
Mathematics and cybernetics – applied aspects

43

THE ALGORITHM FOR
MINIMIZING BOOLEAN

FUNCTIONS USING
A METHOD OF THE

OPTIMAL COMBINATION
OF THE SEQUENCE

OF FIGURATIVE
TRANSFORMATIONS

V . R i z n y k
Doctor	of	Technical	Sciences,	Professor

Department	of	Automated	Control	Systems
Lviv	Polytechnic	National	University	

S.	Bandery	str.,	12,	Lviv,	Ukraine,	79013
M . S o l o m k o

PhD,	Associate	Professor*
E-mail:	doctrinas@ukr.net

P . T a d e y e v
PhD,	Doctor	of	Pedagogical	Sciences,	Professor

Department	of	Higher	Mathematics**
V . N a z a r u k

PhD*
L . Z u b y k

PhD,	Associate	Professor
Department	of	Software	Systems	and	Technologies

Taras	Shevchenko	National	University	of	Kyiv
Volodymyrska	str.,	60,	Kyiv,	Ukraine,	01033

V . V o l o s h y n
PhD

Department	of	Computer	Technology		
and	Economic	Cybernetics**

*Department	of	Computer	Engineering**
**National	University	of	Water		
and	Environmental	Engineering

Soborna	str.,	11,	Rivne,	Ukraine,	33028

Проведеними дослідженнями встановлена мож-
ливість збільшення продуктивності алгоритму
мінімізації булевих функцій методом оптималь-
ного комбінування послідовності логічних операцій
з використанням різних способів склеювання змін-
них – простого та супер-склеювання.

Встановлена відповідність інтервалів I(α, β)
у булевому просторі n, які задаються парою буле-
вих векторів α і β, таких, що α β з повною комбі-
наторною системою з повторенням 2-(n, b)-блок-
схем (англ. 2-(n, b)-designs). Внутрішні компоненти
інтервалу I(α, β) відповідають повній системі
2-(n, b)-design, а зовнішні визначаються розра-
хунком кількості нулів або одиниць у стовпчи-
ках таблиці істинності заданої логічної функції.
Це до зволяє використовувати теорію інтервалів
I(α, β) у математичному апараті комбінаторних
систем 2-(n, b)-design для проведення мінімізації
булевих функцій методом рівносильних образних
перетворень, зокрема здійснювати автоматизо-
ваний пошук систем 2-(n, b)-design у структурі
таблиці істинності.

Експериментальними дослідженнями підтвер-
джено, що комбінаторна система 2-(n, b)-design
і послідовне чергування логічних операцій супер-
склеювання змінних (якщо така операція мож-
лива) та простого склеювання змінних у першій
таблиці істинності підвищує ефективність проце-
су та достовірність результату мінімізації булевих
функцій. При цьому спрощується алгоритмізація
пошуку системи 2-(n, b)-design у структурі табли-
ці істинності заданої логічної функції, що прави-
тиме інструментарієм для подальшої автомати-
зації пошуку системи 2-(n, b)-design. У порівнянні
з аналогами це дає змогу підвищити продуктивність
процесу мінімізації булевих функцій на 100–200 %
шляхом використання оптимального чергування
операцій супер-склеювання та простого склеюван-
ня змінних методом рівносильних образних пере-
творень.

Є підстави стверджувати про можливість
збільшення продуктивності процесу мінімізації
булевих функцій, шляхом оптимального комбіну-
вання послідовності логічних операцій супер-склею-
вання змінних та простого склеювання змінних,
методом рівносильних образних перетворень

Ключові слова: мінімізація булевих функцій,
оптимальне комбінування послідовності образних
перетворень, карта Махоні

UDC 519.718
DOI: 10.15587/1729-4061.2020.206308

Copyright © 2020, V. Riznyk, M. Solomko, P. Tadeyev, V. Nazaruk, L. Zubyk, V. Voloshyn

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

Received date 20.05.2020

Accepted date 24.06.2020

Published date 30.06.2020

1. Introduction

The algebra of logic, like any computation apparatus,
is a totality of axioms, identities, laws, rules, which enable
the conversion of logical expressions. However, here, as
a rule, there are no guidelines on how to use this apparatus
for the synthesis of optimal logic schemes. The optimal

solution can be provided only by building in a certain
sequence of these transformations (algorithms). Methods
of such construction are described in works [1–5]. In
turn, a prerequisite for the creation of automated methods
for reducing Boolean functions is to develop simplified
algorithms for the optimum synthesis of minimal logi-
cal functions.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

44

As the process of minimizing logical functions occupies
an important position within the design technology of digital
components, it is still a relevant task to ensure the adequate con-
formity of the developed product to the specified requirements
for cost, simplification, thereby warranting the optimum result
from minimizing different representations of logical functions.

A method of figurative transformations has the follow-
ing scope of application: minimizing the Boolean functions
in the DNF and CNF representation; the minimization of
incompletely defined Boolean functions; minimizing based
on a full truth table; determining an attribute of the mini-
mum logical function; the minimization of Boolean function
systems [6–9]. A promising area to study the application
of a method of figurative transformations is the minimiza-
tion of Boolean functions in the monobases of Schaeffer,
Webb (Pierce); the minimization of the randomly given
Boolean functions (Blake-Poretsky algorithm).

The evolution of methods to simplify the logical func-
tions and their automation is the result of relentless optimi-
zation, therefore, the studies are relevant that are aimed, in
particular, at the improvement of factors such as:

– algorithms of minimization (and its automation) of
logical functions;

– the reliability of an optimal result;
– the cost of the logical function minimization process.

2. Literature review and problem statement

Classical methods of Boolean function minimization, the
Karnaugh map and a Quine McCluskey algorithm, are given
in [10], which notes that the use of a tabular Karnaugh method
to minimize Boolean functions requires a lot of time, so
minimizing by a manual method is limited to six variables. If
a logical function has a larger number of variables, it is quite
practical to use a method developed by Quine and McCluskey,
which can be implemented as software. The development
of software and hardware components of computer systems
makes it possible to simplify the algorithm of minimization
if the software has an acceptable execution speed. Paper [10]
reports an algorithm and the corresponding software for
minimizing the logical functions down to 20 variables, whose
number is limited only by the memory of the computer system.
The software was developed in the Visual Basic language. The
algorithm is based on sequential clustering of terms, starting
with grouping terms with one change into two terms of the
same rank. As a result of this grouping, new terms are genera-
ted, with the number of variables reduced by unity. The clus-
tering algorithm ends when variables can no longer be grouped.
The algorithm described is similar to the Quine McCluskey
algorithm but is simpler because it has fewer procedures.

One of the most powerful procedures to simplify Boolean
expressions is the Quine McCluskey (QM) method, consi-
dered in [11]. Compared to other approaches, this method is
more often applied in practice, making it possible to process
a greater number of variables. The QM method is easier to
implement by software, which makes it an effective appa-
ratus to minimize Boolean functions. Study [11] describes
a QM-simulator, written in the C language. The considered
minimizing algorithm theoretically can process any number
of variable Boolean functions.

A new heuristic algorithm for the maximum minimization
of Boolean functions with a normal form of SOP is proposed
in [12]. Implementing this algorithm employs graphic data;

certain conditions are given to achieve the maximum level of
Boolean function minimization.

A classic object-oriented algorithm to minimize Boolean
functions by means of Karnaugh maps is described in [13],
where language stereotypes and class diagrams are given, as
well as an analysis of the productivity of the unified model of
Boolean function minimization.

A new technique of the two-step optimization process of
the combinational logic is described in [14]. This technique
can be applied to arbitrary combinational logical tasks and
often produces an improved outcome even after optimization
based on standard methods. This optimization technique is
used to improve software performance.

A quick granular method to minimize Boolean functions
is proposed in [15]. The paper states that, first, a Boolean
function changes for the sum of products. Second, the result-
ing truth table is obtained while statistical information in dif-
ferent knowledge domains is computed as heuristic informa-
tion for minimizing functions. The algorithm of minimization
is implemented in the MATLAB programming environment.
Experimental studies confirm its high efficiency.

A new approach to minimizing Boolean expressions is sug-
gested in work [16]. The reported minimization technique is
general but the emphasis is on the «Exclusive» or «Sum of the
Terms» (ESOP) functions. This method is used for solving
the classic Boolean algebra problems. The resulting problem
becomes a nonlinear integer program, for solving which an
original branch and bound procedure with several relaxations
was developed. The proposed method is convenient to mini-
mize the incompletely defined logical functions, which is
considered a complicated problem in the Boolean area. The
paper reports numerous demonstrative examples of applica-
tion and outlines the effectiveness of the considered approach
to Boolean function minimization, presenting possible areas
to continue research in future, related to solving the complex
problems of ESOP. The software package, which can be used
to minimize the logical functions, is given in article [17]. The
package is a practical tool for teaching digital design and
other related courses. The input data to this software is the
number of variables at switching and a switching function to
minimize. The user can choose any of the three methods for
implementing the process of minimization: algebraic manip-
ulations using theorems, Karnaugh maps, and a method by
Quine McCluskey. The software begins to minimize gradually
until the optimum analytical expression is reached. The user
can visualize the stages of the procedure used in a particular
minimization technique. This software package provides se-
veral options for minimizing logical functions and then selects
the best approach among them, which employs the minimum
number of logical elements in the digital component schema.

The above literary sources [10–17] mostly consider com-
pleted algorithms of Boolean function minimization and the
software written for them, specifically object-oriented ones, pro-
viding the automated synthesis of minimum Boolean functions.

A feature of minimizing Boolean functions by the method
of figurative transformations is greater informativeness of
the solution to a problem in comparison with the algebraic
way of function minimization, which is a verbal procedure
due to the presence in the structure of truth tables of the
complete 2-(n, b)-design or incomplete 2-(n, x/b)-design
binary combinatorial systems with repetition and essentially
combinatorial images. Since such objects take the form of
combinatorial images, they provide more information on
orthogonality, adjacency, unambiguity of blocks of combina-

Mathematics and cybernetics – applied aspects

45

torial system in comparison with algebraic transformations
that opens new possibilities of application of combinatorial
images for equivalent transformation of logical functions.
That makes it possible to improve mental performance as an
intellectual component when minimizing Boolean functions,
which promotes the detection of reserves to improve the pro-
cess of minimization and enables to improve the result of the
figurative transformation, to increase the control function,
ensuring the optimum solution is guaranteed without the
need, to some extent, to use the automation of the minimiza-
tion process of logical functions.

Thus, the algorithmic programs covering the overall proce-
dure for minimizing logical functions [10–17], and a method of
figurative transformations imply different approaches (princi-
ples of minimization), and thus promise various prospects on the
possibility of the algorithmic minimization of logical functions.

In this regard, there are reasons to believe that the software
and hardware base, which is represented by the complete al-
gorithmizing programs [10–17], is insufficient for theoretical
research into the optimum minimization of Boolean functions.
This necessitates undertaking a study involving the equivalent
figurative transformations of logical functions. In particular,
employing the protocol of the optimum combination of figura-
tive transformations to ensure optimal solution by the criterion
of all revealed combinatorial images in a truth table, which can
participate in the process of Boolean function minimization.
In the applied aspect, the specified approach could expand the
capabilities of the digital component design technology.

3. The aim and objectives of the study

The aim of this study is to establish the optimum alternating
protocols of equivalent transformations for the initial combina-
torial system, which is essentially the truth table of the assigned
logic function. This would make it possible to define a prin-
ciple (Latin: principium – beginning) to minimize the logical
functions by figurative transformations, specifically in the DNF
and CNF representation, and to extend the established principle
on the algorithm for automating the process of logical function
minimization based on a method of figurative transformations.

To accomplish the aim, the following tasks have been set:
– to determine patterns in the process of logical func-

tion minimization when using combinatorial structures of
a complete binary system with repeated 2-(n, b)-design and
an incomplete binary system with repeated 2-(n, x/b)-design;

– to construct an algorithm to automate the process of lo-
gical function minimization based on the method of figurative
transformations within the initial combinatorial system, which
is essentially the truth table of the assigned logical function;

– to demonstrate examples of Boolean functions minimiza-
tion borrowed from works by other authors to compare the ef-
ficiency of the selected alternating protocols of equivalent figu-
rative transformations at the minimization of logical functions;

The criterion for the optimum Boolean function min-
imization using a method of figurative transformations is
described in detail in work [6]. The essence of the criterion
is the need to minimize the functions on the full truth table,
with the subsequent choice of the minimization result in the
DNF or CNF representation. The same criterion could be
extended for other bases of the possible representation of
a function – monobases, Zhegalkin’s basis, Reed-Muller ba-
sis, etc. Various bases by which the function can be represented
form an optimization area for the assigned logical function.

4. Binary combinatorial system with repetition

If some set A is assigned, it is possible to consider a new
set М(А) – the set of all its subsets, Boolean. Мk(A) is used to
denote the set of all subsets A that have k elements.

Example 1. Let А = {a, b, c, d}, then:

M A

a b c d a b a c a d

b c b d c d a() =
{ } { } { } { } { } { } { }
{ } { } { }

, , , , , , , , , ,

, , , , , , ,, , , , , ,

, , , , , , , , , ,

;b c a b d

a c d b c d a b c d

{ } { }
{ } { } { } ∅

M A a b a c a d b c b d c d2 () = { } { } { } { } { } { }{ }, , , , , , , , , , , .

Check that:

N M A()() = =16 24, N M A2 6()() = .

The number of all k-element subsets of the set of n ele-
ments equals:

N M A C
n

k n kk n
k()() = =

−()
!

! !
.

Another equality holds:

Cn
k

k

n
n

=
∑ =

0

2 . (1)

Since Cn
k is the number of k-element subsets of the set of

n elements, the sum in the left-hand side of expression (1) is
the number of all subsets.

Example 2. It is required, from formula (1), to calculate
the number of all subsets of the set А = {a, b, c, d, e}.

N M A C C C C C C()() = + + + + + =

= + + + + + = =
5
0

5
1

5
2

5
3

5
4

5
5

51 5 10 10 5 1 32 2 .

Note that the set А = {a, b, c, d}, in addition to the recal-
culation of its elements, can also specify the numbers of the
positions at which the element α is located. For example, a can
denote the first position, b can denote the second position of
the set А = {a, b, c, d}, etc. The subsets of the set А = {a, b, c, d},
in this case, are those subsets that contain the element α at
positions k, k = 0, …, n, where n is the number of positions of the
set A. In a general case, the element α may take several posi-
tions on the set A, thus the element α is repeated on the set A.

Let α = 1, then the positions at which the element α is
absent are denoted by a zero.

Example 3. Assume α = 1 for the set А = {a, b, c, d, e}, which
defines the position numbers. Then the subsets of the set A
will take the form:

0,0,0,0,0 ; 0,1,0,0,0 ;

0,0,0,0,1 ; 0,1,0,0,1 ;

0,0,0,1,0

() ()
() ()
()) ()
() ()
()

; 0,1,0,1,0 ;

0,0,0,1,1 ; 0,1,0,1,1 ;

0,0,1,0,0 ; 0,1,1,0,,0 ;

0,0,1,0,1 ; 0,1,1,0,1 ;

0,0,1,1,0 ; 0,1,1,1,0 ;

0,0,

()
() ()
() ()

11,1,1 ; 0,1,1,1,1 ;

1,0,0,0,0 ; (1,1,0,0,0);

1,0,0,0,1

() ()

()
()) ()
() ()
()

; 1,1,0,0,1 ;

1,0,0,1,0 ; 1,1,0,1,0 ;

1,0,0,1,1 ; 1,1,0,1,,1 ;

1,0,1,0,0 ; 1,1,1,0,0 ;

1,0,1,0,1 ; 1,1,1,0,1 ;

1,0,

()
() ()
() ()

11,1,0 ; 1,1,1,1,0 ;

1,0,1,1,1 ; 1,1,1,1,1 ;

() ()
() ()

 (2)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

46

The number of all k-element subsets of the set А =  
= {a, b, c, d, e}, which defines the positions’ numbers, is deter-
mined from formula (1).

N M A C0 5
0 1()() = = ,

N M A C1 5
1 5()() = = ,

N M A C2 5
2 10()() = = ,

N M A C3 5
3 10()() = = ,

N M A C4 5
4 5()() = = .

N M A C5 5
5 1()() = = .

N M A N M A N M A N M A

N M A N M A N M A

()() = ()() + ()()+ ()() +

+ ()() + ()() +
0 1 2

3 4 5 (()() = 32.

Configuration (2) is a complete combinatorial system
with a repetition of the α element, which we denote:

2-(n, b)-design,

where n is the bit size of the system’s block; b is the number
of blocks in the complete system, determined from formula
b = 2n, the number 2 before brackets denotes the binary struc-
ture of configuration (2). For example, 2-(5, 32)-design is
a complete binary combinatorial system with repetition con-
sisting of 5-bit blocks, the number of blocks is 32.

In a general case, the truth table configuration of the
assigned function, in addition to a submatrix of the complete
combinatorial system with repeated 2-(n, b)-design, also con-
tains the submatrices of the incomplete combinatorial system
with repeated:

2-(n, x/b)-design.

In this case, x is the number of blocks of an incom-
plete combinatorial system with repetition. The proper-
ties of the incomplete combinatorial system with repeated
2-(n, x/b)-design can also establish the rules, which, in
a general case, ensure the effective minimization of Boolean
functions.

5. Protocol of the equivalent conversion
of DNF into CNF of the logical function

The protocol for minimizing the logical functions, which
includes terms with the same variables in the corresponding
term’s bits, may take, for example, the following form:

F x x x x x x x x

x x x x x x

x

DNF = = + + + =

= +() + +() =

=

0 0

0 1

1 0

1 1

1 3 1 4 2 3 2 4

1 3 4 2 3 4

3 ++() +() =

= =

x x x

FCNF

4 1 2

0 1

0 1
. (3)

Protocol (3), in addition to simplifying the logical expres-
sion, transforms the DNF representation into the CNF repre-
sentation of the logical function. Given the matrix notation
for FDNF and FCNF in (3), we see that the DNF and CNF of
the logical function are given by matrices with identical com-
binatory structures. The difference between these matrices is
determined by the hermeneutics of logical operations. The ma-
trix reflecting the CNF of the logical function yields the max-
terms of the function and a conjunction operation for them.
The matrix reflecting the DNF of the logical function produces
the minterms of the function and a disjunction operation for
them [14]. The equivalence of the specified transformation is
confirmed by verifying the protocol (3) (Tables 1, 2).

Table	1

Truth	table	of	the	logical	function	F x x x x x x x xDNF = + + +1 3 1 4 2 3 2 4	before	transformation

x1 x2 x3 x4 x1 x2 x3 x4 x x1 3 x x1 4 x x2 3 x2x4 x x x x x x x x1 3 1 4 2 3 2 4+ + +

0 0 0 0 1 1 1 1 1 0 0 0 1

0 0 0 1 1 1 1 0 1 1 0 0 1

0 0 1 0 1 1 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 0 1 1 1 1 1

0 1 1 0 1 0 0 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 1 0 1 1

1 0 0 0 0 1 1 1 0 0 0 0 0

1 0 0 1 0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 1 0 1

1 1 0 1 0 0 1 0 0 0 1 1 1

1 1 1 0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 1 1

Mathematics and cybernetics – applied aspects

47

The values of the functions in the extreme right-hand
columns in Tables 1, 2 are the same, meaning the equivalence
of the algebraic transformation based on protocol (3).

6. Features of using the combinatorial structures
2-(n, b)-design and 2-(n, x/b)-design to minimize

Boolean functions

Logical function minimization using figurative transfor-
mations is performed as follows. In the first step, one finds
the blocks (constituents) of the truth table with variables
that can be glued together (cover them). The next step is
to search for the sets of pairs of blocks (implicants) with
the ability to minimize them by the algebraic operations of
semi-gluing, gluing, generalized gluing, absorption of vari-
ables for these pairs. The obtained sets of blocks are again
minimized in a similar way, and so on, until deriving the
deadlock DNF (DDNF). The sets of DDNF lso contain the
minimum functions (MDNF). The last step is to verify the
resulting minimum function using the assigned table, specifi-
cally the optimum minimization criterion [6].

The algebraic transformations required for the process
of minimizing Boolean functions are replaced by equivalent
transformations using submatrices (combinatory images) of
the truth table, which is essentially a proper combinatorial
system. Because combinatorial images provide more informa-
tion on orthogonality, adjacency, single-nobility of combina-
torial system blocks, compared to algebraic transformations,
which are a verbal procedure, their use in searching for the
objects for equivalent transformations, in the process of mi-
nimizing the logical function, is effective [7–9].

In a general case, the combinatorial structure of the
truth table of the assigned logical function can contain
combinatorial images (sub-matrices) with the structure of
a complete combinatorial system with repeated 2-(n, b)-de-
sign and an incomplete combinatorial system with repeated
2-(n, x/b)-design. Properties of these combinatorial struc-

tures make it possible to establish rules, which, in a general
case, ensure the effective minimization of Boolean functions.

To choose the optimum alternation of protocols to min-
imize by figurative transformations, it is necessary to deter-
mine the initial logical operation of the algebraic transfor-
mation of Boolean functions. In this regard, it is necessary
to establish the peculiarities of the process of minimizing
the logical functions when using combinatorial structures of
a complete binary system with repeated 2-(n, b)-design and
an incomplete binary system with repeated 2-(n, x/b)-design.

Example 4. It is required to minimize the logical function
F x x x x1 2 3 4, , ,() by figurative transformations, which is as-
signed by the following truth table:

F =  (6, 8, 9, 10, 11, 12, 13, 14)

Note: The values in are the minterms for rows when the
function F x x x x1 2 3 4, , ,() returns «1» at the output.

To minimize the assigned function F x x x x1 2 3 4, , , ,() we
use a combinatorial structure of an incomplete binary system
with repeated 2-(n, x/b)-design (Fig. 1).

6 0 1 1 0

8 1

9 1

10 1

11 1

12 1

13 1

14 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

Fig.	1.	Combinatorial	system	(truth	table)		
of	the	function	F x x x x1 2 3 4, , ,()	with	a	structure		
of	the	incomplete	binary	system	with	repeated		

2-(3,	7/8)-design	(in	red	color)

Perform the minimization of the function F x x x x1 2 3 4, , ,()
by figurative transformations using 2-(3, 7/8)-design.

Table	2

Truth	table	of	the	logical	function	F x x x xCNF = +() +()3 4 1 2 	after	transformation

x1 x2 x3 x4 x1 x2 x3 x4 x x3 4+() x x1 2+() x x x x3 4 1 2+() +()
0 0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0 1 0

0 0 1 1 1 1 0 0 1 1 1

0 1 0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 1 0 1 1 1

0 1 1 0 1 0 0 1 0 1 0

0 1 1 1 1 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 0 0

1 0 0 1 0 1 1 0 1 0 0

1 0 1 0 0 1 0 1 0 0 0

1 0 1 1 0 1 0 0 1 0 0

1 1 0 0 0 0 1 1 1 1 1

1 1 0 1 0 0 1 0 1 1 1

1 1 1 0 0 0 0 1 0 1 0

1 1 1 1 0 0 0 0 1 1 1

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

48

F = =

=

6 0 1 1 0

8

9

10

11

12

13

14

0 1 1 0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 0

1 0

1 00

1 1 0

1 0

1 0

1 0

= .

The minimized function:

F x x x x x x x x x= + + +2 3 4 1 2 1 3 1 4. (4)

The minimization protocol for 2-(3, 7/8)-design:

0 0 0

0 0 1

0 1 0

0 1 1

0

1 0 0

1 0 1

1 0

1 1 0

1 1 0

0

0

1 1 0

0

0

0

= = =

or

0 0 0

0 0 1

1 0 0

1 0 1

00 1 0

0 1 1 0 1

1 1 0

1 1 0

0

0

1 1 0

0

0

0

= = = .

Example 5. It is required to minimize the logical function
F x x x x1 2 3 4, , ,() from example 4 by figurative transformations,
using a combinatorial structure of the complete binary sys-
tem with repeated 2-(n, b)-design (Fig. 2).

6 0 1 1 0

8 1 0

9 1 0

10 1 0

11 1 0

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

0 0

0 1

1 0

1 1

Fig.	2.	Combinatorial	system	(truth	table)		
of	the	function	 F x x x x1 2 3 4, , ,() 	with	a	structure		

of	the	complete	binary	system	with	repeated		
2-(2,	4)-design	(in	red)

Minimizing the function F x x x x1 2 3 4, , ,() by figurative
transformations using 2-(2, 4)-design.

F = = =

6 0 1 1 0

8

9

10

11

12

13

14 1 1 1 0

1 1 0 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1
1 0

1 1 0 0

1 1 0 1

1 1 0

11 0

1 0

1 0

.

The minimized function:

F x x x x x x x= + +2 3 4 1 2 1 3. (5)

The operation of super-gluing the variables in the first
matrix is performed for blocks 8–11, which are highlighted
in red. Simple gluing of variables is carried out for blocks 12,
13, which are highlighted in blue, and 6, 14, which are high-
lighted in black. Comparing the minimum functions (4)
and (5), we see that the minimum function (5) is simpler by
one term.

It should be noted that the minimization of function (4)
can continue using the implicant table (Table 3).

Table	3
Implicant	table		

for	function	 F x x x x x x x x x= + + +2 3 4 1 2 1 3 1 4

No. implicant –110 10– – 1–0 – 1– – 0

6 0110 +

8 1000 + + +

9 1001 + +

10 1010 + +

11 1011 +

12 1100 + +

13 1101 +

14 1110 + +

Contemplating Table 3, we see that the simple implicant
1– –0 is redundant, so it can be removed from function (4).
After the removal of the simple implicant 1– –0, we will ob-
tain a minimum function (5).

Note also that the additional term x x1 4 in (4) elimi-
nates the potential danger of a signals race. This term is
redundant in terms of the static logic of the system but
such redundant or conciliation terms are often necessary
to ensure the non-problematic dynamic characteristics of
logical circuits.

Example 6. It is required to minimize the logical func-
tion F x x x x x1 2 3 4 5, , , , ,() which is assigned by the truth table

(1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 26, 28, 30, 31)
by figurative transformations [9].

Mathematics and cybernetics – applied aspects

49

F =

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4

5 0 0 1 0 1

7 0 0 1 1 1

9 0 1 0 0 1

11 0 1 0 1 1

12

0 0 1 0 0

0 1 1 0 0

113 0 1 1 0 1

14 0 1 1 1 0

15 0 1 1 1 1

16 1 0 0 0 0

17 1 0 0 0 1

18 1 0 0 1 0

20

22 1 0 1 1 0

2

1 0 1 0 0

66 1 1 0 1 0

28

30 1 1 1 1 0

31 1 1 1 1 1

1 1 1 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0

=

11

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

1 1 1 1 1

~ ~~

~ ~ ~

~

~

~

~ ~

~

~ ~

~ ~ ~

~

~ ~

1 0 0

0 1

0 0 0 1

0 1 1 1

1 0 0 0

1 1 0

1 1 1 1

1 0 0

0 1

0 0 0 1

1 1 1

=

= =
11 0 0 0

1 1 0

1 0 0

~

~ ~

~ ~

.

The efficiency of minimizing the function F x x x x x1 2 3 4 5, , , ,()
is based on the primary application of the logical operation of
super-gluing the variables in the first matrix, which was carried
out for blocks 4, 12, 20, 28 (highlighted in red). A complete
combinatorial system with repeated (2, 4)-design was used
here. The minimization of blocks in the second matrix, high-
lighted in blue, was carried out by means of protocol (6) [9].

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

y

y x

0 0 1

0 1 0

0 1 1

1 0 1

1 1 1

0 0 1

0 1 1

1 0 1

1 1 0

1 1 1

1

=

=

~ ~

xx

y x

y x

y xy x

y
0 1

1 1

0 1

1 11

1
~

~ ~

~

~ ~ ~

~

~

.= (6)

The variables’ gluing (covering) protocol (6) is used on
a configuration that has one column with the same vari-

ables y, and the second column contains the same number of
variables x and x, with the redundant combinatorial system
2-(3, 6/8)-design [9].

The blocks in the second matrix, in green, are minimized
by protocol (7) [9].

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

y x

0 0 0

0 0 1

0 1 0

1 1 0

0 1 0

1 1 0

1 1 1

0 0

1 1

1 0

1 0

=

= =

~

~

~

~

yy x

y x

y

0 0

1 1

1 0

~

~ ~

~

. (7)

The variables’ gluing (covering) protocol (7) is used on
a configuration that has one column with the same variables
y, and the second column contains the same number of vari-
ables x and x, with the redundant combinatorial system
2-(3, 6/8)-design [9].

The minimized function:

F x x x x x x x x x

x x x x x x x x x x

= + + +

+ + +
1 5 1 2 3 4 2 3 4

1 2 3 4 1 4 5 3 4 5.

Thus, comparing the peculiarities of the process of min-
imizing the logical functions using combinatorial structures
of the complete binary system with repeated 2-(n, b)-design
and the incomplete binary system with repeated 2-(n, x/b)-de-
sign, it can be concluded that the combinatorial system 2-(n, b)-
design and the consistent combination of logical operations
of super-gluing the variables (if such an operation is possible)
and of simple gluing the variables in the first matrix (truth
table) ensures a high efficiency of the process and the reliabi-
lity of the results of minimizing Boolean functions.

7. Results of minimizing Boolean functions by the
method of optimum combination of equivalent figurative

transformations

The protocol to minimize Boolean functions by the me-
thod of optimum combination of equivalent figurative trans-
formations has the following advantages:

– it extends the possibilities of applying the vector inter-
vals of the Boolean space n;

– it defines a partial algorithm of recognizing the combi-
natorial systems 2-(n, b)-design and finding their boundaries;

– it enables the automated search for combinatorial sys-
tems 2-(n, b)-design in the structure of the truth table of the
assigned logical function.

7. 1. Using the vector intervals of Boolean space n
while minimizing Boolean functions

Definition 1. The interval I(α, β) in the Boolean space
n, which is assigned by a pair of Boolean vectors α and β,

such that α β denotes the set of all Boolean vectors γ
of length n, which satisfy the condition α γ β, that is,

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

50

I(α, β) = {γ∈ n: α γ β}. The Boolean vectors α and β are
called the boundaries of an interval, the vector α is the small-
est element of the interval, and β is the largest [18].

Example 7. I 000 101 000 001 100 101, , , , ,() = { } boundary α = 
= 000 is the smallest element, boundary β = 101 is the largest
element.

It follows from definition 1 that either the α and β bound-
aries coincide in the i-th component of the Boolean vector
a bi i=(), then all vectors of the γ interval I(α, β) accept in the

i-th component the same values. Or, the boundaries a bi i<(),
do not match, then such components accept in the vectors γ
all possible values.

Definition 2. The components for which the boundaries
(and, therefore, all vectors on the interval) coincide are
termed the external components of the interval, the rest are
internal. The number of the external components is termed
the rank of the interval (r), and the number of internal – its
bit size (s).

Example 8. In the preceding example 8, the second com-
ponent is external, the first and third – internal, rank r = 1,
bit size s = 2.

For clarity, we shall record the vectors of the interval
under each other and leave the braces.

Example 9.

I 000 101

000

001

100

101

, .() =

Consider extreme cases:
– I(α, α) = {α}, the interval boundaries are the same, so

it consists of a single Boolean vector, rank r = n, bit size s = 0.
– I(00…0,11…1) – the entire Boolean space n is the in-

terval, rank r = 0, bit size s = n.
Statement. The number of the Boolean vectors in the in-

terval (interval’s power) of bit size s equals 2s.
Example 10. The number of the Boolean vectors in the

interval I(000, 111) equals 23 = 8, the number of the Boolean
vectors in the interval I(000, 001, 100, 101) equals 22 = 4, the
number of the Boolean vectors in the interval I(101) is 20 = 1.

Comparing the interval I(α, β) of the Boolean space n,
for example, I(000, 101) from example 9, with the combinato-
rial structure of the truth table, it is easy to see that the inter-
nal components of the interval I(000, 101) correspond to the
complete combinatorial system with repeated 2-(2, 4)-design.
The external components of the interval are determined by
calculating the number of zeros or unities in the columns of
the truth table of the logical function (paragraph 7. 3, step 5
of the considered algorithm).

In this way, the interval I(α, β) of the Boolean space n
represents a class of the combinatorial structures of truth
tables of logical functions and, therefore, may be an object to
simplify its structure.

It is known that the reduction of the complete perfect
disjunctive normal form (PDNF), which is a combinatorial
system 2-(n, b)-design, produces unity [8]. Under the alge-
braic technique to minimize the interval I(α, β), the external
components need to be taken out of brackets. The internal
components will remain in parentheses. If the internal com-
ponents of the interval are represented by a combinatorial
system 2-(n, b)-design, the external interval components will
become the result of minimizing. In this case, it is necessary
to take into consideration the logical identity operation.

Example 11. It is required to minimize the interval from
example 9 by an algebraic method.

I

x x x

000 101
0 0 0
0 0 1
1 0 0
1 0 1

1 2 3

, .() = (8)

x x x x x x x x x x x x

x x x x x x x x

x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 3 1 2 3 3

1 2

+ + + =

= +() + +() =

= ++ = +() =x x x x x x1 2 2 1 1 2.

The minimized interval:

I x= 2. (9)

The result of minimization (9) corresponds to the exter-
nal components (x2) of interval (8).

Example 12. It is required to minimize the interval from
example 9 with the help of figurative transformations.

I x000 101

0 0 0
0 0 1
1 0 0
1 0 1

0 2, ~ ~ .() = = = (10)

The minimized interval:

I x= 2. (11)

The result of minimization (11) corresponds to the exter-
nal components of interval (10).

The efficiency of the minimization of the interval struc-
ture in example 12 is based on the primary use of the logic
operation of super-gluing the variables within the combina-
torial structure’s boundaries.

A similar result of minimization can be achieved with the
help of the 2-(n, b)-design system search algorithm in the
truth table’s structure, discussed in chapter 7. 3. The spec-
ified algorithm makes it possible to perform the automated
search for the intervals or the combinatorial systems 2-(n, b)-
design in the structure of the truth table and is a tool for au-
tomating the process of minimizing the logical functions by a
method of equivalent figurative transformations.

7. 2. A partial algorithm for the recognition of intervals
(or combinatorial systems 2-(n, b)-design) and to search
for its boundaries

Start: A set A of the Boolean vectors of length n is as-
signed (or a truth table of the Boolean function F(x1, x2, …, xn)
is assigned).

Step 1. If the power of the A set is not an integer power of
two, that is, A ≠ 2c , where c is the integer, then the ser A is
not an interval, proceed to the completion of the algorithm.

Step 2. Determine the number s of the nonmatching
components in the vectors of the set A, that is, the number
of the components that claim be internal. If s c≠ , then A is
not an interval, proceed to the completion of the algorithm;
otherwise, A is the interval, s is its bit size, r = n–S – its rank.

Step 3. Find the limits α and β of the interval. The
minimum weight vector (of the entire set of vectors A) is
the smallest element (α) in the interval, and the maximum
weight vector is the largest element (β).

Mathematics and cybernetics – applied aspects

51

Complete. [18]
Example 13. A = { }010 011 001, , : the set A does not form

an interval because its power is 3, and thus it is not an integer
power of two.

Example 14. A = { }0010 0011 0001 1000, , , : the set A does
not form an interval – the power is an integer power of two
but the power of degree c = 2 does not coincide with the num-
ber of components s = 3 that claim to be internal (these are
the first, third, and fourth components).

Example 15. A = { }010 011 001 000, , , : the set A forms an
interval as its power is an integer power of two (c = 2) and
this power coincides with the number of components (s = 2)
that claim to be internal (these are the second and third com-
ponents). Interval boundaries: α = 000, β = 011.

The algorithm of the recognition of intervals (or com-
binatorial systems-(n, b)-design) recognizes the required
objects provided A = 2c , where c is an integer.

However, in most cases, the combinatorial system 2-(n, b)-
design must be searched on the condition A ≠ 2c , where c is
the integer and b A≥ , where b is the number of binary blocks
in the truth table of the Boolean function F x x xn1 2, ,.. .()
Therefore, the considered interval recognition algorithm (or
combinatorial systems 2-(n, b)-design) is a partial algorithm
and can be applied at the final stage of searching for the com-
binatorial systems 2-(n, b)-design.

7. 3. Automated search for the 2-(n, b)-design com-
binatorial systems in the structure of a truth table of the
logical function

The 2-(n, b)-design system can take a compact arrange-
ment in the structure of the truth table of the assigned logical
function or non-compact, for instance, in the first matrix of
example 6. The truth table can contain several 2-(n, b)-design
combinatorial systems. In a general case, and especially when
increasing the bit size of a logic function, the unambiguous
detection of the 2-(n, b)-design system or the 2-(n, b)-design
systems in the truth table’s structure would enable the auto-
mated search for the examined combinatorial systems.

For the automated search for the 2-(n, b)-design system
in the structure of the truth table of any Boolean function, it
is necessary to perform a sequence of actions, which can be
represented by the following algorithm:

Start: the truth table of the Boolean function F x x xn1 2, ,.. .()
is assigned.

Step 1. The structure of the truth table should be ap-
propriately represented in the perfect disjunctive normal
form (PDNF).

Step 2. Arrange the truth table’s blocks in lexicographi-
cal order.

Step 3. Check the structure of the truth table for the
presence of identical blocks. If the same blocks are present,
represent them in a single block.

Step 4. Check whether the assigned structure of the truth
table is the complete combinatorial system with repetition.
If the assigned structure of the truth table is a complete com-
binatorial system with repetition, complete the search for the
2-(n, b)-design system.

Step 5. Calculate the number of unities and zeros sepa-
rately in each column of the truth table.

Step 6. Based in the results of the calculations in p. 5, en-
sure a taxonomic search for the 2-(n, b)-design combinatorial
systems. For example, if the number of zeros or unities (k) cor-
responds to the condition k≥8 a 4-bit logical function is consi-
dered, the search for the Combinatorial system 2 (3, 8)-design

is possible. If the number of zeros or units (k) meets condi-
tion 4 ≤ k<8 and a 4-bit logical function is considered, it is
possible to find the 2-(2, 4)-design combinatorial system, etc.

Step 7. Search for intervals, starting with the maximum,
or the 2-(n, b)-design combinatorial systems.

Complete.
Fig. 3 shows a block diagram of the 2-(n, b)-design sys-

tem search algorithm 2 in the structure of the truth table of
the assigned logical function.

Start

3

One block

2
Lexicographic

order

1

PDNF

5
Calculate zeroes

and unities

Complete

6

Taxonomy

Yes
4

No

7
Search for

2-(n, b)-design

Complete
CS

Fig.	3.	Block	diagram	to	search	for	the	2-(n,	b)-design	
system:	1	–	representation	of	the	structure	of	the	truth	table	

in	the	PDNF;	2	–	arrange	the	blocks	of	the	truth	table	in	
lexicographical	order;	3	–	representation	of	several	blocks	of	
the	truth	table	in	one	block;	4	–	check	whether	the	assigned	

structure	of	the	truth	table	is	a	 complete	combinatorial	
system	with	repetition;	5	–	calculate	separately	the	number	

of	unities	and	zeros	in	each	column	of	the	truth	table;		
6	–	provide	the	taxonomy	for	the	search	of	the	2-(n,	b)-design	

combinatorial	systems;	7	–	search	for	the	2-(n,	b)-design	
combinatorial	systems

Fig. 4 shows the results of the automated search for the
2-(n, b)-design in the structure of the truth table of the as-
signed logical function.

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

8 1 0 0 0

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 11

0

1

2

3

5

7

8

10

0 0 0 0

0 0 1 0

1 0 0 0

1

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

00 1 0

11 1 0 1 1

12

13

1 1 0 0

1 1 0 1
a b

Fig.	4.	Automated	search	for	the	2-(2,	4)-design	system:		
a – truth	table	to	search	for	the	2-(2,	4)-design		

system;	b	–	truth	table	after	searching	for		
the	2-(2,	4)-design	system

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

52

When increasing the bit size of the Boolean function, the
software search for the 2-(n, b)-design combinatorial system
in the structure of the truth table becomes substantially more
productive and more reliable.

A set of argument sets (2-(n, b)-design configuration), in
other words, a set of the vertices of the n-dimensional single
cube, assigns the area for determining the algebra logic func-
tion. The single n-dimensional cube is two (n–1)-dimensio-
nal single cubes, in which all their corresponding vertices are
connected by segments of the single length.

The two 0-dimensional single cubes (two points) at a dis-
tance equal to unity forms a 1-dimensional single cube. Two
1-dimensional single cubes, whose corresponding vertices are
located at a distance equal to unity, forms a 2-dimensional
single cube, two 2-dimensional single cubes form a 3-dimen-
sional single cube. Similarly, a 4-dimensional cube is built.
The corresponding vertices of the two 3-dimensional cubes
are also connected by segments of the single length.

The elements of the cube representing, for example, an
arbitrary 3-variable logical function can be assigned the con-
junctions of different ranks: to vertices – the conjunctions of
rank 3, to edges – the conjunctions of rank 2, to facets – the
conjunctions of rank 1.

The vertices, edges, and facets are the geometric equiva-
lents of conjunctions. The sum of the dimensionality of the
geometric equivalent and rank assigned to this geometric
equivalent of the conjunction is constant and equals the
number of the function’s arguments (in our case, 3). Each
geometric equivalent of a smaller dimensionality is covered
by all geometric equivalents of larger dimensionality, that is,
the greater rank conjunctions are covered by the conjunction
of a smaller rank. For example, the conjunctions x x x1 2 3, , ,
x x x1 2 3, , are covered by the conjunction x1, x2.

Geometric equivalents of some rank are termed inter-
vals [19]. In a 3-dimensional cube, the intervals of rank 3
are the vertices, the intervals of rank 2 – edges, the intervals
rank 1 – facets.

For example, the conjunction x1 corresponds to a set of
vertices with the coordinates (1,0,0), (1,0,1), (1,1,0), (1,1,1).
The corresponding interval of rank 1 coincides with the
cube’s facet covering these four vertices.

The vertices that match the set of arguments on which
the function returns «1» form the set T1. Representing some
DNF for a logical function is equivalent to representing some
covering the set T1 by intervals, which are defined by the
conjunctions included in DNF.

That is how one defines the correspondence between rep-
resenting a function in the DNF form and covering the set T1
by intervals of some rank for a given function.

If the ranks of all intervals that form the covering of the
logical function are denoted through r1 , r2 ,... rn, the total
rank of DNF:

R ri
i

n

=
=
∑

1

,

numerically coincides with the number of variables included
in DNF and would provide the optimum simplification of
the logical function by covering the set T1, at which R is
minimal [19].

The submatrix of the truth table containing 2-(n, b)-de-
sign is an interval for the specified covering of Boolean
functions. Finding all the required intervals increases the ef-
fectiveness of a method of figurative transformations. Fig. 4,
b demonstrates the two found intervals to accommodate the

2-(2, 4)-design combinatorial systems (highlighted in red
and blue). One more interval accommodates the 2-(1, 2)-de-
sign system (highlighted in green).

A variant to search for the 2-(n, b)-design system in the
truth table’s structure is a so-called method of self-reducing
cycles [20]. It makes it possible to receive the reduced DNF
of an arbitrary Boolean function based on special fragments –
the self-reducing cycles (Table 4) of its truth table.

Table	4
Thesaurus	of	minimization	methods	

No.
of entry

Thesaurus of
minimization

using figurative
transformations

Thesaurus of
minimization
using Boolean
space vectors

Thesaurus of
minimization

using self-reduc-
ing cycles

1

Submatrix
of truth table

containing
2-(n, b)-design

Maximum
interval

Self-reducing
cycle

Each fragment is distinguished in a way that only one
conjunction ki can be represented. The shortened DNF is de-
termined using the disjunctive conjunction, provided that all
highlighted fragments of the truth table of the Boolean func-
tion fully cover that part of the sets on which the Boolean
function returns «1» (Fig. 5).

Variables Function

x x xn1 2, ,... f

Fragment 1 1

Fragment 2 1

⋅⋅⋅
Fragment i 1

Fig.	5.	Fragments	of	the	truth	table	containing		
2-(n,	b)-design:	fragment	1	corresponds	to		

conjunction k1,	fragment	2	corresponds	to	conjunction k2,	
fragment	i	corresponds	to	conjunction	ki

If the truth table of any Boolean function has a subma-
trix, with 2-(n, b)-design (Table 5), then its reduced DNF on
this sub-matrix is given by expression:

f x x xn= −1 2 3... ,

since the operation of super gluing the variable can be applied
to the variables xn–2, xn–1, xn.

Table	5
Submatrix	that	accommodates	2-(n,	b)-design

x1 x2 … xn–3 xn–2 xn–1 xn f

… … … … … … … …

α1 α2 … αn–3 0 0 0 1

α1 α2 … αn–3 0 0 1 1

α1 α2 … αn–3 0 1 0 1

α1 α2 … αn–3 0 1 1 1

α1 α2 … αn–3 1 0 0 1

α1 α2 … αn–3 1 0 1 1

α1 α2 … αn–3 1 1 0 1

α1 α2 … αn–3 1 1 1 1

… … … … … … … …

Mathematics and cybernetics – applied aspects

53

Note that when there is a submatrix with 2-(n, b)-design
and it contains 2m binary sets of length n, where m is the
number of glue variables, such a sub-matrix is represented by
the conjunction of rank r = n–m. And the assigned Boolean
function, on the basis of the submatrix with 2-(n, b)-design,
is transformed into a reduced DNF.

The sub-matrix in the form (Table 5) in [20] is termed
a self-reducing cycle, and the number of glued together vari-
ables in the submatrix – the rank of the self-reducing cycle.

Example 16. It is required to find the self-reducing cy-
cles of ranks 3, 2, 1 for the Boolean function F x x x x1 2 3 4, , , ,()
which is assigned by the truth table (Table 6) [20].

Table	6

Truth	table	of	the	Boolean	function	 F x x x x1 2 3 4, , ,()
x1 x2 x3 x4 F x1 x2 x3 x4 F

0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 0 1

0 0 1 0 1 1 0 1 1 1

0 0 1 1 1 1 0 1 1 1

0 1 0 0 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 0

0 1 1 0 0 1 1 1 1 0

0 1 1 1 0 1 1 1 1 0

Self-reducing cycle 1. Cycle rank is 3. Glued variables: x1,
x2, x3. Reduced DNF: f = x2. The submatrix with 2-(3, 8)-de-
sign is given in Table 7.

Table	7
Submatrix	with	2-(3,	8)-design

x1 x2 x3 x4 f

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

Self-reducing cycle 2. Cycle rank is 2. Glued variables: x2, x4.
Reduced DNF: f = x1x3. The submatrix with 2-(2, 4)-design
is given in Table 8.

Self-reducing cycle 3. Cycle rank is 2. Glued variables: x1, x4.
Reduced DNF: f = x2x3. The submatrix with 2-(2, 4)-design
is given in Table 9.

Self-reducing cycle 4. Cycle rank is 1. Glued variables: x4.
Reduced DNF: f = x1x2x3. The submatrix with 2-(1, 2)-design
is given in Table10.

Table	8
Self-reducing	cycle	2

x1 x2 x3 x4 f

0 0 0 0 1

0 0 0 1 1

0 1 0 0 1

0 1 0 1 1

Table	9
Self-reducing	cycle	3

x1 x2 x3 x4 f

0 0 1 0 1

0 0 1 1 1

1 0 1 0 1

1 0 1 1 1

Table	10
Self-reducing	cycle	4

x1 x2 x3 x4 f

0 1 0 0 1

0 1 0 1 1

Thus, for the automated search for the resulting reduced
DNF of any Boolean function F x x xn1 2, ,.. ,() it is necessary to
perform a sequence of actions that can be represented by the
following algorithm [20]:

Start: the assigned truth table of the Boolean function
F x x xn1 2, ,.. .()

Step 1. Set i = 1. Proceed to step 2.
Step 2. Find all the self-reducing cycles of rank r = n–i. If

the cycles of all the found ranks cover all the unities of the
Boolean function in its truth table, then proceed to step 5,
otherwise – to step 2.

Step 3. Disregard all self-reducing cycles of rank r <(n–i),
which are fully included into one or more self-reducing cycles
of rank r≥(n–i). Set i = i+1. Proceed to step 4.

Step 4. If i>(n–1), proceed to step 5, otherwise – to
step 2.

Step 5. Synthesize the reduced DNF of the Boolean func-
tion F x x xn1 2, ,..() by means of disjunctive conjunction, which
are found from the self-reducing cycles.

Complete.
The minimization of function F x x x x1 2 3 4, , ,() (Table 6)

by the method of figurative transformations is reduced to the
following procedure [8]:

F = =

=

0

1

2

3

4 0 1 0 0

5 0 1 0 1

8

9

10

11

0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

0

11 0 0 0

0
= .

In the submatrix of blocks 0–3 and 8–11 (highlighted in
red), which accommodates the 2-(3, 8)-design combinatorial
system, the operation of super-gluing the variables is applied.
The simple gluing of variables is highlighted with black color.
In the last matrix, we carried out the incomplete gluing of
variables. The result is the following minimum function:

F x x x= +1 3 2.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

54

The result of minimizing by the method of figurative
transformations coincides with the result of minimization
obtained by the method of self-reducing cycles [20]. The
method of self-reducing cycles uses four self-reducing cycles,
which yields four conjunctions. It is usually necessary to
have an implicant table (covering table) to detect the redun-
dant conjunction. The method of figurative transformations
minimizes the function F x x x x1 2 3 4, , ,() (Table 6) in three
transformations, so it can be attributed to the procedure of
minimization with less complexity.

8. Comparative analysis of the method of optimum
alternation of figurative transformations with other

methods for minimizing functions

The application of the optimal solution according to the
criterion of all identified combinatorial images in the truth
table that can take part in the process of minimization of
Boolean functions and the protocol of optimal alternation of
figurative transformations (logical operations) in minimizing
Boolean functions is demonstrated by the examples of mini-
mizing the logical functions borrowed from papers by other
authors for comparison.

8. 1. Comparison with Mahoney maps
Example 17. It is required to find the minimum DNF and

CNF of logical functions by using a Mahoney map, obtained
from the assigned truth table (Fig. 6) [21].

F 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1

D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Fig.	6.	Truth	table	of	the	logical	function		
for	example	17

Fig. 7 is the resulting Mahoney map, derived from the
truth table in Fig. 6. The contours of unities are denoted by
the solid ellipses, and the contours of zeros – dotted ellipses.

Fig.	7.	4-bit	Mahoney	map	for	example	17

Mahony maps in many ways are much more efficient
compared to Karnaugh maps as they easily expand to the re-
quired amount of input data, which significantly expands the
overall scope of the Mahoney maps application [21].

Using the contours of unities in Fig. 6, the minimum
DNF of the assigned logical function (Fig. 6) takes the form:

OUT C A D C C A= ⋅ + ⋅ + ⋅ . (12)

The minimization of function F x x x x1 2 3 4, , ,() (Fig. 6)
by a method of figurative transformations is reduced to the
following procedure:

Variant 1.

F

x x x x

=

No. 4 3 2 1

0

2

4

5

6

7

8

10

13 1 1

0 0 0 0

0 0 1 0

1 0 0 0

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

00 1

15 1 1 1 1

1 1 1

0 0

0 1

1 1

0 0

0 1

=

= = .

Blocks 4–7 (highlighted in red) and blocks 0, 2, 8, 10
(highlighted in blue) are minimized based on the protocol for
super-gluing the variables. The other blocks are minimized
based on the protocols for simple gluing and semi-gluing the
variables [7]. The minimized DNF of the function:

F x x x x x x= + +1 3 3 4 1 3. (13)

The result of minimization (13) coincides with the re-
sult of minimization (12), conducted by using a Mahoney
map [21], however, the synthesis of the minimum DNF of the
logical function by a method of figurative transformations is
a simpler procedure.

Variant 2.

F

x x x x

=

No. 4 3 2 1

0

2

4

5

6

7

8 1 0 0 0

10 1 0 1 0

13

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

0 1 0 1

0 1 1 1

1 1 00 1

1 1 1 1

1 1

15

1 0 0

0 0

1 1

0 0

0 0 0

0 1 0

1 1

0 0

0 1 0

1 1

0 0

0 1

1 1

0 0

0 0

= =

= = =

= = .

Blocks 0, 2, 4, 6 (highlighted in red) and 5, 7, 13, 15
blocks (highlighted in blue) are minimized based on the
protocol for super-gluing the variables. The other blocks
are minimized based on the protocols for simple gluing and
semi-gluing the variables [7].

Mathematics and cybernetics – applied aspects

55

The minimized DNF of the function:

F x x x x x x= + +1 3 3 4 1 3. (14)

The result of minimization (14) coincides with the
result (12).

Using the contours of zeros in Fig. 6, the minimum CNF
of the logical function (Fig. 6) takes the form:

OUT C A D C A= ⋅ + ⋅ ⋅ .

By applying de Morgan’s law, we obtain:

OUT C A D C A= ⋅() + ⋅ ⋅(),
OUT C A D C A= ⋅() ⋅ ⋅(),

and, ultimately, the minimal CNF:

OUT C A D C A= +() + +(). (15)

The minimization of the CNF of the function F x x x x1 2 3 4, , ,()
(Fig. 6) by a method of figurative transformations is reduced
to the following procedure [6]:

F

x x x x

= =

=

No. 4 3 2 1

1 0 0 0 1

3 0 0 1 1

9 1 0 0 1

11 1 0 1 1

12 1 1 0 0

14 1 1 1 0

1 1 1 0

1 1 0 0

0 1 11 0

0 1 0 0

1 0

0 0 1 1

0 0 0 1

0 0 1
= .

Blocks 1, 3, 9, 11 (highlighted in red) are minimized
based on the protocol for super-gluing the variables. The
other blocks are minimized based on the protocols for simple
gluing the variables [7].

The minimized CNF of the function:

F x x x x x= +() + +()1 3 1 3 4 . (16)

The result of minimization (16) coincides with the re-
sult of minimization (15), conducted by using a Mahoney
map [21], however, the synthesis of the minimum CNF of the
logical function by a method of figurative transformations is
a simpler procedure.

8. 2. Comparison with the method of non-directio-
nal graph

The method of non-directional graph is based on graph
theory, which include digital transformations. Minimization
using the specified method is carried out by the following
algorithm [22]:

1. Define the minterms (the sets of variables for a Boolean
function), at which the function returns the logical unity.

2. Determine by the graph levels (indexes) based on the
number of unities in the set of variables.

3. Synthesize a fragment of the graph determining the
arcs connecting the vertices of the graph.

In order to synthesize the graph, it is necessary to define
its main characteristics. Total vertices:

N nvertice = 2 ,

where n is the number of variables. The number of graph levels:

N nlevel = +1.

The number of vertices in the graph levels is determined
from a formula for defining a number per one connection:

N Cvertice in level n
i

 = ,

where i is the level number, i = 0, 1, 2, …, n.
After the graph is synthesized, it is necessary to connect

the vertices, which have the difference in only one position.
The main stage in the minimization of a logical function
based on the considered method is the identification of closed
circuits. If the four vertices, which are interconnected, repre-
sent a closed geometric figure, then the result of minimizing
is two variables. If it is possible to combine only two vertices,
then three variables are derived. If a vertex cannot be paired
with any other, then its lettering would be fully included into
the summary notation. The result (the minterms obtained) is
recorded through a disjunction.

One advantage of solving by the non-directional graph
method is the possibility to minimize the logical functions
with the help of the pre-created graph-shaped structure. For
4 variables, it takes the form similar to Fig. 8.

Fig.	8.	Full	graph	for	4-variable	logical	function

Thus, the solution is not always required to use a full
graph, it is possible to synthesize its fragment (Fig. 9).

Fig.	9.	A	fragment	of	the	graph	for	exploring		

a	logical	function

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

56

Example 18. Let a function be set in the following form:

f a bcd a bcd a bcd

a bcd abcd abcd abcd

= + + +

+ + + + . (17)

Logical function (17) depends on 4 variables; a full graph
for its is shown in Fig. 8. Synthesize the corresponding frag-
ment of the assigned graph. Because logical function (17)
returns the logical unity in the recorded minterms, we leave
in the fragment the corresponding vertices with the numbers
0000, 0001, 0010, 0011, 0101, 0111, 1010 (for simplification,
record their numbers in the decimal number system: 0, 1, 2,
3, 5, 7, 10 (Fig. 9)).

Given Fig. 9, we see that on the obtained graph one can
select two quadrilaterals (0-1-3-2 and 1-3-7-5) and the seg-
ment 2-10.

Contemplating the quadrilateral 0-1-3-2, we see that
the shared part of all vertices is the two first zeros «00_ _».
We shall also select the shared part of the vertices of a se-
cond quadrilateral 1-3-7-5: «0_ _1»; the shared part of the
segment 2-10 vertices: «_010». By recording the resulting
expression in a letter form, we obtain the result of the mini-
mization of the assigned Boolean function:

f a b ab bcd= + + . (18)

Check the derived minimization result (18) by algebraic
method by applying the laws and identities from the algebra
of logic.

f a bcd a bcd a bcd a bcd abcd

abcd abcd a bc d d bcd a a

a

= + + + + +

+ + = +() + +()+

+ bbd c c a bc d d a bd c c

a bc bcd abd a bc a bd a b c c

b

+() + +() + +() =

= + + + + = +() +

+ ccd ad b b a b bcd ad+ +() = + + .

The result of the algebraic validation method confirms the
fairness of the minimization result (18) of the logical func-
tion (17), obtained by the method of the non-directional graph.

Minimizing the function (17) by a method of figurative
transformations is reduced to the following procedure:

Variant 1.

F = =

= =

0

1

2

3

5

7

10 1 0 1 0

1 0 1 0

0 0

0 1

0 1 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 0

0 1 0 1

0 1 1 1

0 1 1 .

Blocks 0–3 (highlighted in red) are minimized based on
the protocol for super-gluing the variables. The other blocks
are minimized based on the protocols for simple gluing and
semi-gluing the variables [7].

The minimized function:

F x x x x x x x= + +1 2 1 4 2 3 4. (19)

The minimization result (19) coincides with the result of
minimization (18), conducted by the non-directional graph
method [22], however, the synthesis of the minimal logic
function (19) by a method of figurative transformations is
a simpler procedure.

Variant 2.

F = =

= =

0

1

2

3

5

7

10 1 0 1 0

1 0 1 0

0 0

0 1

0 1 0

0 0 0 0

0 0 1 0

0 0 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

0 1 .

Blocks 1, 3, 5, 7 (highlighted in red) are minimized based
on the protocol for super-gluing the variables. The other
blocks are minimized based on the protocol for simple gluing
and semi-gluing the variables [7].

The minimized function:

F x x x x x x x= + +1 2 1 4 2 3 4. (20)

The result of minimization (20) coincides with the result
of minimization (18), conducted by a non-directional graph
method [22].

8. 3. Comparison of Boolean function minimization
using a cubic technique

Paper [22] considered the cubic methods of minimizing
logical functions at minimal cost.

Example 19. It is required to minimize logical function:

F a b c d, , , , , , , , , ,() = ()Σ 0 4 8 10 11 12 13 15 (21)

using a cubic method (Fig. 10) [23]. Note: values in are the
sets of variables when the function F a b c d, , ,() returns «1»
at the output.

Larger cubes can be formed only from those minterms
that differ only in one variable. This makes it possible to
reduce the number of pairwise comparisons if one splits the
minterms into groups where the cubes in each group have the
same number of unities. Thus, it will be necessary to compare
each cube in a given group only with all cubes from the di-
rectly preceding group (Table 11).

For example, the minterms called the 0-cubes can be
merged with the minterms called the 1-cubes. If the 0-cubes
are included in 1-cubes, then this fact is accounted for in
a certain way. The implicant tables [23] are used to determine
the minimum coverage.

Minimizing by a cubic method for a given example results
in the following Boolean function:

F abc abd cd= + + . (22)

Mathematics and cybernetics – applied aspects

57

Table	11
Groups	of	cubes	for	function	

F a b c d, , , , , , , , , ,() = ()Σ 0 4 8 10 11 12 13 15

No. minterms cubes

0 0000 0-cubes

4 0100
1-cubes

8 1000

10 1010
2-cubes

12 1100

11 1011
3-cubes

13 1101

15 1111 4-cubes

Minimizing the function F x x x x1 2 3 4, , ,() (21) by a me-
thod of figurative transformations is reduced to the following
procedure:

F = =

0

4

8

10

11

12

13 1 1 0 1

15 1 1 1 1

1 1 1

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0
1 0 1 0

1 0 1 1
1 0 1 .

Blocks 0, 4, 8, 12 (highlighted in red) are minimized
based on the protocol for super-gluing the variables. The
other blocks are minimized based on the protocols for simple
gluing the variables [7].

The minimized function:

F x x x x x x x x= + +3 4 1 2 3 1 2 4. (23)

The result of minimization (23) coincides with the result
of minimization (22), performed by a cubic method [23], how-
ever, the synthesis of the minimum logical function (22) by the
method of figurative transformations is a simpler procedure.

The chosen sequence of logical operations for equivalent
figurative transformations (the protocols of equivalent trans-
formations) in the initial combinatorial system (truth table)
in examples 17–19 is given in Table 12.

Table	12	
Sequence	of	logical	operations	for	equivalent		

figurative	transformations	in	the	initial	combinatorial		
system	(truth	table)

Example
No.

Which minimization
method is compared to

Sequence of logical operations
for equivalent transformations

17 Mahoney maps
Super-gluing of variables,
simple gluing of variables

18
Non-directional graph

method
Super-gluing of variables,
simple gluing of variables

19 Cube method
Super-gluing of variables,
simple gluing of variables

Contemplating Table 12, we see that minimizing the
logical functions by the method of figurative transformations
uses the same sequence of logical operations in the initial
truth table – the super-gluing of variables with the subse-
quent application of the simple gluing of variables. In each
comparative example, the minimization results are the same,
but the synthesis of the minimum logical functions by the
method of figurative transformations is a simpler procedure.

Thus, the alternation of logical operations of the super-
gluing of variables and the simple gluing of variables is an
optimal sequence of the application of protocols for equiva-
lent figurative transformations in order to minimize logical
functions. Establishing the optimum algorithms for simplifi-
cation creates a prerequisite for constructing the automated
methods for minimizing Boolean functions.

Fig.	10.	4-dimensional	cube	to	explore	the	logical	function F a b c d, , ,()

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

58

9. Discussion of results of alternating the logical
operations of the super-gluing of variables and the simple

gluing of variables to minimize Boolean functions

Methods for minimizing the logical functions, for example,
the Quine method, the Quine-McCluskey method, an analyti-
cal method, Karnaugh maps, a Mahoney map method, Veitch’s
diagram method, hypercube method, Harvard method, an un-
paired graph method, a combining indices method, and others,
require the movement of the minimization principle to auxilia-
ry objects, such as implicant tables, algebraic expressions, Kar-
naugh maps, Mahoney maps, Veitch’s diagrams, graphs, etc.

The apparatus of equivalent figurative transformations
is based on the properties of the binary block-schemes with
repe tition, which are essentially the truth tables of the as-
signed Boolean functions. This makes it possible to concen-
trate the principle of minimization within a truth table and,
thus, disregard auxiliary objects. The information capacity
of the method of figurative transformations makes it possi-
ble easy enough to perform manual minimization of 4–, …,
10-variable Boolean functions.

The Boolean function minimization using a method of
figurative transformations manually requires certain abilities
to identify in the structure of a truth table the 2-(n, b)-design
and 2-(n, x/b)-design combinatorial systems. These very
systems are used to carry out equivalent transformations by
using the laws and axioma of the algebra of logic.

Increasing the efficiency to identify the 2-(n, b)-design
and 2-(n, x/b)-design combinatorial systems, especially at an
increase in the number of variable Boolean functions, is possi-
ble by applying the constructed algorithm (p. 7.3) followed by
the subsequent automation of the search for the 2-(n, b)-de-
sign and/or 2-(n, x/b)-design systems in a first truth table.

The effectiveness of the consecutive application of logical
operations of the super-gluing of variables and the simple
gluing of variables to minimize Boolean functions is demon-
strated by examples 17–19. Other examples of the Boolean
function minimization are given in papers [6–9].

The following is the minimization of a 4-bit Boolean
function F using a method of figurative transformations [7].

F =

0011 0100 0101 0111

1001 1101 1110 1111

, , , ,

, , ,
.

 (24)

Variant 1.

F = = =

0 0 1 1
0 1 0 0

1 0 0 1

1 1 1 0

0 0 1 1
0 1 0 0

1 0 0 1
1 1 1 0

0 1 1
0

0 1 0 1
0 1 1 1

1 1 0 1

1 1 1 1

1 1
11 0

1 0 1
1 1 1

0 1 1
0 1 0

1 0 1
1 1 1

0 1 1
0 1 0
1 0 1
1 1 1

1 1

0 1 0 1
0 1 1 1
1 1 0 1
1 1 1 1

=

= = .

Variant 2.

F = = =

0 0 1 1

0 1 0 0

1 0 0 1

1 1 1 0

0 0 1 1

0 1 0 0

1 0 0 1

1 1 1 0

0 1 0 1

0 1 1 1

1 1 0 1

1 1 1 1

1 1

0 1 1

0 11 0

0 1 1

0 1 1

0 1 0

0 1 1

0 1 1

0 1 0

0 1 1

0 1

1 1

1 0 1

1 1 1

1 1

1 0 1

1 1 1

1 1 1

1 0 1

1 1 1

1 1 1

=

= = =
00

1 0 1

1 1 1

.

The algebraic transforms, starting at the third matrix in
the second variant:

3 matrix

x x x x x x x x x x x x x x

x x x x x x x x

1 3 4 1 2 3 2 4 1 3 4 1 2 3

1 3 4 1 2 3 1 3

+ + + +

+ =

,

xx x x x x x x

x x x x x x x x x x x x x x x

4 1 2 3 1 2 4

1 3 4 1 2 3 1 3 4 1 2 3 1 2 4

+ +

+ = + +

,

,

4

,

matrix

x x x x x x x x x

x x x x x x x x x x x

x

1 3 4 1 2 3 1 2 4

2 4 1 3 4 1 2 3 1 2 4

1

+ + +

+ + + +

xx x x x xx x x x x xx x2 4 1 2 41 2 4 1 2 42 4+ + = + ,

5

,

matrix

x x x x x x x x x x x x x x x x x x

x x x x

1 3 4 1 2 3 1 2 4 1 3 4 1 2 3 1 2 4

1 3 4

+ + + + +

+ 11 2 3 1 2 4 1 3 4 1 2 3

1 3 4 1 2 3 1 2 4 1 3 4 1

x x x x x x x x x x x

x x x x x x x x x x x x x

+ = +

+ + = +

,

xx x2 3,

6

.

matrix

x x x x x x x x x x x x1 3 4 1 2 3 1 3 4 1 2 3+ + +

Variant 3.

F = =

0 0 1 1

0 1 1 1 0 1 1

0 1 0 0

0 1 0 1 0 1 0

1 0 0 1

1 1 0 1

1 0 1

1 1 1 0

1 1 1 1

1 1 1

.

Three variants for minimizing the assigned function (24)
yield the same result (25):

F x x x x x x x x x x x x= + + +1 2 3 1 3 4 1 3 4 1 3 4. (25)

In the first and second variants, the minimization was
carried out by the sequence of the logical operations of the

Mathematics and cybernetics – applied aspects

59

super-gluing of variables and the simple gluing of variables.
The third variant of minimization was carried out by means
of a single logical operation – the simple gluing of variables.

The third variant to minimize function (24) is a simpler
procedure compared to the first and second variants. Thus,
the sequence of the logical operations of super-gluing the
variables and the simple gluing of variables to minimize
logical functions is not always optimal. However, logical
functions, similar to (24), are not common. It should be noted
that over the entire time of the development of the method
of figurative transformations [6–9], function (24) is the only
instance of this kind. Therefore, the sequence of the logical
operations of super-gluing the variables and the simple glu-
ing of variables remains a strategic procedure to minimize
Boolean functions.

The weak side of the described method is related to the
limited practice of using the equivalent figurative transfor-
mations for the process of minimizing Boolean functions
with the subsequent production of corresponding comput-
ing components. The negative internal factors, inherent in
the process of the Boolean function minimization by the
specified method, are the need for additional time costs for
establishing the protocols for the minimization of Boolean
functions with the subsequent creation of a rule library for
the algebra of logic that could illustrate the relevant figura-
tive transformations.

The clarity of figurative transformations makes it possi-
ble to execute the manual method of the Boolean function
minimization (using a mathematical editor, for example
MathType v. 6.9) approximately in the range of up to ten in-
put variables. In a general case, the identification of the com-
binatorial systems-images 2-(n, b)-design and 2-(n, x/b)-de-
sign in the structure of a truth table manually requires
certain abilities, especially at an increase in the number of
variables of Boolean functions. Consequently, the prospect of
further research into the Boolean function minimization by
the method of figurative transformations may be related to
software to search for the 2-(n, b)-design and/or 2-(n, x/b)-
design systems in the combinatorial structure of a truth table
for the assigned logical function.

8. Conclusions

1. The comparison of patterns in the process of mini-
mizing the logical functions by using the 2-(n, b)-design
and 2-(n, x/b)-design combinatorial structures allows us to
conclude that the 2-(n, b)-design system and the consistent
alternation of the logical operations of super-gluing the
variables (if such an operation is possible) and the simple
gluing of variables, in the first matrix (a truth table), ensures
the optimal solution by the criterion of all revealed combi-

natorial images in the truth table, which can participate in
the minimization of Boolean functions. The reliability of the
minimization result is ensured by the procedure of minimiz-
ing the assigned logical function on the complete truth table,
followed by the subsequent selection of a minimization result
in the DNF or CNF representation.

2. The algorithm for automating the process of minimizing
the logical functions based on the method of figurative trans-
formations within the initial combinatorial system is similar
to the procedure of searching for the intervals I(α, β) in the
Boolean space n, which are assigned by a pair of Boolean vec-
tors α and β, such that α β. The internal components in the
interval I(α, β) correspond to a complete combinatorial system
with repeated 2-(n, b)-design. The interval external compo-
nents are determined by calculating the number of zeros or
unities in the columns in the truth table of a logical function.

The optimal solution for the minimization of Boolean
functions is based on the primary application of the operation
of super-gluing the variables within the truth table. For the
possible application of the operation of super-gluing the vari-
ables, one uses the algorithm to search for the 2-(n, b)-design
system in the structure of a truth table for the assigned func-
tion (p. 7. 3). The algorithm allows for the automated search
for the intervals or combinatorial systems 2-(n, b)-design in
the structure of the truth table and is a tool to automate the
process of minimizing the logical functions by the method of
figurative transformations.

3. The effectiveness of the combined alternation of the
protocols for minimizing the Boolean functions is demon-
strated by examples borrowed from works by other authors,
for comparison: example 17 [21] – minimizing a 4-bit Boolean
function, example 18 [22] – minimizing a 4-bit Boolean func-
tion, example 19 [23] – minimizing a 4-bit Boolean function.
Given the above examples, the effectiveness of the consistent
application of the logical operations of super-gluing the vari-
ables and the simple gluing of variables to minimize Boolean
functions allows us to argue about the feasibility of the appli-
cation of the specified sequence of logical operations in the
procedures of minimizing logical functions as the specified
sequence of logical operations can:

– maintain the automated search for the 2-(n, b)-design
combinatorial systems in the structure of a truth table for
the assigned logical function, followed by the subsequent
minimization of logical functions by the method of figurative
transformations;

– improve the productivity of the process of logical func-
tion minimization.

The algorithm to minimize Boolean functions by a me-
thod of the optimum combination of the sequences of figura-
tive transformations creates a prerequisite for the simplified
automation of calculations in the method of figurative trans-
formations.

References

1. Curtis, H. A. (1962). A new approach to the design of switching circuits. N.J.: Princeton, Toronto, 635.

2. Mayorov, S. A. (Ed.) (1972). Proektirovanie tsifrovyh vychislitel’nyh mashin. Moscow: Vysshaya shkola, 344.

3. Pospelov, D. A. (1974). Logicheskie metody analiza i sinteza shem. Moscow: Energiya, 368.

4. Zakrevskiy, A. D. (1981). Logicheskiy sintez kaskadnyh shem. Moscow: Nauka, 416.

5. Rytsar, B. E. (1997). Metod minimizatsii bulevyh funktsiy. Problemy upravleniya i informatiki, 2, 100–113.

6. Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Techno-

logy Audit and Production Reserves, 5 (2 (43)), 42–55. doi: https://doi.org/10.15587/2312-8372.2018.146312

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 (105) 2020

60

7. Riznyk, V., Solomko, M. (2017). Minimization of Boolean functions by combinatorial method. Technology Audit and Production

Reserves, 4 (2 (36)), 49–64. doi: https://doi.org/10.15587/2312-8372.2017.108532

8. Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimiza-

tion by combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. doi: https://doi.org/10.15587/

2312-8372.2017.118336

9. Riznyk, V., Solomko, M. (2018). Research of 5-bit boolean functions minimization protocols by combinatorial method. Technology

Audit and Production Reserves, 4 (2 (42)), 41–52. doi: https://doi.org/10.15587/2312-8372.2018.140351

10. Dan, R. (2010). Software for The Minimization of The Combinational Logic Functions. The Romanian Review Precision

Mechanics, Optics & Mchatronics, 37, 95–99. Available at: https://pdfs.semanticscholar.org/b881/59ffd963e4cb44d513eba58230e-

56f1e5605.pdf

11. Huang, J. (2014). Programing implementation of the Quine-McCluskey method for minimization of Boolean expression. arXiv.

Available at: https://arxiv.org/ftp/arxiv/papers/1410/1410.1059.pdf

12. Nosrati, M., Karimi, R. (2011). An Algorithm for Minimizing of Boolean Functions Based on Graph DS. World Applied Program-

ming, 1 (3), 209–214.

13. Solairaju, A., Periyasamy, R. (2011). Optimal Boolean Function Simplification through K-Map using Object-Oriented Algorithm.

International Journal of Computer Applications, 15 (7), 28–32. doi: https://doi.org/10.5120/1959-2621

14. Boyar, J., Peralta, R. (2010). A New Combinational Logic Minimization Technique with Applications to Cryptology. Lecture Notes

in Computer Science, 178–189. doi: https://doi.org/10.1007/978-3-642-13193-6_16

15. Chen, Z., Ma, H., Zhang, Y. (2014). A Rapid Granular Method for Minimization of Boolean Functions. Lecture Notes in Computer

Science, 577–585. doi: https://doi.org/10.1007/978-3-319-11740-9_53

16. Papakonstantinou, K. G., Papakonstantinou, G. (2018). A Nonlinear Integer Programming Approach for the Minimization of Boolean

Expressions. Journal of Circuits, Systems and Computers, 27 (10), 1850163. doi: https://doi.org/10.1142/s0218126618501633

17. Kabalan, K. Y., El-Hajj, A., Fakhreddine, S., Smari, W. S. (1995). Computer tool for minimizing logic functions. Computer Applica-

tions in Engineering Education, 3 (1), 55–64. doi: https://doi.org/10.1002/cae.6180030108

18. Bulevy konstanty i vektory. Available at: https://studfile.net/preview/4243601/

19. Nazarova, I. A. (2012). Dyskretnyi analiz. Donetsk, 277. Available at: http://ea.donntu.edu.ua/bitstream/123456789/27328/

1/%D0%9D%D0%9F_%D0%94%D0%90_%D0%A3%D0%9A%D0%A0%20%28%D0%9F%D0%BE%D0%BB%D0%BD%

D0%B8%D0%B9%29.pdf

20. Samofalov, K. G., Romlinkevich, A. M., Valuyskiy, V. N., Kanevskiy, Yu. S, Pinevich, M. M. (1987). Prikladnaya teoriya tsifrovyh

avtomatov. Kyiv, 375. Available at: http://stu.scask.ru/book_pta.php?id = 62

21. Bonal, D. (2013). Karnaugh and Mahoney – Map Methods for Minimizing Boolean Expressions. Available at: http://davidbonal.com/

karnaugh-and-mahoney-map-methods-for-minimizing-boolean-expressions/

22. Filippov, V. M., Manohina, T. V., Evdokimov, A. A., Zayats, D. S. (2016). Minimizatsiya funktsiy algebry logiki metodom nenaprav-

lennogo grafa. Mezhdunarodniy zhurnal prikladnyh i fundamental’nyh issledovaniy, 8 (4), 509–511. Available at: https://applied-

research.ru/ru/article/view?id = 10112

23. Kumar, R., Rawat, S. (2016). Cubical Representation and Minimization through Cubical Technique A Tabular Approach. Interna-

tional Journal of Applied Engineering Research, 11 (7), 4822–4829.

