
iterations consists in preservation of non-degeneracy of the 
problem constraint matrix (Algorithm 1 [11]).

Similarly, the technology of impact of single column 
changes on solution of the SLAE [11] can be extended to 
analysis of impact of the changes in a group of columns 
by constructing a corresponding iterative procedure of 
accounting for the impact of changes in each column (Algo-
rithm 2 [11]).

Based on Algorithms 1, 2, one can construct additions to 
the study of properties of the major minor expansion (chang-
es in the group of row-columns). For example, by aimed 
framing with a group of rows and columns (when expanding 
the minor dimension:  inclusion (exclusion) of new rows and 
columns (framing).

“Expansion” and “narrowing” of the matrix of SLAE 
constraints are studied in [11].

Let the initial r-basic matrix (with known properties) is 
a part of a “larger” constraint matrix (“framing”). Without 
loss of generality, we can assume that we have a major minor: 
the r-basic constraint matrix Ab. 

Let us study the effect of framing a given minor with 
rows and columns of the “larger” constraint matrix.

Introduce auxiliary block-and-cell matrices structurally 
close to Ab and Ab

-1 (r-basic matrix and inverted matrix) of 
the form:

11 11 1

21 22 2

0

1 1

1 1

0

0

. . . 0 ,

0

0 0 0

r

r

r r rr

r r

a a a

a a a

A

a a a

I + +

 
 
 

=  
 
   











 

11 11 1

21 22 2

0

1 1

1 1

0

0

. . . 0 ,
0

0 0 0

r

r

r r rr

r r

e e e

e e e

E
e e e

I + +

 
 
 

=  
 
 
  











where Ir+p r+p is the unit-diagonal matrix of dimension p, 
and A0 and E0 contain Ab and 1,bA-  respectively, (introduced 
earlier).

By the known r-basic matrix and the Ab (minor) matrix 
inverted to it and 1,bA-  it is possible to determine properties 
of the framing matrix ,A  bA AÌ  of the following form:

11 12 1

21 22 2

1 2

,
. . .

r

r
b

r r rr

a a a

a a a
A

a a a

 
 
 =
 
  









 

11 12 1

21 22 2

1 2

,
. . .

r p

r p

r p r r pr p

a a a

a a a
A

a a a

+

+

+ + +

 
 
 =
 
  









which contain r´r and (r+p)´(r+p) elements, respectively, 
i. e. p columns and rows of framing are added to the minor 
(r-basic matrix Ab).

It is easy to make sure that:
– matrices A0 and E0  are straight and inverted matrices;
– establishment of properties of A  matrix (“extended” 

matrix) in the assumption of known Ab and 1
bA-  is based on 

sequential application of algorithms 2 (by columns) and 1 
(by rows), respectively.

That is, based on Ab та 1 :bA-

– form auxiliary matrices A0 and E0;
– realize iterative transition from A0 with inverted E0 to 

,bA  1
bA-  by successive replacement (“inclusion”) of columns 

and rows (“framing”);
– check conditions of resistance (increasing the minor 

rank) and recalculate elements of the method, in particular, 
changes in solution, and the inverse matrix;

– failure to comply with the condition of resistance 
indicates that the corresponding row and column are “un-
suitable” for framing.

A new basic matrix (of full or incomplete rank, i. e. a 
maximum minor with a non-zero determinant) is formed in 
the course of iterations in accordance with the performed 
“extension” of the constraint matrix.

On the contrary, the matrix “narrowing”, that is, es-
tablishment of Ab and 1

bA-  properties by known 1,A A-
 is 

based on “inverted” sequential application of algorithms 2  
(by columns) and 1 (by rows), respectively. Transition to 
auxiliary A0 and inverted E0 matrices that include Ab and 

1
bA-

 matrices is performed by successive replacement (“ex-
clusion”) of columns and rows with transition to the A0 and 
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E0 structure. Ab and 1
bA-  are “separated” from them at the 

next stage.

7. On computational aspects of linear systems analysis by 
the method of basic matrices

It is known [1, 2] that IEEE, the standard of binary 
arithmetic, is the universally accepted standard for repre-
senting numbers. It was implemented at major computation 
centers and in all PC types. The IEEE standard provides 2 
main types of floating-point numbers (32-bit and 64-bit). 
Accordingly, a concept of machine zero threshold “approx-
imately” at a level of 2–126 and overflow threshold at a level 
of 2+128 was introduced for the first level. Zero threshold 
of 2–1022 and overflow threshold of 2+1024 was introduced 
for the second type. That is, the threshold of machine zero 
defines the zone of subnormal numbers as a set (in a certain 
neighborhood to zero) and the threshold of overflow limits 
the zone of normalized numbers (beyond the zone of sub-
normal numbers). Categories of mantis length, order value 
(and the method of rounding, performing operations) are 
fundamental in the introduced IEEE standard. They form 
basis of number representation, establish levels of overflow 
and machine zero thresholds. This determines basic quanti-
tative estimates of errors in representation of numbers and 
in computation. In general, the standard may be organized 
in different ways, and the input parameters mentioned may 
differ. That is, loss of accuracy in representation of numbers 
caused by rounding is usually small.

7. 1. Leading element as an inaccurately determined 
value

When performing exact mathematical calculations in 
classical methods of Gaussian type, condition of inequality 
of the leading element of transformation to zero attracts 
attention. From a mathematical point of view, according to 
the fundamental formulas, division by the leading element in 
transformations is carried out (usually, division by zero is in-
admissible). At the same time, this condition indicates linear 
dependence of rows, that is, non-full rank of the constraint 
matrix as well. In conditions of machine implementation of 
the method, “zero-non-zero” condition (inaccurate set) as 
pertaining to the zone of subnormal numbers gives the calcu-
lations a new content, i. e. influence on the rank magnitude.

7. 2. The condition of resistance as an inaccurate val-
ue in BMM

In the basic matrix method (BMM), the condition of re-
sistance (as independence of the vector system) of Lemma [9] 
also indicates significance of the “zero-non-zero” condition 
(belonging to an inaccurate set) in the method medium.

It was found that the rank magnitude correlates with 
the number of fulfillments of conditions of resistance in the 
BMM scheme. Completeness of the rank as a condition of 
coincidence with the maximum number of fulfillments of 
resistance conditions.

In various scenarios of computation organization, the 
rank magnitude (its completeness) is clear and unambigu-
ously defined in terms of mathematical representation, “acts” 
as inaccurate (belonging to the set) since it depends directly 
on the real threshold of mathematical zero (of the set, the 
zone of subnormal numbers). This occurs in the BMM con-
dition of resistance and in inequality of the leading element 

to zero in the Gaussian method and generally in methods of 
the “simplex” type.

It is known that the Hilbert matrix is mathematically 
nondegenerate, and in a “successful” machine representation, 
it can give large errors in obtained solutions in the course of 
calculations. Study [10] has developed an appropriate way 
of representing numbers, performing basic operations and 
calculations in exact numbers. The Gaussian and BMM 
methods were implemented in exact numbers and appropri-
ate experiments were performed for the CLAE, in particular, 
with the Hilbert constraint matrix. Subsequently, based 
on the exact format, a new type of number representation 
(“inaccurate” or with fixed decimal point) was developed, 
rounding, and basic operations were performed. Due to 
this format of representation, a possibility appeared to pro-
grammatically control the calculation process with various 
lengths of fractional part (to the right of the decimal point) 
and unlimited integers (within overflow). In this case, de-
pending on the fractional part of the number, the method of 
rounding and performing basic operations, “own” machine 
zero is correspondingly set. This opened the possibility of 
calculating with typical models of different dimensions, 
different lengths of the fractional part (16, 32, 64, 128, 256),  
both in standard-exact and “inaccurate” algorithms of for-
mats of number representation. Algorithms of the Gauss 
and BMM methods were used as basic. The Hilbert matrix 
was chosen as a typical structure. Against the background 
of poor conditionality of the Hilbert matrix, manifesta-
tions of discrepancies between mathematical (analytical) 
and machine representation of zero were found during the 
experiment, especially in the zones close to zero (Eps). The 
reference [14] provides relevant results and tools that were 
used in the experiment organization.

Some general features of the experiment should be em-
phasized:

– preservation of rank completeness and high accuracy 
of solution were observed in high-precision calculations with 
a great mantis length; 

– a certain boundary exists at which rank completeness 
is still preserved but the error of the found solution becomes 
significant;

– a phase of rank completeness drop and a significant 
error in solution is observed beginning from a certain mo-
ment of time, that is, the moment of machine insolvability or 
inconsistency of SLAE solutions.

In the first case, we have a congruency between the stan-
dard mathematical solution and the machine solution. The 
second case indicates the effect of calculation errors which 
initially causes perturbations (in preserving linear indepen-
dence of the vector-normals of constraints) and deviation of 
the solution (growth of the absolute error).

Further accumulation of errors leads to “convergence” 
(bonding) of the vectors of normals (loss of rank complete-
ness) and formation of diversity in solvability or contradic-
tory constraints (in incompatibility).

For example, if mantis  of the fractional part is 32 bina-
ry digits, then 2–11 is the minimum machine zero neighbor-
hood (value of 2–32) at which the rank becomes incomplete 
for the dimension 10 of the constraint matrix. The follow-
ing approximate dependence of the Eps neighborhood on 
the mantis length (Mant) is observed in the examples:  
Eps=2–Mant+21.

In general, a non-monotonic dependence of the rank 
drop on the dimension is established if the rank “falls” for 
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some dimension, it does not necessarily mean that it will 
“fall” for a higher dimension as well. Probably, the property 
of non-commutativity of computations (Table 1) also has its 
affect in a general case.

Table 1

Relationship between computation parameters and the rank 
completeness according to the experimental results

Mant Eps Dim Rank Completeness

32 2–11 10 7 «fell»

32 2–11 11 9 «fell»

32 2–11 12 10 «fell»

32 2–11 13 13 «not fell»

32 2–11 14 12 «fell»

64 2–43 10 10 «not fell»

In the Table 1, Mant is length of the mantis of binary 
digits of the fractional part (the mantis of the integer part 
is not limited), Eps is machine zero, Dim is dimension of 
the constraint matrix, Completeness is measure of the rank 
completeness (“fell”/”not fell”). Since mathematically rank 
of the Hilbert matrix must be complete, solution is unique 
but according to the computation results, different situa-
tions are possible in conditions of poor conditionality, so the 
term (“fell”/”not fell”) characterizing rank completeness was 
introduced.

In the case of the experiment with solution of SLAE by 
Gaussian method with a large-dimensional Hilbert matrix 
(Dim=50, Mant=32, Eps=2–11), a situation was observed 
when all elements of the matrix under the leading element 
fell into the Eps-zero neighborhood. It is interesting that 
corresponding elements were not zeros in exact numbers. 
This influenced change of order of approximate calculations 
relative to the order of calculations in exact numbers. In 
doing so, the rank remained complete and a solution was 
obtained that had nothing in common with exact solution.

In practice, errors in the input data (mantis “trimming”) 
and poor conditionality of the Hilbert matrix leads to “in-
stability” of calculations: these errors changed for the worse.

This indicates the need to combine calculations in exact 
and approximate (i. e. with fixed decimal point) numbers.

8. Discussion of results obtained in analysis of poorly 
conditioned matrix structures by means of algorithms of 

the basic matrix method

Theoretically, the following was established:
– significant role of the rank category in formation of 

solution structure, i. e. subspaces;
– significance of mathematical zero (of the leading el-

ement or condition of resistance) in formation of subspace 
dimensions (in the BMM structure).

A non-monotonic dependence of the rank drop on dimen-
sion of the linear system and other calculation parameters 
was experimentally established.

In general, the assumption of non-equivalence of theoret-
ical mathematical zero (of the number) and real machine zero 
(inaccurately specified set) in “working” conditions with 
poorly conditioned systems was confirmed.

Presence of various options of computation organization 
(including exact number calculations) makes it possible to 

obtain versatile information about the model and mathemat-
ical (ideal or reference) model in exact numbers and machine 
(real) model with different accuracy of representation and 
calculation. It was established that the rank value is a key 
category in mathematical analytical (theoretical). analysis 
of properties of linear systems. The rank magnitude for 
SLAE in calculations is fundamental qualitative category 
for solution representation. Poor conditioning (for example 
the Hilbert matrix) leads in practice to “instability” of cal-
culations in the zones close to the machine zero. The rank 
magnitude (obtained in calculations) outlines starting possi-
bilities (and limitations) of methods and algorithms, creates 
preconditions for forming solutions that may be unique, not 
unique or non-existing.

On the other hand, quantitative value of the rank magni-
tude, its property of completeness substantially depends on 
the value of the leading element (or fulfillment of the condi-
tion of resistance in the method of basic matrices). It should 
be noted that definition of its value as “zero-non-zero” corre-
sponds to the definition of belonging (or nonbelonging) to a 
subset of subnormality or close to it. This can be represented 
as a ratio of mathematically exact zero to inexact machine 
zero. Of course, boundaries of subnormal numbers are deter-
mined by the threshold of machine zero (for example, in the 
IEEE format) in PC representation of numbers with floating 
point. That is, for theses boundaries, mantis length, magni-
tude of order are extremely significant components. This can 
also be attributed to incorrect fixed point format entered.

Non-monotonic dependence of the rank drop on dimen-
sion was experimentally established. This indicates that 
availability of reference solution (finding it in exact num-
bers) is important when performing calculations. Develop-
ment of “so-called” “exact” algorithms within the methods 
of calculating rational numbers makes it possible to check 
efficiency of algorithmic computations in a direct way. In 
particular, combined use of different variants of implementa-
tion of the method’s algorithm with different accuracy types 
(mantis length, order value) in exact numbers for a typical 
problem can reveal important regularities, for example for 
constructing membership functions and also for further 
use in deciding the order of computation organization with 
achievement of a given level of parameters (for example the 
rank completeness degree), i. e. mathematical apparatus of 
fuzzy sets, construction of membership functions.

Of course, calculation in different scenarios must be 
interrelated and explainable. In exact number calculation 
as equivalent of a perfect mathematical calculation and at 
different approximations (values of mantis and order), calcu-
lation can be recognized as an equivalent of a real one which 
determines solution to some extent.

9. Conclusions

1. Algorithm of the method of basic matrices of analysis 
of changes in inclusion-exclusion and changes in a group of 
rows and columns of SLAE without re-solving the task from 
beginning was improved. Conditions of compatibility (in-
compatibility) of system restrictions, uniqueness of solution, 
etc. were established. Structure of vectors of the fundamen-
tal solution system in a case of compatibility was elaborated.

2. Formats (“exact” and “inexact”) of representation of 
the model elements (mantis length, order value, thresholds 
of machine zero and overflow) as well as variants of orga-
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nization of performing basic operations during calculations 
and their influence on solution properties were developed. In 
particular, influence on rank magnitude and completeness 
was traced on an example of an SLAE with a poorly condi-
tioned constraint matrix.

3. It is known that when constructing the Lagrangian 
interpolation polynomial, application of the least-squares 
method or solving a boundary-value problem, etc., improve-
ment of approximate solution is achieved by extending the 
corresponding system of basic functions. With this exten-
sion, the SLAE constraint matrix is changed by means of 
framing and the system may be poorly conditioned. Proba-

bly, values of the method elements can fall into the zone close 
to the machine zero during calculation. This necessitates 
refinement of organization and execution of calculations 
which can be achieved by the use of “exact” and “inexact” 
data types in representation of the method elements. That is 
why an experiment was conducted to analyze properties of 
the linear system at different dimensions, accuracy of input 
data and computation scenarios including those in exact 
numbers using the Hilbert matrix as an example. It was 
established that non-monotonous dependence of rank fall 
on dimensions, errors in input data and poor conditionality 
leads to “instability” of calculation.
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