
Information and controlling system

57

ing the machine learning algorithms. At a modern rate of in-
creasing the number of robots, it is a relevant task to develop
algorithms for data analysis and autonomous decision-mak-
ing about a robot’s behavior. Examples of such robotic
systems include cars, unmanned drones, robot couriers, etc.
Implementing a closed system within one technical unit
makes it possible to minimize the number of perturbations;
the implementation of an autonomous control system over a
robot is not difficult. When employing a significant number
of autonomous mobile robots, the process of managing each
individually becomes resource-intensive and difficult to im-
plement [1]. In such systems, it is also optimal to use machine
learning algorithms.

Machine learning algorithms are typically tested using
a computer by analyzing a significant amount of data; the
analysis result is information presented in the text form. At
present, this approach is not optimal when real robots are
involved, especially in multi-agent systems, because it does
not allow the visualization of solution results and conducting
a field experiment in dynamics. Existing models of laborato-

BUILDING A MODEL
OF NETWORK
INTERACTION
BETWEEN THE

COMPONENTS OF
A MULTIAGENT

SYSTEM OF MOBILE
ROBOTS

V . D i d u k
PhD*

E-mail:	inokc@i.ua
V . H r y t s e n k o

Doctor	of	Pedagogical	Sciences*
E-mail:	grytsenko@vu.cdu.edu.ua

A . Y e r o m e n k o *
E-mail:	eromenko.andrey@gmail.com

*Department	of	Automation		
and	Computer-Integrated	Technologies

The	Bohdan	Khmelnytsky	National	University		
of	Cherkasy

Shevchenka	blvd.,	81,	Cherkasy,	Ukraine,	18031

The results reported here represent the first stage in the devel-
opment of a full-featured laboratory system aimed at studying
machine learning algorithms. The relevance of the current work is
predetermined by the lack of network small-size mobile robots and
appropriate control software that would make it possible to con-
duct field experiments in real time. This paper reports the selec-
tion of network data transmission technology for managing mobile
robots in real time. Based on the chosen data transmission pro-
tocol, a complete stack of technologies of the network model of a
multi-agent system of mobile robots has been proposed. This has
made it possible to build a network model of the system that visual-
izes and investigates machine learning algorithms. In accordance
with the requirements set by the OSI network model for construct-
ing such systems, the model includes the following levels:

1) the lower level of data collection and controlling elements –
mobile robots;

2) the top level of the model includes a user interface server and
a business logic support server.

Based on the built diagram of the protocol stack and the network
model, the software and hardware implementation of the obtained
results has been carried out. This paper employed the JavaScript
library React with a SPA technology (Single Page Application), a
Virtual DOM technology (Document Object Model), stored in the
device's RAM and synchronized with the actual DOM. That has
made it possible to simplify the process of control over the clients
and reduce network traffic.

The model provides the opportunity to:
1) manage the prototypes of robot clients in real time;
2) reduce the use of network traffic, compared to other data

transmission technologies;
3) reduce the load on the CPU processors of robots and servers;
4) virtually simulate an experiment;
5) investigate the implementation of machine learning algo-

rithms
Keywords: multi-agent systems, mobile robots, machine learn-

ing, network model, WEB interface, WebSocket

UDC 004.75
DOI: 10.15587/1729-4061.2020.213989

Copyright © 2020, V. Diduk, V. Hrytsenko, A. Yeromenko

This is an open access article under the CC BY license

 (http://creativecommons.org/licenses/by/4.0)

Received date 25.08.2020

Accepted date 09.10.2020

Published date 22.10.2020

1. Introduction

Finding optimal ways to solve the tasks of big data anal-
ysis puts forward high requirements for pre-training of the
programmer, mathematician, and other specialists of related
professions. If these specialists lack the necessary knowl-
edge and experience, they must spend extra time studying,
or refuse to further participate in research or development
projects. The area of machine learning, which has gained
traction recently, makes it possible to resolve the above-men-
tioned issues. By using the theoretical provisions of machine
learning, programmers may skip developing bulky software
products that could include all possible solutions. Instead, it
becomes possible to apply one of the generally accepted al-
gorithms that would independently find the optimal solution
through the comprehensive analysis of existing data. The
result from the analysis could make it possible to predict,
draw conclusions, make decisions, etc.

The development of microprocessor technology and
modern advances in robotics have opened a new field of us-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (107) 2020

58

increases in proportion to the number of agents involved in
the system. The effectiveness of an algorithm is estimated
by the researchers mainly based on the results of visual
observation. The disadvantages of such systems include:

1. The difficulty of changing the activity program of each
robot.

2. No ability to accumulate data at the server.
3. The lack of an interaction interface between a user,

who is not a controller programming specialist, and the
system’s agents.

Our analysis gives reason to assume that, at present,
there are quite powerful mathematical models for build-
ing multi-agent systems and the interaction among their
components. However, there is no any effective toolset to
investigate their operation. It may prove optimal to design a
WEB-oriented control system, within which the entire algo-
rithm of data processing is to be implemented at the server
while control over each agent should be centralized. Such an
approach could make it possible to:

– use any robot in a system to implement arbitrary algo-
rithms without changing its software;

– accumulate the collected data at the server for further
analysis or application as the source data for subsequent
experiments;

– increase the number of potential researchers by de-
signing a simplified interface and providing a remote access
to the system.

3. The aim and objectives of the study

The aim of this work is to build a model of network inter-
action of the multi-agent system of mobile robots, which can
be used in real time by researchers of any level of training for
the implementation of machine learning algorithms.

To accomplish the aim, the following tasks have been set:
– to choose a network data transmission protocol to

manage remote microprocessor tools in real time;
– to select a stack of technologies and define the role

and relationship of components of the model of a multi-agent
system of mobile robots;

– to verify the theoretical provisions proposed in this
study using modern software and hardware development
tools.

4. Choosing a real-time network protocol for managing
remote microprocessor tools

Modern Internet connection and Internet of Things (IoT)
devices are partly based on HTTP (Hypertext Transfer
Protocol), Websocket, and MQTT protocols. If a real-time
response is not essential, one typically uses HTTP; however,
the protocol cannot be used to organize the client-server
connection required for this study tasks.

One way to solve the problem is to apply the principle
of Polling, to send AJAX (Asynchronous JavaScript and
XML) requests at short intervals [14]. As soon as the server
receives the request, the response is immediately sent, the
connection is broken, and the server is ready to process the
next request (Fig. 1).

The disadvantages of this method are data oversatura-
tion (since Header is sent in all queries, the traffic is high)
and query determination.

ry robots do not provide the capability to change a program
during the experiment, or have excessive dimensions and
high cost. All this makes it impossible to merge them into
multi-agent networks to investigate machine learning algo-
rithms.

Thus, it is a relevant task to develop systems for inves-
tigating the multi-agent management of collective mobile
robots that can function autonomously and make decisions
independently.

2. Literature review and problem statement

The body of research into multi-agent robotic systems
increases every year, as evidenced by a significant number of
publications, specifically works [2‒13]. The least studied are
the possibilities of simultaneous control over all components
of such a system, or their autonomous interaction. Such tasks
include group behavior management: monitoring the motion
trajectory, controlling robot collisions, tactical maneuvers,
distributing the tasks of monitoring open or closed areas,
allocating data processing tasks, etc. Up to now, the use of
machine learning in the multi-agent mobile robot systems
has been examined in studies [2, 5, 6, 8‒10, 12, 13], and
others. Thus, papers [2, 4, 10] reported only the analysis of
the following:

1) the possibilities of scaling multi-agent systems of mo-
bile robots;

2) the limit number of agents and the size of the work
field;

3) the main areas of research that are necessary for the
development of such systems without specific solutions for
their construction.

In [3], attention is paid to the development of synchro-
nous operator control systems for a single robot, as well
as synchronous multi-operator multi-robot systems. The
limitation of the work is the lack of the system’s capability
to work without the participation of an operator, the ab-
sence of the possibility to collect data from robot operation
and to verify machine learning and control algorithms.
Paper [5] reports the results of developing a system of two
robots and testing the Dyna algorithm. The disadvantage
of the system is the lack of feedback from robots to the
central computer, with their movement only parallel to
the rectangular coordinate system. Works [6, 11] describe
approbation results for the algorithms of canonical varia-
tional analysis by La-Remor and GraWoLF, respectively.
Studies [8, 9, 13] report the results from the self-learning
of the system with a limited number of robots. A common
limitation of the cited studies is the need to program each
robot separately and the lack of the possibility to collect
information at the server. All judgments on the effective-
ness of the algorithm operation, as well as the system in
general, are passed by researchers indirectly, based on the
results of observations. Work [7] is mainly a review ana-
lyzing the maximum number of a system’s agents within a
single work field. Paper [12] describes a significant number
of machine learning algorithms, as well as the models of
building physical systems of mobile robots. A common
feature of all available studies is the use of closed systems
configured to perform a pre-programmed single algorithm
of agent operation (robot). When changing the tasks of
research, developers are forced to program each robot sep-
arately. Accordingly, the time spent to change the program

Information and controlling system

59

The issue of query determination is partially
resolved by Long Polling, a method under which
the client sends an HTTP request but the server
can delay the response and send it to the client at
the right time. If the response is not sent within
a certain period, the client disconnects from
the server and creates a new request (Fig. 2).

Decreasing the discreteness of requests
increases the network traffic, which is not
acceptable for real-time control systems.

A modification of the Long Polling meth-
od is Streaming, whereby the server does not
constantly maintain a connection and sends
the user information in small portions – pack-
ets (Fig. 3).

The advantage of a given method is the absence of delays
associated with the constant creation of requests. A header
of the request is sent only when connected to the server,
which reduces data traffic.

The disadvantage of the method is one-way communi-
cation, which is not suitable for modeling machine learning
algorithms.

The WebSocket data transfer protocol combines the ad-
vantages of all the above-mentioned methods by implementing

asynchronous, client-server “request-response” inter-
action. The server and the client under this approach
are equal participants in the exchange of data. All
interaction between the server and the client takes
place using the WebSocket API [14].

Fig. 4 shows the process of establishing a
connection, receiving, sending messages, and
breaking the connection between the client and
the server.

Thus, the most appropriate is the development
of a model of a multi-agent system of mobile robots
with real-time control based on the WebSocket
protocol. In addition, the use of a given protocol
helps reduce the use of Internet traffic, and reduce
the CPU usage of the client and server.

5. Selecting a technology stack and constructing a
model of a multi-agent system of mobile robots

Since it was determined that for the convenience and
ease of access to the control subsystem the entire system is
WEB-oriented, the user interacts with the system using a
WEB-application. As a projection on the selected technol-
ogies, the network model of a multi-agent system of mobile
robots aimed at studying the performance of artificial intelli-
gence algorithms is shown in Fig. 5. The main advantages of
choosing this approach are its cross-platform nature, as well
as the remote access for all participants of the process, etc.

A modern pattern in the WEB development indus-
try is the separation of back-end and front-end servers.
This approach makes it possible to reduce the load on a
BLL (Business Logic Layer) server, which handles user
requests and sends orders to the robots-clients.

UIL (User Interface Layer) comprises all re-
sources (media files, images, JSX templates, CSS and
JavaScript files) that are required to build the page
of the application that the user sees. They are stored
at a separate front-end server that sends them to the
client when the application is downloaded.

To build UIL – a WEB-application for the
user, the JavaScript library React is used in this
work (Fig. 6). It provided an opportunity to use
an SPA (Single Page Application) technology im-
plementing Client Side Render.

The BLL is based on Node JS and the Express framework.
In the development of the software part of the model, React was
used to provide an additional plugin that makes it possible to
apply TypeScript. The disadvantage of JavaScript is the lack of
strict typification, which impairs both the stability of operation
and the security of applications. TypeScript adds the possibility
to strictly typify variables.

Server

Client

AJAX
response
request

AJAX
response
request

AJAX
response
request

AJAX
response
request

dt dt dt

With a response Without a response

Fig.	1.	Data	transfer	diagram	using	the	Polling	method

Server

Client

Response
waiting

Response waiting
time end

Fig.	2.	Data	transfer	diagram	using	the	Long	Polling	method

Server

Client

Transmission
start

Connection
termination 0 1 2

Fig.	3.	Data	transfer	diagram	using	the	Streaming	method

Server

Client

Transmission
start

Connection
termination 0 1 2

Request

Response

Fig.	4.	Data	transfer	diagram	using	the	WebSocket	protocol

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (107) 2020

60

For the convenience of storing data and building the
React components of the user’s application, the Redux
library has been used, through which data sent from the
server through the API create events (actions), interact,
and combine with the data already stored in the applica-
tion, then enter the global storage where they can be used
in any part of the application.

The JavaScript library React has been used in our study
to implement the SPA paradigm. The first time one loads
a page, React sends only one initially unfilled index.html

template to the client. Along with it, the user receives
JavaScript files that implement JSX templates, that is
the templates containing the React components based on
which a virtual DOM (Document Object Model) is built,
which is an idealized state of the user application interface.
Virtual DOM is stored in the RAM of the device and
synchronizes with the actual DOM by the methods of the
React library.

When new information arrives from the back-end server,
the state of the components in Virtual DOM changes. To

Fig.	5.	Model	of	network	interaction	between	the	components	of	a	multi-agent	system	of	mobile	robots

HTTP
protocol

WEB Socket protocol
WEB Socket

protocol

User interface
 server

Business logic
support server

User 1
User N

Simulation
Client N

Client 1

Remote
control

Fig.	6.	The	diagram	of	technologies	used

User interface
server

Business logic
support server

User User

Remote control

{JSON}

{JSON}

User`s
client

TypeScript, TSX, CSS

NodeJS
HTTP-server

React + Redux

Information and controlling system

61

this end, WebSocket was applied, although one can use Re-
stAPI and AJAX. The React library compares the software
branches in VDOM and DOM. When a mismatch is detect-
ed, the page is rerendered (Fig. 7).

The latest version of React has been used in our study to
provide access to hooks, the features that make it possible
to employ the local state of a component and other React
functionality without using classes [15].

When using a functional style, the React components
are declared as functions. The Arrow Function Declaration
method was applied in the software implementation of the
models when creating functions. All functions are anonymous
and are assigned to the constant that is required to call them.
To avoid failures in managing a significant number of agents,
one needs to adhere to strict data typification and store their
signatures. When declaring the component, clear
types of input arguments and the result of the
function operation should be specified. All Re-
act functional components return the FC (Func-
tional Component) type, which is JSX mark-
up (Fig. 8), based on which the VDOM is built.

6. Verifying the model of a multi-agent system
of mobile robots aimed at studying machine

learning algorithms

To check the results of our theoretic and
practical work, the possibility of software sim-
ulation of the multi-agent system of mobile
robots was implemented in the study. The sim-
ulation of robot behavior was implemented us-
ing a canvas technology, which is an element
of HTML5. The Canvas makes it possible to
include elements of the raster 2D graphics in
the web page, as well as to construct hard-
ware-accelerated 3D graphics based on WebGL.

The application consists of two sections:
Control and Simulation; in Fig. 8, the left and
right sides, respectively.

To access the control page, the user must
select a username and connect to the virtual
client, “Cube”, by filling out the form fields in the
pop-up window (Fig. 9).

The user name and ID fill forms are validat-
ed at the server side; if an error occurs, the user
receives a message with the appropriate text.

By filling in the field “Set cube” with the robot identifica-
tion number, not connected to another user, the user establish-
es a connection to the robot and accesses the control section.

The user can interact with the robot’s hard-
ware, including the robot LED matrix used to
generate the individual “Cube” robot label, as well
as move control panel of a separate robot (Fig. 8).

The “Simulation” tab contains virtual
models of robots “Cube”, and makes it possi-
ble to perform both virtual simulation of the
system operation and visualize the actual be-
havior of the system of mobile robots (Fig. 10).

A lazy loading technology has been used to op-
timize the performance of the application. Since the
user’s application consists of two large sections: a
control joystick and a simulation window, only one
part of the VDOM tree with the required section
is loaded into RAM at the same time (Fig. 10).

At the time of development of the system,
only two experimental hardware units of the
“Cube” robots were built. Robots represent a

two-wheeled platform with a central axle and a zero clear-
ance. Given such a solution, the robots have a small size
of the central unit, 50×50×50 mm. An LED matrix was
installed into the cover of the robot to generate a graphics
label, which would make it possible to distinguish between
each individual client in the work field. To test the control
interface and a load on the back-end server, a simulation of
the system behavior was created. This simulation is a virtual
environment hosting the models of the “Cube” robots. The
models can be both virtual and match the commands re-
ceived by the experimental samples attached to the system.

VDOM React DOM

Project
root

Project
root

Page
components Page

Page
components Page

Text

Signatures Buttons

Mismatch
computation

DOM
implementati

on

Text

Labels Buttons

Form
components Form

Fig.	7.	The	structure	of	DOM	based	on	VDOM

Mobile application

Simulation page Control page

Fig.	8.	A	multiagent	system’s	control	and	simulation	pages

Fig.	9.	“Cube”	robot	connection	form	interface	

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (107) 2020

62

Together with the commands to the engine, the server
sends updated data about the position of the rotation point,
the angle of rotation, and where exactly the rotation point of
the robot is located. Thus, the theoretical results of our study
have been implemented using a virtual model and partly
with the use of hardware, which allowed us to check the fea-
sibility of the developed theoretical provisions and outline
the prospects for further scaling of the system.

7. Discussion of results of building a model of the
network interaction between the components of the

multi-agent system of mobile robots

The main task for modern engineers- developers working
with artificial intelligence algorithms is to verify existing
and build new algorithms. At the same time, an important
issue is the possibility of checking the results of their work
using actual models. A typical solution is the development
and approbation of algorithms for a specific task. This ap-
proach narrows the range of potential researchers, since not
every research institution can allow the purchase of costly
robots or the participation in commercial developments. In-
stead, many research universities are staffed with mathema-
ticians engaged in theoretical development. Sometimes their
work does not receive appropriate feedback in the scientific
environment due to the lack of tested results involving
actual samples. The proposed model is a versatile toolkit
that could minimize hardware costs and would, through a
simplified WEB-oriented user interface, ensure accessibility
for researchers at all levels of training. At present, within the
framework of our work, two experimental physical samples
have been implemented – the “Cube” robots whose hardware
implementation is described in [16]. The WEB interface
contains a manual control page (Fig. 8‒10), which will be
further supplemented with the functionality of the command
designer to construct the algorithm of the automated robot
activity control program during the experiment. According
to the built models (Fig. 5, 6), the software component of

the robots’ hardware is proposed to be implemented in the
form of clients executing address commands from the server.
Under this approach, it is not necessary, when changing a
task, to change the firmware of each robot separately. Con-
trol is executed centrally from the server. The control system
provided the possibility to check the operation of the virtual
simulation system and control over robots in real time. In
this case, to test the system’s limits regarding control time,
the business logic support server was located in Singapore
and the user interface server was located in the United
States. At the same time, the two users were also territo-
rially removed from each other and from the actual models
of robots at a distance of about 30 km. In this case, users
and robots worked in the networks of different providers.
The measurements during the experiment showed a delay
between the control signal and the robot’s response equal to
about 0.9‒1.2 s. When connecting users and clients to the
same network using a local server, the latency of the system
decreased to 6 ms.

Video broadcast of robots’ movement for users was
implemented in the first stage by Zoom Cloud Meetings.
The results are fully satisfying to laboratory needs and are
suitable for use in the further development of the system to
study machine learning algorithms. When moving to build-
ing actual systems or increasing the number of clients above
200, the model needs to be modified. It is necessary to move
to a multilevel architecture using additional protocols such
as progressive realizations of HTTP and MQTT. It is also
worth foreseeing a location in the model for an additional
local server. Its functions would include loading customer
management subprograms, collecting data, and sending sta-
tistics to a remote server.

Further development of this study is as follows:
1) to develop improved mobile robots;
2) to improve the functionality of the robots and imple-

ment full-fledged feedback to their server for data acquisi-
tion from sensors;

3) to implement an image recognition system to analyze
the work field and determine the coordinates of each robot;

Mobile
application User 1

User 2

User 3

Simulation

Fig.	10.	The	diagram	of	models’	interaction	during	simulation	and	the	system’s	users

Information and controlling system

63

4) to design a conceptual user interface with a simple
configurator of robot behavior;

5) to improve the network model of robots for the ability to
control a significant number of robots at a minimal time delay.

8. Conclusions

1. Based on the results of search and approbation of
existing data transmission technologies, it has been found
out that for the initial stage of the experiment it is advisable
to develop a model of a multi-agent system of mobile robots
based on the WebSocket protocol. Among the available
technologies, this model has the greatest performance speed,
loads the CPU of the client and server the least, and mini-
mizes the cost of Internet traffic.

2. We have determined the components of the model of
the multi-agent system of mobile robots, their role, and rela-
tionships. Based on the selected WebSocket protocol and the

structure of the built model, a basic stack of technologies has
been defined for the software implementation of the study
results. The demonstrated structures (Fig. 5, 6) correspond
to the reference network model OSI (The Open Systems In-
terconnection model) and include the distribution of tasks to
the level of user interface and the level of support for business
logic. This has made it possible to manage the prototypes of
robot clients in real time, to model and investigate the exe-
cution of machine learning algorithms.

3. The hardware and software implementation of the de-
veloped theoretical provisions have been carried out. The Ja-
vaScript library React with a SPA (Single Page Application)
technology was used in this work to implement Client Side
Render. Virtual DOM (Document Object Model) technology
stored in the device’s RAM and synchronized with the real
DOM was applied to optimize the performance of the system.

The results of our study are suitable for building labora-
tory models and provide an opportunity to ensure compli-
ance with educational and research goals.

References

1. Stepanov, P. P. (2019). Application of group control and machine learning algorithms on the example of the "Battlecode" game.

Cybernetics and programming, 1, 75–82. doi: https://doi.org/10.25136/2306-4196.2019.1.23527

2. Yang, E., Gu, D. (2004). Multiagent Reinforcement Learning for Multi-Robot Systems: A Survey. Available at: https://

www.researchgate.net/profile/Dongbing_Gu/publication/2948830_Multiagent_Reinforcement_Learning_for_Multi-Robot_

Systems_A_Survey/links/53f5ac820cf2fceacc6f4f1a.pdf

3. Elhajj, I. H., Goradia, A., Xi, N., Kit, C. M., Liu, Y. H., Fukuda, T. (2003). Design and analysis of internet-based tele-coordinated

multi-robot systems. Autonomous Robots, 15, 237–254. doi: http://doi.org/10.1023/A:1026266703684

4. Cao, Y. U., Fukunaga, A. S., Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots,

4, 7–27. doi: http://doi.org/10.1023/A:1008855018923

5. Van der Zwaan, S., Moreira, J. A. A., Lima, P. U. (2000). Cooperative learning and planning for multiple robots. Proceedings of the

2000 IEEE International Symposium on Intelligent Control. Held Jointly with the 8th IEEE Mediterranean Conference on Control

and Automation (Cat. No.00CH37147). doi: https://doi.org/10.1109/isic.2000.882949

6. Asada, M., Uchibe, E., Hosoda, K. (1999). Cooperative behavior acquisition for mobile robots in dynamically changing real worlds

via vision-based reinforcement learning and development. Artificial Intelligence, 110 (2), 275–292. doi: https://doi.org/10.1016/

s0004-3702(99)00026-0

7. Touzet, C. F. (2000). Robot awareness in cooperative mobile robot learning. Autonomous Robots, 8, 87–97. doi: https://doi.org/

10.1023/A:1008945119734

8. Mataric, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous Robots, 4, 73–83. doi: https://doi.org/

10.1023/A:1008819414322

9. Michaud, F., Mataríc, M. J. (1998). Learning from history for behavior-based mobile robots in non-stationary conditions. Machine

Learning, 31, 141–167. doi: https://doi.org/10.1023/A:1007496725428

10. Fernandez, F., Parker, L. E. (2001). Learning in large cooperative multi-robot domains. International Journal of Robotics and

Automation, 16 (4), 217–226.

11. Bowling, M., Veloso, M. (2003). Simultaneous adversarial multi-robot learning. IJCAI'03: Proceedings of the 18th international

joint conference on Artificial intelligence, 699–704. Available at: http://www.cs.cmu.edu/~mmv/papers/03ijcai-grawolf.pdf

12. Liu, J., Wu, J. (2001). Multiagent Robotic Systems. CRC Press, 328. doi: https://doi.org/10.1201/9781315220406

13. Matarić, M. J. (2001). Learning in behavior-based multi-robot systems: policies, models, and other agents. Cognitive Systems

Research, 2 (1), 81–93. doi: https://doi.org/10.1016/s1389-0417(01)00017-1

14. Srinivasan, L., Scharnagl, J., Schilling, K. (2013). Analysis of WebSockets as the New Age Protocol for Remote Robot Tele-

operation. IFAC Proceedings Volumes, 46 (29), 83–88. doi: https://doi.org/10.3182/20131111-3-kr-2043.00032

15. Introducing Hooks (2020). React. Available at: https://en.reactjs.org/docs/hooks-intro.html

16. Diduk, V. A., Savchenko, B. S. (2020). Robototekhnichna systema z viddalenym keruvanniam. Vseukrainska naukovo-praktychna

Internet-konferentsiya “Avtomatyzatsiya ta kompiuterno-intehrovani tekhnolohiyi u vyrobnytstvi ta osviti: stan, dosiahnennia,

perspektyvy rozvytku”. Cherkasy, 46–49. Available at: https://conference.ikto.net/pub/akit_2020_16-22march.pdf

