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Проведеними дослідженнями встановлена мож-
ливість збільшення продуктивності алгоритму 
мінімізації булевих функцій методом оптималь-
ного комбінування послідовності логічних операцій 
з використанням різних способів склеювання змін-
них – простого та супер-склеювання.

Встановлена відповідність інтервалів I(α, β) 
у булевому просторі n, які задаються парою буле-
вих векторів α і β, таких, що α β з повною комбі-
наторною системою з повторенням 2-(n, b)-блок-
схем (англ. 2-(n, b)-designs). Внутрішні компоненти  
інтервалу I(α, β) відповідають повній системі  
2-(n, b)-design, а зовнішні визначаються розра-
хунком кількості нулів або одиниць у стовпчи-
ках таблиці істинності заданої логічної функції. 
Це дозволяє використовувати теорію інтервалів 
I(α, β) у математичному апараті комбінаторних 
систем 2-(n, b)-design для проведення мінімізації 
булевих функцій методом рівносильних образних 
перетворень, зокрема здійснювати автоматизо-
ваний пошук систем 2-(n, b)-design у структурі 
таблиці істинності. 

Експериментальними дослідженнями підтвер-
джено, що комбінаторна система 2-(n, b)-design 
і послідовне чергування логічних операцій супер- 
склеювання змінних (якщо така операція мож-
лива) та простого склеювання змінних у першій 
таблиці істинності підвищує ефективність проце-
су та достовірність результату мінімізації булевих 
функцій. При цьому спрощується алгоритмізація 
пошуку системи 2-(n, b)-design у структурі табли-
ці істинності заданої логічної функції, що прави-
тиме інструментарієм для подальшої автомати-
зації пошуку системи 2-(n, b)-design. У порівнянні  
з аналогами це дає змогу підвищити продуктивність 
процесу мінімізації булевих функцій на 100–200 % 
шляхом використання оптимального чергування 
операцій супер-склеювання та простого склеюван-
ня змінних методом рівносильних образних пере-
творень.

Є підстави стверджувати про можливість 
збільшення продуктивності процесу мінімізації 
булевих функцій, шляхом оптимального комбіну-
вання послідовності логічних операцій супер-склею-
вання змінних та простого склеювання змінних, 
методом рівносильних образних перетворень

Ключові слова: мінімізація булевих функцій, 
оптимальне комбінування послідовності образних 
перетворень, карта Махоні

UDC 519.718
DOI: 10.15587/1729-4061.2020.206308

Copyright © 2020, V. Riznyk, M. Solomko, P. Tadeyev, V. Nazaruk, L. Zubyk, V. Voloshyn  

This is an open access article under the CC BY license  

(http://creativecommons.org/licenses/by/4.0)

Received date 20.05.2020

Accepted date 24.06.2020

Published date 30.06.2020

1. Introduction

The algebra of logic, like any computation apparatus, 
is a totality of axioms, identities, laws, rules, which enable 
the conversion of logical expressions. However, here, as  
a rule, there are no guidelines on how to use this apparatus 
for the synthesis of optimal logic schemes. The optimal 

solution can be provided only by building in a certain 
sequence of these transformations (algorithms). Methods 
of such construction are described in works [1–5]. In 
turn, a prerequisite for the creation of automated methods 
for reducing Boolean functions is to develop simplified 
algorithms for the optimum synthesis of minimal logi- 
cal functions.
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As the process of minimizing logical functions occupies 
an important position within the design technology of digital 
components, it is still a relevant task to ensure the adequate con-
formity of the developed product to the specified requirements 
for cost, simplification, thereby warranting the optimum result 
from minimizing different representations of logical functions.

A method of figurative transformations has the follow-
ing scope of application: minimizing the Boolean functions 
in the DNF and CNF representation; the minimization of 
incompletely defined Boolean functions; minimizing based 
on a full truth table; determining an attribute of the mini-
mum logical function; the minimization of Boolean function 
systems [6–9]. A promising area to study the application 
of a method of figurative transformations is the minimiza-
tion of Boolean functions in the monobases of Schaeffer, 
Webb (Pierce); the minimization of the randomly given 
Boolean functions (Blake-Poretsky algorithm).

The evolution of methods to simplify the logical func-
tions and their automation is the result of relentless optimi-
zation, therefore, the studies are relevant that are aimed, in 
particular, at the improvement of factors such as:

– algorithms of minimization (and its automation) of 
logical functions; 

– the reliability of an optimal result; 
– the cost of the logical function minimization process.

2. Literature review and problem statement

Classical methods of Boolean function minimization, the 
Karnaugh map and a Quine McCluskey algorithm, are given 
in [10], which notes that the use of a tabular Karnaugh method  
to minimize Boolean functions requires a lot of time, so 
minimizing by a manual method is limited to six variables. If  
a logical function has a larger number of variables, it is quite 
practical to use a method developed by Quine and McCluskey, 
which can be implemented as software. The development 
of software and hardware components of computer systems 
makes it possible to simplify the algorithm of minimization 
if the software has an acceptable execution speed. Paper [10] 
reports an algorithm and the corresponding software for 
minimizing the logical functions down to 20 variables, whose 
number is limited only by the memory of the computer system. 
The software was developed in the Visual Basic language. The 
algorithm is based on sequential clustering of terms, starting 
with grouping terms with one change into two terms of the 
same rank. As a result of this grouping, new terms are genera
ted, with the number of variables reduced by unity. The clus-
tering algorithm ends when variables can no longer be grouped. 
The algorithm described is similar to the Quine McCluskey 
algorithm but is simpler because it has fewer procedures.

One of the most powerful procedures to simplify Boolean 
expressions is the Quine McCluskey (QM) method, consi
dered in [11]. Compared to other approaches, this method is 
more often applied in practice, making it possible to process 
a greater number of variables. The QM method is easier to 
implement by software, which makes it an effective appa-
ratus to minimize Boolean functions. Study [11] describes  
a QM-simulator, written in the C language. The considered 
minimizing algorithm theoretically can process any number 
of variable Boolean functions.

A new heuristic algorithm for the maximum minimization 
of Boolean functions with a normal form of SOP is proposed 
in [12]. Implementing this algorithm employs graphic data; 

certain conditions are given to achieve the maximum level of 
Boolean function minimization. 

A classic object-oriented algorithm to minimize Boolean 
functions by means of Karnaugh maps is described in [13], 
where language stereotypes and class diagrams are given, as 
well as an analysis of the productivity of the unified model of 
Boolean function minimization.

A new technique of the two-step optimization process of 
the combinational logic is described in [14]. This technique 
can be applied to arbitrary combinational logical tasks and 
often produces an improved outcome even after optimization 
based on standard methods. This optimization technique is 
used to improve software performance.

A quick granular method to minimize Boolean functions 
is proposed in [15]. The paper states that, first, a Boolean 
function changes for the sum of products. Second, the result-
ing truth table is obtained while statistical information in dif-
ferent knowledge domains is computed as heuristic informa-
tion for minimizing functions. The algorithm of minimization 
is implemented in the MATLAB programming environment. 
Experimental studies confirm its high efficiency.

A new approach to minimizing Boolean expressions is sug-
gested in work [16]. The reported minimization technique is 
general but the emphasis is on the «Exclusive» or «Sum of the 
Terms» (ESOP) functions. This method is used for solving 
the classic Boolean algebra problems. The resulting problem 
becomes a nonlinear integer program, for solving which an 
original branch and bound procedure with several relaxations 
was developed. The proposed method is convenient to mini
mize the incompletely defined logical functions, which is 
considered a complicated problem in the Boolean area. The 
paper reports numerous demonstrative examples of applica-
tion and outlines the effectiveness of the considered approach 
to Boolean function minimization, presenting possible areas 
to continue research in future, related to solving the complex 
problems of ESOP. The software package, which can be used 
to minimize the logical functions, is given in article [17]. The 
package is a practical tool for teaching digital design and 
other related courses. The input data to this software is the 
number of variables at switching and a switching function to 
minimize. The user can choose any of the three methods for 
implementing the process of minimization: algebraic manip-
ulations using theorems, Karnaugh maps, and a method by 
Quine McCluskey. The software begins to minimize gradually 
until the optimum analytical expression is reached. The user 
can visualize the stages of the procedure used in a particular 
minimization technique. This software package provides se
veral options for minimizing logical functions and then selects 
the best approach among them, which employs the minimum 
number of logical elements in the digital component schema.

The above literary sources [10–17] mostly consider com-
pleted algorithms of Boolean function minimization and the 
software written for them, specifically object-oriented ones, pro-
viding the automated synthesis of minimum Boolean functions.

A feature of minimizing Boolean functions by the method 
of figurative transformations is greater informativeness of 
the solution to a problem in comparison with the algebraic 
way of function minimization, which is a verbal procedure 
due to the presence in the structure of truth tables of the 
complete 2-(n, b)-design or incomplete 2-(n, x/b)-design 
binary combinatorial systems with repetition and essentially 
combinatorial images. Since such objects take the form of 
combinatorial images, they provide more information on 
orthogonality, adjacency, unambiguity of blocks of combina-



Mathematics and cybernetics – applied aspects

45

torial system in comparison with algebraic transformations 
that opens new possibilities of application of combinatorial 
images for equivalent transformation of logical functions. 
That makes it possible to improve mental performance as an 
intellectual component when minimizing Boolean functions, 
which promotes the detection of reserves to improve the pro-
cess of minimization and enables to improve the result of the 
figurative transformation, to increase the control function, 
ensuring the optimum solution is guaranteed without the 
need, to some extent, to use the automation of the minimiza-
tion process of logical functions.

Thus, the algorithmic programs covering the overall proce-
dure for minimizing logical functions [10–17], and a method of 
figurative transformations imply different approaches (princi-
ples of minimization), and thus promise various prospects on the 
possibility of the algorithmic minimization of logical functions.

In this regard, there are reasons to believe that the software 
and hardware base, which is represented by the complete al-
gorithmizing programs [10–17], is insufficient for theoretical 
research into the optimum minimization of Boolean functions. 
This necessitates undertaking a study involving the equivalent 
figurative transformations of logical functions. In particular, 
employing the protocol of the optimum combination of figura-
tive transformations to ensure optimal solution by the criterion 
of all revealed combinatorial images in a truth table, which can 
participate in the process of Boolean function minimization. 
In the applied aspect, the specified approach could expand the 
capabilities of the digital component design technology.

3. The aim and objectives of the study

The aim of this study is to establish the optimum alternating 
protocols of equivalent transformations for the initial combina-
torial system, which is essentially the truth table of the assigned 
logic function. This would make it possible to define a prin-
ciple (Latin: principium – beginning) to minimize the logical 
functions by figurative transformations, specifically in the DNF 
and CNF representation, and to extend the established principle 
on the algorithm for automating the process of logical function 
minimization based on a method of figurative transformations.

To accomplish the aim, the following tasks have been set:
– to determine patterns in the process of logical func-

tion minimization when using combinatorial structures of  
a complete binary system with repeated 2-(n, b)-design and 
an incomplete binary system with repeated 2-(n, x/b)-design;

– to construct an algorithm to automate the process of lo
gical function minimization based on the method of figurative 
transformations within the initial combinatorial system, which 
is essentially the truth table of the assigned logical function;

– to demonstrate examples of Boolean functions minimiza-
tion borrowed from works by other authors to compare the ef-
ficiency of the selected alternating protocols of equivalent figu-
rative transformations at the minimization of logical functions;

The criterion for the optimum Boolean function min-
imization using a method of figurative transformations is 
described in detail in work [6]. The essence of the criterion 
is the need to minimize the functions on the full truth table, 
with the subsequent choice of the minimization result in the 
DNF or CNF representation. The same criterion could be 
extended for other bases of the possible representation of  
a function – monobases, Zhegalkin’s basis, Reed-Muller ba-
sis, etc. Various bases by which the function can be represented 
form an optimization area for the assigned logical function.

4. Binary combinatorial system with repetition

If some set A is assigned, it is possible to consider a new 
set М(А) – the set of all its subsets, Boolean. Мk(A) is used to 
denote the set of all subsets A that have k elements. 

Example 1. Let А = {a, b, c, d}, then:

M A

a b c d a b a c a d

b c b d c d a( ) =
{ } { } { } { } { } { } { }
{ } { } { }

, , , , , , , , , ,

, , , , , , ,, , , , , ,

, , , , , , , , , ,

;b c a b d

a c d b c d a b c d

{ } { }
{ } { } { } ∅

















M A a b a c a d b c b d c d2 ( ) = { } { } { } { } { } { }{ }, , , , , , , , , , , .

Check that:

N M A( )( ) = =16 24,  N M A2 6( )( ) = .

The number of all k-element subsets of the set of n ele-
ments equals:

N M A C
n

k n kk n
k( )( ) = =

−( )
!

! !
.

Another equality holds:

Cn
k

k

n
n

=
∑ =

0

2 . 	 (1)

Since Cn
k  is the number of k-element subsets of the set of 

n elements, the sum in the left-hand side of expression (1) is 
the number of all subsets. 

Example 2. It is required, from formula (1), to calculate 
the number of all subsets of the set А = {a, b, c, d, e}.

N M A C C C C C C( )( ) = + + + + + =

= + + + + + = =
5
0

5
1

5
2

5
3

5
4

5
5

51 5 10 10 5 1 32 2 .

Note that the set А = {a, b, c, d}, in addition to the recal-
culation of its elements, can also specify the numbers of the 
positions at which the element α is located. For example, a can 
denote the first position, b can denote the second position of 
the set А = {a, b, c, d}, etc. The subsets of the set А = {a, b, c, d},  
in this case, are those subsets that contain the element α at 
positions k, k = 0, …, n, where n is the number of positions of the 
set A. In a general case, the element α may take several posi-
tions on the set A, thus the element α is repeated on the set A.

Let α = 1, then the positions at which the element α is 
absent are denoted by a zero. 

Example 3. Assume α = 1 for the set А = {a, b, c, d, e}, which 
defines the position numbers. Then the subsets of the set A 
will take the form:

0,0,0,0,0 ; 0,1,0,0,0 ;

0,0,0,0,1 ; 0,1,0,0,1 ;

0,0,0,1,0

( ) ( )
( ) ( )
( )) ( )
( ) ( )
( )

; 0,1,0,1,0 ;

0,0,0,1,1 ; 0,1,0,1,1 ;

0,0,1,0,0 ; 0,1,1,0,,0 ;

0,0,1,0,1 ; 0,1,1,0,1 ;

0,0,1,1,0 ; 0,1,1,1,0 ;

0,0,

( )
( ) ( )
( ) ( )

11,1,1 ; 0,1,1,1,1 ;

   

1,0,0,0,0 ; (1,1,0,0,0);

1,0,0,0,1

( ) ( )

( )
( )) ( )
( ) ( )
( )

; 1,1,0,0,1 ;

1,0,0,1,0 ; 1,1,0,1,0 ;

1,0,0,1,1 ; 1,1,0,1,,1 ;

1,0,1,0,0 ; 1,1,1,0,0 ;

1,0,1,0,1 ; 1,1,1,0,1 ;

1,0,

( )
( ) ( )
( ) ( )

11,1,0 ; 1,1,1,1,0 ;

1,0,1,1,1 ; 1,1,1,1,1 ;

( ) ( )
( ) ( )

	 (2)
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The number of all k-element subsets of the set А =  
= {a, b, c, d, e}, which defines the positions’ numbers, is deter-
mined from formula (1).

N M A C0 5
0 1( )( ) = = ,

N M A C1 5
1 5( )( ) = = ,

N M A C2 5
2 10( )( ) = = ,

N M A C3 5
3 10( )( ) = = ,

N M A C4 5
4 5( )( ) = = .

N M A C5 5
5 1( )( ) = = .

N M A N M A N M A N M A

N M A N M A N M A

( )( ) = ( )( ) + ( )( )+ ( )( ) +

+ ( )( ) + ( )( ) +
0 1 2

3 4 5 (( )( ) = 32.

Configuration (2) is a complete combinatorial system 
with a repetition of the α element, which we denote:

2-(n, b)-design,

where n is the bit size of the system’s block; b is the number 
of blocks in the complete system, determined from formula 
b = 2n, the number 2 before brackets denotes the binary struc-
ture of configuration (2). For example, 2-(5, 32)-design is  
a complete binary combinatorial system with repetition con-
sisting of 5-bit blocks, the number of blocks is 32. 

In a general case, the truth table configuration of the 
assigned function, in addition to a submatrix of the complete 
combinatorial system with repeated 2-(n, b)-design, also con-
tains the submatrices of the incomplete combinatorial system 
with repeated:

2-(n, x/b)-design. 

In this case, x is the number of blocks of an incom-
plete combinatorial system with repetition. The proper-
ties of the incomplete combinatorial system with repeated 
2-(n, x/b)-design can also establish the rules, which, in  
a general case, ensure the effective minimization of Boolean 
functions.

5. Protocol of the equivalent conversion  
of DNF into CNF of the logical function

The protocol for minimizing the logical functions, which 
includes terms with the same variables in the corresponding 
term’s bits, may take, for example, the following form:

F x x x x x x x x

x x x x x x

x

DNF = = + + + =

= +( ) + +( ) =

=

0 0

0 1

1 0

1 1

1 3 1 4 2 3 2 4

1 3 4 2 3 4

3 ++( ) +( ) =

= =

x x x

FCNF

4 1 2

0 1

0 1
. 	 (3)

Protocol (3), in addition to simplifying the logical expres-
sion, transforms the DNF representation into the CNF repre-
sentation of the logical function. Given the matrix notation 
for FDNF and FCNF in (3), we see that the DNF and CNF of 
the logical function are given by matrices with identical com-
binatory structures. The difference between these matrices is 
determined by the hermeneutics of logical operations. The ma-
trix reflecting the CNF of the logical function yields the max-
terms of the function and a conjunction operation for them. 
The matrix reflecting the DNF of the logical function produces 
the minterms of the function and a disjunction operation for 
them [14]. The equivalence of the specified transformation is 
confirmed by verifying the protocol (3) (Tables 1, 2).

Table 1

Truth table of the logical function F x x x x x x x xDNF = + + +1 3 1 4 2 3 2 4 before transformation

x1 x2 x3 x4 x1 x2 x3 x4 x x1 3 x x1 4 x x2 3 x2x4 x x x x x x x x1 3 1 4 2 3 2 4+ + +

0 0 0 0 1 1 1 1 1 0 0 0 1

0 0 0 1 1 1 1 0 1 1 0 0 1

0 0 1 0 1 1 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 0 1 1 1 1 1

0 1 1 0 1 0 0 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 1 0 1 1

1 0 0 0 0 1 1 1 0 0 0 0 0

1 0 0 1 0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 1 0 1

1 1 0 1 0 0 1 0 0 0 1 1 1

1 1 1 0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 1 1
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The values of the functions in the extreme right-hand 
columns in Tables 1, 2 are the same, meaning the equivalence 
of the algebraic transformation based on protocol (3).

6. Features of using the combinatorial structures  
2-(n, b)-design and 2-(n, x/b)-design to minimize 

Boolean functions

Logical function minimization using figurative transfor-
mations is performed as follows. In the first step, one finds 
the blocks (constituents) of the truth table with variables 
that can be glued together (cover them). The next step is 
to search for the sets of pairs of blocks (implicants) with 
the ability to minimize them by the algebraic operations of 
semi-gluing, gluing, generalized gluing, absorption of vari-
ables for these pairs. The obtained sets of blocks are again 
minimized in a similar way, and so on, until deriving the 
deadlock DNF (DDNF). The sets of DDNF lso contain the 
minimum functions (MDNF). The last step is to verify the 
resulting minimum function using the assigned table, specifi-
cally the optimum minimization criterion [6].

The algebraic transformations required for the process 
of minimizing Boolean functions are replaced by equivalent 
transformations using submatrices (combinatory images) of 
the truth table, which is essentially a proper combinatorial 
system. Because combinatorial images provide more informa-
tion on orthogonality, adjacency, single-nobility of combina-
torial system blocks, compared to algebraic transformations, 
which are a verbal procedure, their use in searching for the 
objects for equivalent transformations, in the process of mi
nimizing the logical function, is effective [7–9].

In a general case, the combinatorial structure of the 
truth table of the assigned logical function can contain 
combinatorial images (sub-matrices) with the structure of  
a complete combinatorial system with repeated 2-(n, b)-de-
sign and an incomplete combinatorial system with repeated 
2-(n, x/b)-design. Properties of these combinatorial struc-

tures make it possible to establish rules, which, in a general 
case, ensure the effective minimization of Boolean functions.

To choose the optimum alternation of protocols to min-
imize by figurative transformations, it is necessary to deter-
mine the initial logical operation of the algebraic transfor-
mation of Boolean functions. In this regard, it is necessary 
to establish the peculiarities of the process of minimizing 
the logical functions when using combinatorial structures of  
a complete binary system with repeated 2-(n, b)-design and 
an incomplete binary system with repeated 2-(n, x/b)-design.

Example 4. It is required to minimize the logical function 
F x x x x1 2 3 4, , ,( ) by figurative transformations, which is as-
signed by the following truth table:

F =  (6, 8, 9, 10, 11, 12, 13, 14)

Note: The values in  are the minterms for rows when the 
function F x x x x1 2 3 4, , ,( ) returns «1» at the output. 

To minimize the assigned function F x x x x1 2 3 4, , , ,( )  we 
use a combinatorial structure of an incomplete binary system 
with repeated 2-(n, x/b)-design (Fig. 1).

6 0 1 1 0

8 1

9 1

10 1

11 1

12 1

13 1

14 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

Fig. 1. Combinatorial system (truth table) 	
of the function F x x x x1 2 3 4, , ,( ) with a structure 	
of the incomplete binary system with repeated 	

2-(3, 7/8)-design (in red color)

Perform the minimization of the function F x x x x1 2 3 4, , ,( ) 
by figurative transformations using 2-(3, 7/8)-design.

Table 2

Truth table of the logical function F x x x xCNF = +( ) +( )3 4 1 2  after transformation

x1 x2 x3 x4 x1 x2 x3 x4 x x3 4+( ) x x1 2+( ) x x x x3 4 1 2+( ) +( )
0 0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0 1 0

0 0 1 1 1 1 0 0 1 1 1

0 1 0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 1 0 1 1 1

0 1 1 0 1 0 0 1 0 1 0

0 1 1 1 1 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 0 0

1 0 0 1 0 1 1 0 1 0 0

1 0 1 0 0 1 0 1 0 0 0

1 0 1 1 0 1 0 0 1 0 0

1 1 0 0 0 0 1 1 1 1 1

1 1 0 1 0 0 1 0 1 1 1

1 1 1 0 0 0 0 1 0 1 0

1 1 1 1 0 0 0 0 1 1 1
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F = =

=

6 0 1 1 0

8

9

10

11

12

13

14

0 1 1 0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 0

1 0

1 00

1 1 0

1 0

1 0

1 0

= .

The minimized function:

F x x x x x x x x x= + + +2 3 4 1 2 1 3 1 4. 	 (4)

The minimization protocol for 2-(3, 7/8)-design:

              

0 0 0

0 0 1

0 1 0

0 1 1

0

1 0 0

1 0 1

1 0

1 1 0

1 1 0

0

0

1 1 0

0

0

0

= = =
 

or

              

0 0 0

0 0 1

1 0 0

1 0 1

00 1 0

0 1 1 0 1

1 1 0

1 1 0

0

0

1 1 0

0

0

0

= = = .

Example 5. It is required to minimize the logical function 
F x x x x1 2 3 4, , ,( ) from example 4 by figurative transformations, 
using a combinatorial structure of the complete binary sys-
tem with repeated 2-(n, b)-design (Fig. 2).

6 0 1 1 0

8 1 0

9 1 0

10 1 0

11 1 0

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

0 0

0 1

1 0

1 1

Fig. 2. Combinatorial system (truth table) 	
of the function F x x x x1 2 3 4, , ,( )  with a structure 	

of the complete binary system with repeated 	
2-(2, 4)-design (in red)

Minimizing the function F x x x x1 2 3 4, , ,( ) by figurative 
transformations using 2-(2, 4)-design.

F = = =

6 0 1 1 0

8

9

10

11

12

13

14 1 1 1 0

1 1 0 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1
1 0

1 1 0 0

1 1 0 1

1 1 0

11 0

1 0

1 0

.

The minimized function:

F x x x x x x x= + +2 3 4 1 2 1 3. 	 (5)

The operation of super-gluing the variables in the first 
matrix is performed for blocks 8–11, which are highlighted 
in red. Simple gluing of variables is carried out for blocks 12, 
13, which are highlighted in blue, and 6, 14, which are high-
lighted in black. Comparing the minimum functions (4)  
and (5), we see that the minimum function (5) is simpler by 
one term.

It should be noted that the minimization of function (4) 
can continue using the implicant table (Table 3).

Table 3
Implicant table 	

for function F x x x x x x x x x= + + +2 3 4 1 2 1 3 1 4

No. implicant –110 10– – 1–0 – 1– – 0

6 0110 +

8 1000 + + +

9 1001 + +

10 1010 + +

11 1011 +

12 1100 + +

13 1101 +

14 1110 + +

Contemplating Table 3, we see that the simple implicant 
1– –0 is redundant, so it can be removed from function (4). 
After the removal of the simple implicant 1– –0, we will ob-
tain a minimum function (5).

Note also that the additional term x x1 4  in (4) elimi-
nates the potential danger of a signals race. This term is 
redundant in terms of the static logic of the system but 
such redundant or conciliation terms are often necessary 
to ensure the non-problematic dynamic characteristics of 
logical circuits. 

Example 6. It is required to minimize the logical func-
tion F x x x x x1 2 3 4 5, , , , ,( )  which is assigned by the truth table  

(1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 26, 28, 30, 31)  
by figurative transformations [9].
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F =

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4

5 0 0 1 0 1

7 0 0 1 1 1

9 0 1 0 0 1

11 0 1 0 1 1

12

0 0 1 0 0

0 1 1 0 0

113 0 1 1 0 1

14 0 1 1 1 0

15 0 1 1 1 1

16 1 0 0 0 0

17 1 0 0 0 1

18 1 0 0 1 0

20

22 1 0 1 1 0

2

1 0 1 0 0

66 1 1 0 1 0

28

30 1 1 1 1 0

31 1 1 1 1 1

1 1 1 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0

=

11

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

1 1 1 1 1

~ ~~

~ ~ ~

~

~

~

~ ~

~

~ ~

~ ~ ~

~

~ ~

1 0 0

0 1

0 0 0 1

0 1 1 1

1 0 0 0

1 1 0

1 1 1 1

1 0 0

0 1

0 0 0 1

1 1 1

=

= =
11 0 0 0

1 1 0

1 0 0

~

~ ~

~ ~

.

The efficiency of minimizing the function F x x x x x1 2 3 4 5, , , ,( ) 
is based on the primary application of the logical operation of 
super-gluing the variables in the first matrix, which was carried 
out for blocks 4, 12, 20, 28 (highlighted in red). A complete 
combinatorial system with repeated (2, 4)-design was used 
here. The minimization of blocks in the second matrix, high-
lighted in blue, was carried out by means of protocol (6) [9].

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

y

y x

0 0 1

0 1 0

0 1 1

1 0 1

1 1 1

0 0 1

0 1 1

1 0 1

1 1 0

1 1 1

1

=

=

~ ~

xx

y x

y x

y xy x

y
0 1

1 1

0 1

1 11

1
~

~ ~

~

~ ~ ~

~

~

.= 	 (6)

The variables’ gluing (covering) protocol (6) is used on 
a configuration that has one column with the same vari-

ables  y, and the second column contains the same number of 
variables x and x,  with the redundant combinatorial system 
2-(3, 6/8)-design [9].

The blocks in the second matrix, in green, are minimized 
by protocol (7) [9].

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

0 0 0

0 0 1

0 1 0

1 1 0

0 1 0

1 1 0

1 1 1

0 0

1 1

1 0

1 0

=

= =

~

~

~

~

yy x

y x

y

0 0

1 1

1 0

~

~ ~

~

. 	 (7)

The variables’ gluing (covering) protocol (7) is used on 
a configuration that has one column with the same variables 
y, and the second column contains the same number of vari-
ables x and x,  with the redundant combinatorial system 
2-(3, 6/8)-design [9].

The minimized function:

F x x x x x x x x x

x x x x x x x x x x

= + + +

+ + +
1 5 1 2 3 4 2 3 4

1 2 3 4 1 4 5 3 4 5.

Thus, comparing the peculiarities of the process of min-
imizing the logical functions using combinatorial structures 
of the complete binary system with repeated 2-(n, b)-design  
and the incomplete binary system with repeated 2-(n, x/b)-de-
sign, it can be concluded that the combinatorial system 2-(n, b)- 
design and the consistent combination of logical operations 
of super-gluing the variables (if such an operation is possible) 
and of simple gluing the variables in the first matrix (truth 
table) ensures a high efficiency of the process and the reliabi
lity of the results of minimizing Boolean functions.

7. Results of minimizing Boolean functions by the 
method of optimum combination of equivalent figurative 

transformations

The protocol to minimize Boolean functions by the me
thod of optimum combination of equivalent figurative trans-
formations has the following advantages:

– it extends the possibilities of applying the vector inter-
vals of the Boolean space n;

– it defines a partial algorithm of recognizing the combi-
natorial systems 2-(n, b)-design and finding their boundaries;

– it enables the automated search for combinatorial sys-
tems 2-(n, b)-design in the structure of the truth table of the 
assigned logical function.

7. 1. Using the vector intervals of Boolean space n 
while minimizing Boolean functions

Definition 1. The interval I(α, β) in the Boolean space 
n, which is assigned by a pair of Boolean vectors α and β,  

such that α β denotes the set of all Boolean vectors γ  
of length n, which satisfy the condition α γ β, that is,  
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I(α, β) = {γ∈ n: α γ β}. The Boolean vectors α and β are 
called the boundaries of an interval, the vector α is the small-
est element of the interval, and β is the largest [18].

Example 7. I 000 101 000 001 100 101, , , , ,( ) = { }  boundary α = 
= 000 is the smallest element, boundary β = 101 is the largest 
element. 

It follows from definition 1 that either the α and β bound-
aries coincide in the i-th component of the Boolean vector 
a bi i=( ), then all vectors of the γ interval I(α, β) accept in the 

i-th component the same values. Or, the boundaries a bi i<( ), 
do not match, then such components accept in the vectors γ 
all possible values.

Definition 2. The components for which the boundaries 
(and, therefore, all vectors on the interval) coincide are 
termed the external components of the interval, the rest are 
internal. The number of the external components is termed 
the rank of the interval (r), and the number of internal – its 
bit size (s). 

Example 8. In the preceding example 8, the second com-
ponent is external, the first and third – internal, rank r = 1, 
bit size s = 2. 

For clarity, we shall record the vectors of the interval 
under each other and leave the braces. 

Example 9.

I 000 101

000

001

100

101

, .( ) =

Consider extreme cases:
– I(α, α) = {α}, the interval boundaries are the same, so 

it consists of a single Boolean vector, rank r = n, bit size s = 0.
– I(00…0,11…1) – the entire Boolean space n is the in-

terval, rank r = 0, bit size s = n.
Statement. The number of the Boolean vectors in the in-

terval (interval’s power) of bit size s equals 2s.
Example 10. The number of the Boolean vectors in the 

interval I(000, 111) equals 23 = 8, the number of the Boolean 
vectors in the interval I(000, 001, 100, 101) equals 22 = 4, the 
number of the Boolean vectors in the interval I(101) is 20 = 1.

Comparing the interval I(α, β) of the Boolean space n, 
for example, I(000, 101) from example 9, with the combinato-
rial structure of the truth table, it is easy to see that the inter-
nal components of the interval I(000, 101) correspond to the 
complete combinatorial system with repeated 2-(2, 4)-design. 
The external components of the interval are determined by 
calculating the number of zeros or unities in the columns of 
the truth table of the logical function (paragraph 7. 3, step 5  
of the considered algorithm).

In this way, the interval I(α, β) of the Boolean space n  
represents a class of the combinatorial structures of truth 
tables of logical functions and, therefore, may be an object to 
simplify its structure.

It is known that the reduction of the complete perfect 
disjunctive normal form (PDNF), which is a combinatorial 
system 2-(n, b)-design, produces unity [8]. Under the alge-
braic technique to minimize the interval I(α, β), the external 
components need to be taken out of brackets. The internal 
components will remain in parentheses. If the internal com-
ponents of the interval are represented by a combinatorial 
system 2-(n, b)-design, the external interval components will 
become the result of minimizing. In this case, it is necessary 
to take into consideration the logical identity operation. 

Example 11. It is required to minimize the interval from 
example 9 by an algebraic method.

I

x x x

000 101
0 0 0
0 0 1
1 0 0
1 0 1

1 2 3

, .( ) = 	 (8)

x x x x x x x x x x x x

x x x x x x x x

x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 3 1 2 3 3

1 2

+ + + =

= +( ) + +( ) =

= ++ = +( ) =x x x x x x1 2 2 1 1 2.

The minimized interval:

I x= 2. 	 (9)

The result of minimization (9) corresponds to the exter-
nal components (x2) of interval (8). 

Example 12. It is required to minimize the interval from 
example 9 with the help of figurative transformations.

I x000 101

0 0 0
0 0 1
1 0 0
1 0 1

0 2, ~ ~ .( ) = = = 	 (10)

The minimized interval:

I x= 2. 	 (11)

The result of minimization (11) corresponds to the exter-
nal components of interval (10).

The efficiency of the minimization of the interval struc-
ture in example 12 is based on the primary use of the logic 
operation of super-gluing the variables within the combina-
torial structure’s boundaries.

A similar result of minimization can be achieved with the 
help of the 2-(n, b)-design system search algorithm in the 
truth table’s structure, discussed in chapter 7. 3. The spec-
ified algorithm makes it possible to perform the automated 
search for the intervals or the combinatorial systems 2-(n, b)- 
design in the structure of the truth table and is a tool for au-
tomating the process of minimizing the logical functions by a 
method of equivalent figurative transformations.

7. 2. A partial algorithm for the recognition of intervals 
(or combinatorial systems 2-(n, b)-design) and to search 
for its boundaries

Start: A set A of the Boolean vectors of length n is as-
signed (or a truth table of the Boolean function F(x1, x2, …, xn)  
is assigned).

Step 1. If the power of the A set is not an integer power of 
two, that is, A ≠ 2c , where c is the integer, then the ser A is 
not an interval, proceed to the completion of the algorithm.

Step 2. Determine the number s of the nonmatching 
components in the vectors of the set A, that is, the number 
of the components that claim be internal. If s c≠ ,  then A is 
not an interval, proceed to the completion of the algorithm; 
otherwise, A is the interval, s is its bit size, r = n–S – its rank.

Step 3. Find the limits α and β of the interval. The 
minimum weight vector (of the entire set of vectors A) is 
the smallest element (α) in the interval, and the maximum 
weight vector is the largest element (β). 
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Complete. [18]
Example 13. A = { }010 011 001, , : the set A does not form 

an interval because its power is 3, and thus it is not an integer 
power of two. 

Example 14. A = { }0010 0011 0001 1000, , , : the set A does 
not form an interval – the power is an integer power of two 
but the power of degree c = 2 does not coincide with the num-
ber of components s = 3 that claim to be internal (these are 
the first, third, and fourth components).

Example 15. A = { }010 011 001 000, , , : the set A forms an 
interval as its power is an integer power of two (c = 2) and 
this power coincides with the number of components (s = 2) 
that claim to be internal (these are the second and third com-
ponents). Interval boundaries: α = 000, β = 011. 

The algorithm of the recognition of intervals (or com-
binatorial systems-(n, b)-design) recognizes the required 
objects provided A = 2c , where c is an integer.

However, in most cases, the combinatorial system 2-(n, b)- 
design must be searched on the condition A ≠ 2c , where c is 
the integer and b A≥ , where b is the number of binary blocks 
in the truth table of the Boolean function F x x xn1 2, ,.. .( )  
Therefore, the considered interval recognition algorithm (or 
combinatorial systems 2-(n, b)-design) is a partial algorithm 
and can be applied at the final stage of searching for the com-
binatorial systems 2-(n, b)-design.

7. 3. Automated search for the 2-(n, b)-design com-
binatorial systems in the structure of a truth table of the 
logical function

The 2-(n, b)-design system can take a compact arrange-
ment in the structure of the truth table of the assigned logical 
function or non-compact, for instance, in the first matrix of 
example 6. The truth table can contain several 2-(n, b)-design 
combinatorial systems. In a general case, and especially when 
increasing the bit size of a logic function, the unambiguous 
detection of the 2-(n, b)-design system or the 2-(n, b)-design 
systems in the truth table’s structure would enable the auto-
mated search for the examined combinatorial systems.

For the automated search for the 2-(n, b)-design system 
in the structure of the truth table of any Boolean function, it 
is necessary to perform a sequence of actions, which can be 
represented by the following algorithm: 

Start: the truth table of the Boolean function F x x xn1 2, ,.. .( ) 
is assigned.

Step 1. The structure of the truth table should be ap
propriately represented in the perfect disjunctive normal 
form (PDNF).

Step 2. Arrange the truth table’s blocks in lexicographi-
cal  order. 

Step 3. Check the structure of the truth table for the 
presence of identical blocks. If the same blocks are present, 
represent them in a single block. 

Step 4. Check whether the assigned structure of the truth 
table is the complete combinatorial system with repetition.  
If the assigned structure of the truth table is a complete com-
binatorial system with repetition, complete the search for the 
2-(n, b)-design system.

Step 5. Calculate the number of unities and zeros sepa-
rately in each column of the truth table.

Step 6. Based in the results of the calculations in p. 5, en-
sure a taxonomic search for the 2-(n, b)-design combinatorial 
systems. For example, if the number of zeros or unities (k) cor-
responds to the condition k≥8 a 4-bit logical function is consi
dered, the search for the Combinatorial system 2 (3, 8)-design  

is possible. If the number of zeros or units (k) meets condi-
tion 4 ≤ k<8 and a 4-bit logical function is considered, it is 
possible to find the 2-(2, 4)-design combinatorial system, etc.

Step 7. Search for intervals, starting with the maximum, 
or the 2-(n, b)-design combinatorial systems.

Complete. 
Fig. 3 shows a block diagram of the 2-(n, b)-design sys-

tem search algorithm 2 in the structure of the truth table of 
the assigned logical function.

 

Start 

3 
 

One block 

2 
Lexicographic 

order 

 
 

 
 

1 

PDNF 

5 
Calculate zeroes  

and unities 

Complete  
 

 
 

6 
 

Taxonomy 

 

Yes 
4 

No 

7 
Search for 

2-(n, b)-design 

Complete 
CS 

Fig. 3. Block diagram to search for the 2-(n, b)-design 
system: 1 – representation of the structure of the truth table 

in the PDNF; 2 – arrange the blocks of the truth table in 
lexicographical order; 3 – representation of several blocks of 
the truth table in one block; 4 – check whether the assigned 

structure of the truth table is a complete combinatorial 
system with repetition; 5 – calculate separately the number 

of unities and zeros in each column of the truth table; 	
6 – provide the taxonomy for the search of the 2-(n, b)-design 

combinatorial systems; 7 – search for the 2-(n, b)-design 
combinatorial systems

Fig. 4 shows the results of the automated search for the 
2-(n, b)-design in the structure of the truth table of the as-
signed logical function.

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

8 1 0 0 0

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 11

0

1

2

3

5

7

8

10

0 0 0 0

0 0 1 0

1 0 0 0

1

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1                  

00 1 0

11 1 0 1 1

12

13

1 1 0 0

1 1 0 1
a b

Fig. 4. Automated search for the 2-(2, 4)-design system: 	
a – truth table to search for the 2-(2, 4)-design 	

system; b – truth table after searching for 	
the 2-(2, 4)-design system
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When increasing the bit size of the Boolean function, the 
software search for the 2-(n, b)-design combinatorial system 
in the structure of the truth table becomes substantially more 
productive and more reliable. 

A set of argument sets (2-(n, b)-design configuration), in 
other words, a set of the vertices of the n-dimensional single 
cube, assigns the area for determining the algebra logic func-
tion. The single n-dimensional cube is two (n–1)-dimensio
nal single cubes, in which all their corresponding vertices are 
connected by segments of the single length.

The two 0-dimensional single cubes (two points) at a dis-
tance equal to unity forms a 1-dimensional single cube. Two 
1-dimensional single cubes, whose corresponding vertices are 
located at a distance equal to unity, forms a 2-dimensional 
single cube, two 2-dimensional single cubes form a 3-dimen-
sional single cube. Similarly, a 4-dimensional cube is built. 
The corresponding vertices of the two 3-dimensional cubes 
are also connected by segments of the single length.

The elements of the cube representing, for example, an 
arbitrary 3-variable logical function can be assigned the con-
junctions of different ranks: to vertices – the conjunctions of 
rank 3, to edges – the conjunctions of rank 2, to facets – the 
conjunctions of rank 1. 

The vertices, edges, and facets are the geometric equiva-
lents of conjunctions. The sum of the dimensionality of the 
geometric equivalent and rank assigned to this geometric 
equivalent of the conjunction is constant and equals the 
number of the function’s arguments (in our case, 3). Each 
geometric equivalent of a smaller dimensionality is covered 
by all geometric equivalents of larger dimensionality, that is, 
the greater rank conjunctions are covered by the conjunction 
of a smaller rank. For example, the conjunctions x x x1 2 3, , , 
x x x1 2 3, ,  are covered by the conjunction x1, x2.

Geometric equivalents of some rank are termed inter-
vals [19]. In a 3-dimensional cube, the intervals of rank 3 
are the vertices, the intervals of rank 2 – edges, the intervals 
rank 1 – facets. 

For example, the conjunction x1 corresponds to a set of 
vertices with the coordinates (1,0,0), (1,0,1), (1,1,0), (1,1,1). 
The corresponding interval of rank 1 coincides with the 
cube’s facet covering these four vertices. 

The vertices that match the set of arguments on which 
the function returns «1» form the set T1. Representing some 
DNF for a logical function is equivalent to representing some 
covering the set T1 by intervals, which are defined by the 
conjunctions included in DNF.

That is how one defines the correspondence between rep-
resenting a function in the DNF form and covering the set T1 
by intervals of some rank for a given function. 

If the ranks of all intervals that form the covering of the 
logical function are denoted through r1 , r2 ,... rn, the total 
rank of DNF:

R ri
i

n

=
=
∑

1

,

numerically coincides with the number of variables included 
in DNF and would provide the optimum simplification of 
the logical function by covering the set T1, at which R is 
minimal [19]. 

The submatrix of the truth table containing 2-(n, b)-de-
sign is an interval for the specified covering of Boolean 
functions. Finding all the required intervals increases the ef-
fectiveness of a method of figurative transformations. Fig. 4, 
b demonstrates the two found intervals to accommodate the 

2-(2, 4)-design combinatorial systems (highlighted in red 
and blue). One more interval accommodates the 2-(1, 2)-de-
sign system (highlighted in green).

A variant to search for the 2-(n, b)-design system in the 
truth table’s structure is a so-called method of self-reducing 
cycles [20]. It makes it possible to receive the reduced DNF 
of an arbitrary Boolean function based on special fragments – 
the self-reducing cycles (Table 4) of its truth table.

Table 4
Thesaurus of minimization methods 

No.  
of entry

Thesaurus of 
minimization 

using figurative 
transformations

Thesaurus of 
minimization 
using Boolean 
space vectors

Thesaurus of 
minimization  

using self-reduc-
ing cycles

1

Submatrix  
of truth table 

containing  
2-(n, b)-design

Maximum 
interval

Self-reducing 
cycle

Each fragment is distinguished in a way that only one 
conjunction ki can be represented. The shortened DNF is de-
termined using the disjunctive conjunction, provided that all 
highlighted fragments of the truth table of the Boolean func-
tion fully cover that part of the sets on which the Boolean  
function returns «1» (Fig. 5).

Variables                   Function

x x xn1 2, ,... f

Fragment 1 1

Fragment 2 1

⋅⋅⋅
Fragment i 1

Fig. 5. Fragments of the truth table containing 	
2-(n, b)-design: fragment 1 corresponds to 	

conjunction k1, fragment 2 corresponds to conjunction k2, 
fragment i corresponds to conjunction ki

If the truth table of any Boolean function has a subma-
trix, with 2-(n, b)-design (Table 5), then its reduced DNF on 
this sub-matrix is given by expression:

f x x xn= −1 2 3... ,

since the operation of super gluing the variable can be applied 
to the variables xn–2, xn–1, xn.

Table 5
Submatrix that accommodates 2-(n, b)-design

x1 x2 … xn–3 xn–2 xn–1 xn f

… … … … … … … …

α1 α2 … αn–3 0 0 0 1

α1 α2 … αn–3 0 0 1 1

α1 α2 … αn–3 0 1 0 1

α1 α2 … αn–3 0 1 1 1

α1 α2 … αn–3 1 0 0 1

α1 α2 … αn–3 1 0 1 1

α1 α2 … αn–3 1 1 0 1

α1 α2 … αn–3 1 1 1 1

… … … … … … … …
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Note that when there is a submatrix with 2-(n, b)-design 
and it contains 2m binary sets of length n, where m is the 
number of glue variables, such a sub-matrix is represented by 
the conjunction of rank r = n–m. And the assigned Boolean 
function, on the basis of the submatrix with 2-(n, b)-design,  
is transformed into a reduced DNF. 

The sub-matrix in the form (Table 5) in [20] is termed  
a self-reducing cycle, and the number of glued together vari-
ables in the submatrix – the rank of the self-reducing cycle.

Example 16. It is required to find the self-reducing cy-
cles of ranks 3, 2, 1 for the Boolean function F x x x x1 2 3 4, , , ,( )  
which is assigned by the truth table (Table 6) [20].

Table 6

Truth table of the Boolean function F x x x x1 2 3 4, , ,( )
x1 x2 x3 x4 F x1 x2 x3 x4 F

0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 0 1

0 0 1 0 1 1 0 1 1 1

0 0 1 1 1 1 0 1 1 1

0 1 0 0 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 1 1 0

0 1 1 1 0 1 1 1 1 0

Self-reducing cycle 1. Cycle rank is 3. Glued variables: x1, 
x2, x3. Reduced DNF: f = x2. The submatrix with 2-(3, 8)-de-
sign is given in Table 7.

Table 7
Submatrix with 2-(3, 8)-design

x1 x2 x3 x4 f

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

Self-reducing cycle 2. Cycle rank is 2. Glued variables: x2, x4.  
Reduced DNF: f = x1x3. The submatrix with 2-(2, 4)-design 
is given in Table 8. 

Self-reducing cycle 3. Cycle rank is 2. Glued variables: x1, x4.  
Reduced DNF: f = x2x3. The submatrix with 2-(2, 4)-design 
is given in Table 9. 

Self-reducing cycle 4. Cycle rank is 1. Glued variables: x4. 
Reduced DNF: f = x1x2x3. The submatrix with 2-(1, 2)-design 
is given in Table10.

Table 8
Self-reducing cycle 2

x1 x2 x3 x4 f

0 0 0 0 1

0 0 0 1 1

0 1 0 0 1

0 1 0 1 1

Table 9
Self-reducing cycle 3

x1 x2 x3 x4 f

0 0 1 0 1

0 0 1 1 1

1 0 1 0 1

1 0 1 1 1

Table 10
Self-reducing cycle 4

x1 x2 x3 x4 f

0 1 0 0 1

0 1 0 1 1

Thus, for the automated search for the resulting reduced 
DNF of any Boolean function F x x xn1 2, ,.. ,( )  it is necessary to 
perform a sequence of actions that can be represented by the 
following algorithm [20]: 

Start: the assigned truth table of the Boolean function 
F x x xn1 2, ,.. .( )

Step 1. Set i = 1. Proceed to step 2.
Step 2. Find all the self-reducing cycles of rank r = n–i. If 

the cycles of all the found ranks cover all the unities of the 
Boolean function in its truth table, then proceed to step 5, 
otherwise – to step 2.

Step 3. Disregard all self-reducing cycles of rank r <(n–i), 
which are fully included into one or more self-reducing cycles 
of rank r≥(n–i). Set i = i+1. Proceed to step 4. 

Step 4. If i>(n–1), proceed to step 5, otherwise – to  
step 2. 

Step 5. Synthesize the reduced DNF of the Boolean func-
tion F x x xn1 2, ,..( ) by means of disjunctive conjunction, which 
are found from the self-reducing cycles. 

Complete. 
The minimization of function F x x x x1 2 3 4, , ,( ) (Table 6) 

by the method of figurative transformations is reduced to the 
following procedure [8]:

F = =

=

0

1

2

3

4 0 1 0 0

5 0 1 0 1

8

9

10

11

0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

0

11 0 0 0

0
= .

In the submatrix of blocks 0–3 and 8–11 (highlighted in 
red), which accommodates the 2-(3, 8)-design combinatorial 
system, the operation of super-gluing the variables is applied. 
The simple gluing of variables is highlighted with black color. 
In the last matrix, we carried out the incomplete gluing of 
variables. The result is the following minimum function:

F x x x= +1 3 2.
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The result of minimizing by the method of figurative 
transformations coincides with the result of minimization 
obtained by the method of self-reducing cycles [20]. The 
method of self-reducing cycles uses four self-reducing cycles, 
which yields four conjunctions. It is usually necessary to 
have an implicant table (covering table) to detect the redun-
dant conjunction. The method of figurative transformations 
minimizes the function F x x x x1 2 3 4, , ,( ) (Table 6) in three 
transformations, so it can be attributed to the procedure of 
minimization with less complexity.

8. Comparative analysis of the method of optimum 
alternation of figurative transformations with other 

methods for minimizing functions

The application of the optimal solution according to the 
criterion of all identified combinatorial images in the truth 
table that can take part in the process of minimization of 
Boolean functions and the protocol of optimal alternation of 
figurative transformations (logical operations) in minimizing 
Boolean functions is demonstrated by the examples of mini-
mizing the logical functions borrowed from papers by other 
authors for comparison.

8. 1. Comparison with Mahoney maps
Example 17. It is required to find the minimum DNF and 

CNF of logical functions by using a Mahoney map, obtained 
from the assigned truth table (Fig. 6) [21].

F 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1

D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Fig. 6. Truth table of the logical function 	
for example 17

Fig. 7 is the resulting Mahoney map, derived from the 
truth table in Fig. 6. The contours of unities are denoted by 
the solid ellipses, and the contours of zeros – dotted ellipses.

 

Fig. 7. 4-bit Mahoney map for example 17

Mahony maps in many ways are much more efficient 
compared to Karnaugh maps as they easily expand to the re-
quired amount of input data, which significantly expands the 
overall scope of the Mahoney maps application [21]. 

Using the contours of unities in Fig. 6, the minimum 
DNF of the assigned logical function (Fig. 6) takes the form:

OUT C A D C C A= ⋅ + ⋅ + ⋅ . 	 (12)

The minimization of function F x x x x1 2 3 4, , ,( ) (Fig. 6) 
by a method of figurative transformations is reduced to the 
following procedure: 

Variant 1.

F

x x x x

=

No. 4 3 2 1

0

2

4

5

6

7

8

10

13 1 1

0 0 0 0

0 0 1 0

1 0 0 0

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

00 1

15 1 1 1 1

1 1 1

0 0

0 1

1 1

0 0

0 1

=

= = .

Blocks 4–7 (highlighted in red) and blocks 0, 2, 8, 10 
(highlighted in blue) are minimized based on the protocol for 
super-gluing the variables. The other blocks are minimized 
based on the protocols for simple gluing and semi-gluing the 
variables [7]. The minimized DNF of the function:

F x x x x x x= + +1 3 3 4 1 3. 	 (13)

The result of minimization (13) coincides with the re-
sult of minimization (12), conducted by using a Mahoney 
map [21], however, the synthesis of the minimum DNF of the 
logical function by a method of figurative transformations is 
a simpler procedure. 

Variant 2.

F

x x x x

=

No. 4 3 2 1

0

2

4

5

6

7

8 1 0 0 0

10 1 0 1 0

13

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

0 1 0 1

0 1 1 1

1 1 00 1

1 1 1 1

1 1

15

1 0 0

0 0

1 1

0 0

0 0 0

0 1 0

1 1

0 0

0 1 0

1 1

0 0

0 1

1 1

0 0

0 0

= =

= = =

= = .

Blocks 0, 2, 4, 6 (highlighted in red) and 5, 7, 13, 15 
blocks (highlighted in blue) are minimized based on the 
protocol for super-gluing the variables. The other blocks 
are minimized based on the protocols for simple gluing and 
semi-gluing the variables [7]. 
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The minimized DNF of the function:

F x x x x x x= + +1 3 3 4 1 3. 	 (14)

The result of minimization (14) coincides with the  
result (12). 

Using the contours of zeros in Fig. 6, the minimum CNF 
of the logical function (Fig. 6) takes the form:

OUT C A D C A= ⋅ + ⋅ ⋅ .

By applying de Morgan’s law, we obtain:

OUT C A D C A= ⋅( ) + ⋅ ⋅( ),
OUT C A D C A= ⋅( ) ⋅ ⋅( ),  

and, ultimately, the minimal CNF:

OUT C A D C A= +( ) + +( ). 	 (15)

The minimization of the CNF of the function F x x x x1 2 3 4, , ,( ) 
(Fig. 6) by a method of figurative transformations is reduced 
to the following procedure [6]:

F

x x x x

= =

=

No. 4 3 2 1

1 0 0 0 1

3 0 0 1 1

9 1 0 0 1

11 1 0 1 1

12 1 1 0 0

14 1 1 1 0

1 1 1 0

1 1 0 0

0 1 11 0

0 1 0 0

1 0

0 0 1 1

0 0 0 1

0 0 1
= .

Blocks 1, 3, 9, 11 (highlighted in red) are minimized 
based on the protocol for super-gluing the variables. The 
other blocks are minimized based on the protocols for simple 
gluing the variables [7]. 

The minimized CNF of the function:

F x x x x x= +( ) + +( )1 3 1 3 4 . 	 (16)

The result of minimization (16) coincides with the re-
sult of minimization (15), conducted by using a Mahoney 
map [21], however, the synthesis of the minimum CNF of the 
logical function by a method of figurative transformations is 
a simpler procedure.

8. 2. Comparison with the method of non-directio
nal  graph

The method of non-directional graph is based on graph 
theory, which include digital transformations. Minimization 
using the specified method is carried out by the following 
algorithm [22]:

1. Define the minterms (the sets of variables for a Boolean  
function), at which the function returns the logical unity. 

2. Determine by the graph levels (indexes) based on the 
number of unities in the set of variables. 

3. Synthesize a fragment of the graph determining the 
arcs connecting the vertices of the graph. 

In order to synthesize the graph, it is necessary to define 
its main characteristics. Total vertices:

N nvertice = 2 ,

where n is the number of variables. The number of graph levels:

N nlevel = +1.

The number of vertices in the graph levels is determined 
from a formula for defining a number per one connection:

N Cvertice in level n
i

  = ,

where i is the level number, i = 0, 1, 2, …, n.
After the graph is synthesized, it is necessary to connect 

the vertices, which have the difference in only one position. 
The main stage in the minimization of a logical function 
based on the considered method is the identification of closed 
circuits. If the four vertices, which are interconnected, repre-
sent a closed geometric figure, then the result of minimizing 
is two variables. If it is possible to combine only two vertices, 
then three variables are derived. If a vertex cannot be paired 
with any other, then its lettering would be fully included into 
the summary notation. The result (the minterms obtained) is 
recorded through a disjunction.

One advantage of solving by the non-directional graph 
method is the possibility to minimize the logical functions 
with the help of the pre-created graph-shaped structure. For 
4 variables, it takes the form similar to Fig. 8.

 
Fig. 8. Full graph for 4-variable logical function

Thus, the solution is not always required to use a full 
graph, it is possible to synthesize its fragment (Fig. 9).

 
Fig. 9. A fragment of the graph for exploring 	

a logical function
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Example 18. Let a function be set in the following form:

f a bcd a bcd a bcd

a bcd abcd abcd abcd

= + + +

+ + + + . 	 (17)

Logical function (17) depends on 4 variables; a full graph 
for its is shown in Fig. 8. Synthesize the corresponding frag-
ment of the assigned graph. Because logical function (17) 
returns the logical unity in the recorded minterms, we leave 
in the fragment  the corresponding vertices with the numbers 
0000, 0001, 0010, 0011, 0101, 0111, 1010 (for simplification, 
record their numbers in the decimal number system: 0, 1, 2, 
3, 5, 7, 10 (Fig. 9)). 

Given Fig. 9, we see that on the obtained graph one can 
select two quadrilaterals (0-1-3-2 and 1-3-7-5) and the seg-
ment 2-10.

Contemplating the quadrilateral 0-1-3-2, we see that 
the shared part of all vertices is the two first zeros «00_ _».  
We shall also select the shared part of the vertices of a se
cond quadrilateral 1-3-7-5: «0_ _1»; the shared part of the 
segment 2-10 vertices: «_010». By recording the resulting 
expression in a letter form, we obtain the result of the mini-
mization of the assigned Boolean function:

f a b ab bcd= + + . 	 (18)

Check the derived minimization result (18) by algebraic 
method by applying the laws and identities from the algebra 
of logic.

f a bcd a bcd a bcd a bcd abcd

abcd abcd a bc d d bcd a a

a

= + + + + +

+ + = +( ) + +( )+

+ bbd c c a bc d d a bd c c

a bc bcd abd a bc a bd a b c c

b

+( ) + +( ) + +( ) =

= + + + + = +( ) +

+ ccd ad b b a b bcd ad+ +( ) = + + .

The result of the algebraic validation method confirms the 
fairness of the minimization result (18) of the logical func-
tion (17), obtained by the method of the non-directional graph.

Minimizing the function (17) by a method of figurative 
transformations is reduced to the following procedure: 

Variant 1.

F = =

= =

0

1

2

3

5

7

10 1 0 1 0

1 0 1 0

0 0

0 1

0 1 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 0

0 1 0 1

0 1 1 1

0 1 1 .

Blocks 0–3 (highlighted in red) are minimized based on 
the protocol for super-gluing the variables. The other blocks 
are minimized based on the protocols for simple gluing and 
semi-gluing the variables [7]. 

The minimized function:

F x x x x x x x= + +1 2 1 4 2 3 4. 	 (19)

The minimization result (19) coincides with the result of 
minimization (18), conducted by the non-directional graph 
method [22], however, the synthesis of the minimal logic 
function (19) by a method of figurative transformations is  
a simpler procedure. 

Variant 2.

F = =

= =

0

1

2

3

5

7

10 1 0 1 0

1 0 1 0

0 0

0 1

0 1 0

0 0 0 0

0 0 1 0

0 0 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

0 1 .

Blocks 1, 3, 5, 7 (highlighted in red) are minimized based 
on the protocol for super-gluing the variables. The other 
blocks are minimized based on the protocol for simple gluing 
and semi-gluing the variables [7]. 

The minimized function:

F x x x x x x x= + +1 2 1 4 2 3 4. 	 (20)

The result of minimization (20) coincides with the result 
of minimization (18), conducted by a non-directional graph 
method [22].

8. 3. Comparison of Boolean function minimization 
using a cubic technique

Paper [22] considered the cubic methods of minimizing 
logical functions at minimal cost. 

Example 19. It is required to minimize logical function:

F a b c d, , , , , , , , , ,( ) = ( )Σ 0 4 8 10 11 12 13 15 	 (21)

using a cubic method (Fig. 10) [23]. Note: values in  are the 
sets of variables when the function F a b c d, , ,( )  returns «1» 
at the output.

Larger cubes can be formed only from those minterms 
that differ only in one variable. This makes it possible to 
reduce the number of pairwise comparisons if one splits the 
minterms into groups where the cubes in each group have the 
same number of unities. Thus, it will be necessary to compare 
each cube in a given group only with all cubes from the di-
rectly preceding group (Table 11).

For example, the minterms called the 0-cubes can be 
merged with the minterms called the 1-cubes. If the 0-cubes 
are included in 1-cubes, then this fact is accounted for in  
a certain way. The implicant tables [23] are used to determine 
the minimum coverage.

Minimizing by a cubic method for a given example results 
in the following Boolean function:

F abc abd cd= + + . 	 (22)
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Table 11
Groups of cubes for function 

F a b c d, , , , , , , , , ,( ) = ( )Σ 0 4 8 10 11 12 13 15

No. minterms cubes

0 0000 0-cubes

4 0100
1-cubes

8 1000

10 1010
2-cubes

12 1100

11 1011
3-cubes

13 1101

15 1111 4-cubes

Minimizing the function F x x x x1 2 3 4, , ,( ) (21) by a me
thod of figurative transformations is reduced to the following 
procedure:

F = =

0

4

8

10

11

12

13 1 1 0 1

15 1 1 1 1

1 1 1

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0
1 0 1 0

1 0 1 1
1 0 1 .  

Blocks 0, 4, 8, 12 (highlighted in red) are minimized 
based on the protocol for super-gluing the variables. The 
other blocks are minimized based on the protocols for simple 
gluing the variables [7]. 

The minimized function:

F x x x x x x x x= + +3 4 1 2 3 1 2 4. 	 (23)

The result of minimization (23) coincides with the result 
of minimization (22), performed by a cubic method [23], how-
ever, the synthesis of the minimum logical function (22) by the 
method of figurative transformations is a simpler procedure. 

The chosen sequence of logical operations for equivalent 
figurative transformations (the protocols of equivalent trans-
formations) in the initial combinatorial system (truth table) 
in examples 17–19 is given in Table 12.

Table 12 
Sequence of logical operations for equivalent 	

figurative transformations in the initial combinatorial 	
system (truth table)

Example 
No.

Which minimization 
method is compared to

Sequence of logical operations 
for equivalent transformations

17 Mahoney maps
Super-gluing of variables, 
simple gluing of variables

18
Non-directional graph 

method
Super-gluing of variables, 
simple gluing of variables

19 Cube method
Super-gluing of variables, 
simple gluing of variables

Contemplating Table 12, we see that minimizing the 
logical functions by the method of figurative transformations 
uses the same sequence of logical operations in the initial 
truth table – the super-gluing of variables with the subse-
quent application of the simple gluing of variables. In each 
comparative example, the minimization results are the same, 
but the synthesis of the minimum logical functions by the 
method of figurative transformations is a simpler procedure. 

Thus, the alternation of logical operations of the super- 
gluing of variables and the simple gluing of variables is an 
optimal sequence of the application of protocols for equiva-
lent figurative transformations in order to minimize logical 
functions. Establishing the optimum algorithms for simplifi-
cation creates a prerequisite for constructing the automated 
methods for minimizing Boolean functions.

 

Fig. 10. 4-dimensional cube to explore the logical function F a b c d, , ,( )
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9. Discussion of results of alternating the logical 
operations of the super-gluing of variables and the simple 

gluing of variables to minimize Boolean functions

Methods for minimizing the logical functions, for example, 
the Quine method, the Quine-McCluskey method, an analyti-
cal method, Karnaugh maps, a Mahoney map method, Veitch’s 
diagram method, hypercube method, Harvard method, an un-
paired graph method, a combining indices method, and others, 
require the movement of the minimization principle to auxilia-
ry objects, such as implicant tables, algebraic expressions, Kar-
naugh maps, Mahoney maps, Veitch’s diagrams, graphs, etc. 

The apparatus of equivalent figurative transformations 
is based on the properties of the binary block-schemes with 
repetition, which are essentially the truth tables of the as-
signed Boolean functions. This makes it possible to concen-
trate the principle of minimization within a truth table and, 
thus, disregard auxiliary objects. The information capacity 
of the method of figurative transformations makes it possi-
ble easy enough to perform manual minimization of 4–, …, 
10-variable Boolean functions.

The Boolean function minimization using a method of 
figurative transformations manually requires certain abilities 
to identify in the structure of a truth table the 2-(n, b)-design 
and 2-(n, x/b)-design combinatorial systems. These very 
systems are used to carry out equivalent transformations by 
using the laws and axioma of the algebra of logic. 

Increasing the efficiency to identify the 2-(n, b)-design 
and 2-(n, x/b)-design combinatorial systems, especially at an 
increase in the number of variable Boolean functions, is possi-
ble by applying the constructed algorithm (p. 7.3) followed by 
the subsequent automation of the search for the 2-(n, b)-de-
sign and/or 2-(n, x/b)-design systems  in a first truth table.

The effectiveness of the consecutive application of logical 
operations of the super-gluing of variables and the simple 
gluing of variables to minimize Boolean functions is demon-
strated by examples 17–19. Other examples of the Boolean 
function minimization are given in papers [6–9]. 

The following is the minimization of a 4-bit Boolean 
function F using a method of figurative transformations [7].

F =








0011 0100 0101 0111

1001 1101 1110 1111

, , , ,

, , ,
.

    

   
	 (24)

Variant 1.

F = = =

0 0 1 1
0 1 0 0

1 0 0 1

1 1 1 0

0 0 1 1
0 1 0 0

1 0 0 1
1 1 1 0

0 1 1
0

0 1 0 1
0 1 1 1

1 1 0 1

1 1 1 1

1 1
11 0

1 0 1
1 1 1

0 1 1
0 1 0

1 0 1
1 1 1

0 1 1
0 1 0
1 0 1
1 1 1

1 1

0 1 0 1
0 1 1 1
1 1 0 1
1 1 1 1

=

= = .

Variant 2.

F = = =

0 0 1 1

0 1 0 0

1 0 0 1

1 1 1 0

0 0 1 1

0 1 0 0

1 0 0 1

1 1 1 0

0 1 0 1

0 1 1 1

1 1 0 1

1 1 1 1

1 1

0 1 1

0 11 0

0 1 1

0 1 1

0 1 0

0 1 1

0 1 1

0 1 0

0 1 1

0 1

1 1

1 0 1

1 1 1

1 1

1 0 1

1 1 1

1 1 1

1 0 1

1 1 1

1 1 1

=

= = =
00

1 0 1

1 1 1

.

The algebraic transforms, starting at the third matrix in 
the second variant:

3 matrix

x x x x x x x x x x x x x x

x x x x x x x x

1 3 4 1 2 3 2 4 1 3 4 1 2 3

1 3 4 1 2 3 1 3

+ + + +

+ =

,

xx x x x x x x

x x x x x x x x x x x x x x x

4 1 2 3 1 2 4

1 3 4 1 2 3 1 3 4 1 2 3 1 2 4

+ +

+ = + +

,

,

 

4

, 

matrix

x x x x x x x x x

x x x x x x x x x x x

x

1 3 4 1 2 3 1 2 4

2 4 1 3 4 1 2 3 1 2 4

1

+ + +

+ + + +

xx x x x xx x x x x xx x2 4 1 2 41 2 4 1 2 42 4+ + = + ,

5

, 

matrix

x x x x x x x x x x x x x x x x x x

x x x x

1 3 4 1 2 3 1 2 4 1 3 4 1 2 3 1 2 4

1 3 4

+ + + + +

+ 11 2 3 1 2 4 1 3 4 1 2 3

1 3 4 1 2 3 1 2 4 1 3 4 1

x x x x x x x x x x x

x x x x x x x x x x x x x

+ = +

+ + = +

,

xx x2 3,

6

. 

matrix

x x x x x x x x x x x x1 3 4 1 2 3 1 3 4 1 2 3+ + +

Variant 3.

F = =

0 0 1 1

0 1 1 1 0 1 1

0 1 0 0

0 1 0 1 0 1 0

1 0 0 1

1 1 0 1

1 0 1

1 1 1 0

1 1 1 1

1 1 1

.

Three variants for minimizing the assigned function (24) 
yield the same result (25):

F x x x x x x x x x x x x= + + +1 2 3 1 3 4 1 3 4 1 3 4. 	 (25)

In the first and second variants, the minimization was 
carried out by the sequence of the logical operations of the 
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super-gluing of variables and the simple gluing of variables. 
The third variant of minimization was carried out by means 
of a single logical operation – the simple gluing of variables.

The third variant to minimize function (24) is a simpler 
procedure compared to the first and second variants. Thus, 
the sequence of the logical operations of super-gluing the 
variables and the simple gluing of variables to minimize 
logical functions is not always optimal. However, logical 
functions, similar to (24), are not common. It should be noted 
that over the entire time of the development of the method 
of figurative transformations [6–9], function (24) is the only 
instance of this kind. Therefore, the sequence of the logical 
operations of super-gluing the variables and the simple glu-
ing of variables remains a strategic procedure to minimize 
Boolean functions.

The weak side of the described method is related to the 
limited practice of using the equivalent figurative transfor-
mations for the process of minimizing Boolean functions 
with the subsequent production of corresponding comput-
ing components. The negative internal factors, inherent in 
the process of the Boolean function minimization by the 
specified method, are the need for additional time costs for 
establishing the protocols for the minimization of Boolean 
functions with the subsequent creation of a rule library for 
the algebra of logic that could illustrate the relevant figura-
tive transformations.

The clarity of figurative transformations makes it possi-
ble to execute the manual method of the Boolean function 
minimization (using a mathematical editor, for example 
MathType v. 6.9) approximately in the range of up to ten in-
put variables. In a general case, the identification of the com-
binatorial systems-images 2-(n, b)-design and 2-(n, x/b)-de-
sign in the structure of a truth table manually requires 
certain abilities, especially at an increase in the number of 
variables of Boolean functions. Consequently, the prospect of 
further research into the Boolean function minimization by 
the method of figurative transformations may be related to 
software to search for the 2-(n, b)-design and/or 2-(n, x/b)- 
design systems in the combinatorial structure of a truth table 
for the assigned logical function.

8. Conclusions

1. The comparison of patterns in the process of mini-
mizing the logical functions by using the 2-(n, b)-design 
and 2-(n, x/b)-design combinatorial structures allows us to 
conclude that the 2-(n, b)-design system and the consistent 
alternation of the logical operations of super-gluing the 
variables (if such an operation is possible) and the simple 
gluing of variables, in the first matrix (a truth table), ensures 
the optimal solution by the criterion of all revealed combi-

natorial images in the truth table, which can participate in 
the minimization of Boolean functions. The reliability of the 
minimization result is ensured by the procedure of minimiz-
ing the assigned logical function on the complete truth table, 
followed by the subsequent selection of a minimization result 
in the DNF or CNF representation.

2. The algorithm for automating the process of minimizing 
the logical functions based on the method of figurative trans-
formations within the initial combinatorial system is similar 
to the procedure of searching for the intervals I(α, β) in the  
Boolean space n, which are assigned by a pair of Boolean vec-
tors α and β, such that α β. The internal components in the 
interval I(α, β) correspond to a complete combinatorial system 
with repeated 2-(n, b)-design. The interval external compo-
nents are determined by calculating the number of zeros or 
unities in the columns in the truth table of a logical function.

The optimal solution for the minimization of Boolean 
functions is based on the primary application of the operation 
of super-gluing the variables within the truth table. For the 
possible application of the operation of super-gluing the vari-
ables, one uses the algorithm to search for the 2-(n, b)-design 
system in the structure of a truth table for the assigned func-
tion (p. 7. 3). The algorithm allows for the automated search 
for the intervals or combinatorial systems 2-(n, b)-design in 
the structure of the truth table and is a tool to automate the 
process of minimizing the logical functions by the method of 
figurative transformations.

3. The effectiveness of the combined alternation of the 
protocols for minimizing the Boolean functions is demon-
strated by examples borrowed from works by other authors, 
for comparison: example 17 [21] – minimizing a 4-bit Boolean  
function, example 18 [22] – minimizing a 4-bit Boolean func-
tion, example 19 [23] – minimizing a 4-bit Boolean function. 
Given the above examples, the effectiveness of the consistent 
application of the logical operations of super-gluing the vari-
ables and the simple gluing of variables to minimize Boolean 
functions allows us to argue about the feasibility of the appli-
cation of the specified sequence of logical operations in the 
procedures of minimizing logical functions as the specified 
sequence of logical operations can:

– maintain the automated search for the 2-(n, b)-design 
combinatorial systems in the structure of a truth table for 
the assigned logical function, followed by the subsequent 
minimization of logical functions by the method of figurative 
transformations;

– improve the productivity of the process of logical func-
tion minimization.

The algorithm to minimize Boolean functions by a me
thod of the optimum combination of the sequences of figura-
tive transformations creates a prerequisite for the simplified 
automation of calculations in the method of figurative trans-
formations.
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