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This paper reports a study into the move-
ment of vibratory machines for various tech-
nological purposes that determined their 
stable zones. These zones warrant that the 
predetermined parameters of energy saving 
and energy-efficient mode are maintained. 
The structural scheme of energy transmission 
within the elements of a vibratory machine 
has been built. It is common for any design 
of the vibratory machine and its operating 
modes. The machine estimation scheme has 
been constructed taking into consideration  
a technological load, which is a certain manu
facturing environment or a material subject 
to processing based on the appropriate tech-
nology. Underlying the motion equations built 
is a substantiated discrete-continual model of 
the vibratory machine and processing envi-
ronment. The estimation scheme takes into 
consideration possible structural solutions 
for a vibratory machine whose movement 
modes are harmonious or impact-vibrational.  
The adopted scheme is a resonance vibra-
tion-impact system. This study into the move-
ment and establishing the zones of stability 
has been adapted to simpler and more com-
plex systems by reducing a combined dis-
crete-continual model to the discrete one. 
The result reveals a qualitative pattern of the 
vibratory machine movement ensuring the 
specified mode of its operation. It was found 
that at the predefined frequency of impacts 
and weight of a working body, the efficien-
cy of the impact-vibratory machine is deter-
mined by the impact speed. The distribution 
of the basic parameters of such vibration sys-
tems has been estimated; stability cards for 
different zones have been built.

This very approach opens up new possi-
bilities for designing highly efficient vibra-
tion equipment. A stable resonance mode 
makes it possible to significantly reduce the 
energy cost of the manufacturing process and 
warrant the rational parameters of vibrato-
ry machine operation specified by the tech-
nology. The results obtained were applied 
for the development of methods for calculat-
ing and constructing a new class of vibratory 
machines that implement appropriate ener-
gy-saving stable zones of the workflow
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1. Introduction

Vibratory machines are widely used in many sectors of 
the national economy such as the construction, mining, food, 

chemical industries for executing various manufacturing pro-
cesses: grinding, sorting, mixing, compaction. The effective-
ness of their application is determined by the difference bet
ween modes and parameters, due to a particular technology.  
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At the same time, the universal factor is the vibration effect on 
the processed environment or material as a result of which the 
environment is set into motion changing the state of rest with 
the manifestation of the appropriate manufacturing process. 
Existing vibration equipment mostly operates under a harmo-
nious over-the-resonance mode with significant energy con-
sumption. Estimation parameters are determined when using 
empirical dependences that produce reliable results only under 
conditions predetermined by the specific experimental condi-
tions. The energy of vibration processes in different systems 
is key in searching for solutions aimed at designing energy- 
saving vibratory systems, machines, robots, devices. The ap-
plication of resonance energy-saving regimes is constrained 
by the lack of generally accepted estimation models. The 
search for and application of reliable actual process models 
should be based on revealing the patterns of changes, during 
the manufacturing process, in the working bodies of vibratory 
machines and processed environments that are different in 
their physical properties. One way to solve the issue is the 
idea of applying a hybrid model that takes into consideration 
both discrete and distributed parameters. We have overcome 
the mathematical complexities related to solving such prob-
lems by reducing discrete-continual systems to discrete ones. 
Such a discrete model in the analytical movement equations 
of the system «vibratory machine – processing environment» 
retains continual properties in the form of wave coefficients. 
These coefficients in their analytical form take into consider-
ation both reactive (elastic-inertial) and active (dissipative) 
resistance forces that occur in the real oscillatory process in 
any vibration system. Such a model adequately reflects the 
actual pattern of the progress of a vibration process while an-
alytical estimation parameters provide for a stable resonance 
mode of vibratory machine operation. This approach defines 
the relevance of this work since it is advisable to conduct  
a study aimed at determining the movement and establishing 
the stable zones by reducing a combined discrete-continual 
model to the discrete one. Shorter time for the course of any 
process is a key paradigm for indicators such as material capa
city, efficiency, performance.

2. Literature review and problem statement

Constantly improving, technology encourages the re-
search and development of the motion theory and the me
thods for designing vibration systems and machines. Work [1] 
devised a new scheme for exciting the oscillations of the 
working bodies of vibratory machine units based on changing 
the phase angles of unbalanced masses. The implementation 
of such an idea allowed for one spin of the unbalanced mass to 
execute the number of vibration effects on the manufacturing 
environment in proportion to the quantity of vibratory units 
that the installation is equipped with. Thus, the authors im-
plemented the spectrum of frequencies that greatly increases 
the efficiency of the manufacturing process. At the same time, 
the cited work’s limitation relates to considering a specific 
scheme of the phase arrangement of unbalanced masses along 
the central axis of the vibration installation. More research 
is needed for other schemes of the phase arrangement of 
unbalanced masses along the central axis of the vibration in-
stallation. Paper [2] reports the results of a study that made it 
possible to design vibratory sites and vibration installations 
executing multicomponent oscillations excited by vibration 
exciters with a vertical shaft. The reported average frequency 

of oscillations is ω = 157 s–1. Along with that, this frequency 
can be used only for loose mixtures, which narrows the scope 
of such oscillation frequencies. However, there remained un-
resolved issues about increasing the oscillation frequencies. 
In addition, the procedure for calculating parameters implies 
the use of empirical dependences, which produce satisfactory 
results only for a given structure [3]. The employment of 
the parametrical resonance [4] as a phenomenon of resonant 
strengthening of the system’s movement is one of the areas 
towards reducing the energy intensity of a workflow. The 
proposed scheme of the implementation of the parametric 
resonance, when compared to the regular resonance, makes it 
possible to obtain a higher output power to accumulate the 
vibration energy. The disadvantage of the proposed solution is 
a complex design that reduces the reliability of its operation.  
Article [5] discusses the theory of oscillatory normal regimes 
and its applicability to general mechanical systems, includ-
ing a resonance mode. Efforts to generalize modal analysis 
for nonlinear cases were considered. It was noted that the 
capability of mechanical systems to execute effective oscilla-
tory movements can be significantly enhanced by adequately 
forming their inertia properties and those potential fields 
that act on them. This is very well understood for linear 
systems where the relationship connecting the physical 
parameters and the resultant free oscillations in mechanical 
structures is clearly explained by the well-established theory 
of linear modal oscillations. The cited work does not define 
the nature of dissipative forces and their impact on oscilla-
tions, which is a prerequisite for ensuring a stable resonance 
movement regime. This is noted by the authors of work [5]. 
They believe that further studies must account for the dis-
sipation that is introduced into the system. A pattern of the 
qualitative and quantitative transformation of an ultrasonic 
device’s force action on a processing environment is given in 
work [6]. The peculiarities of ultrasound device interaction 
with the technological environment, which have different 
rheological properties, have been investigated and identified.  
The authors established criteria that comprehensively eva
luate the energy, force, acoustic, and time parameters of 
the process and determine the ratio of the wave resistance 
of the cavitating region to the initial resistance of the en-
vironment. The proposed method can be successfully used 
in other processes; however, it is necessary to conduct ad-
ditional research into other materials to determine general 
patterns. The movement of resonance vibration devices was 
investigated in work [7]. However, when the effectiveness 
of the modes was determined, the authors did not specify 
which manufacturing environments fit the results obtained. 
The variable modes in the conditions of interaction between 
the vibroacoustic apparatus and processing environment [8]  
should be determined not only theoretically but also confirmed 
by using specific examples. Paper [9] uses a systematic way to 
select modal derivatives from a set of linear vibration modes 
based on the example of straight and curved beams, as well as 
panels. The effectiveness of such an approach requires evalu-
ation for vibration systems, as a process of their interaction.  
Studies of nonlinear characteristics and application of the 
effects of combination modes are reported in work [10], 
which considers the issues related to an oscillatory effect on 
the nonlinear dynamic systems arising in various fields of 
science. It is noted that such problems may have significant 
applied and theoretical importance, in particular due to that 
the general properties of systems can significantly affect os-
cillatory actions. This approach must additionally clarify the  
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transition from the initial control equations of movements 
to the equations describing only a slower component of the 
movements. Article [11] outlines the theory of oscillatory 
modes and its applicability to general mechanical systems by 
employing the generalization of modal analysis to a nonlinear 
case. The article does not define the nature of dissipative forc-
es and their impact on oscillations. Work [12] uses a dynamic 
modeling approach for the nonlinear vibration analysis of  
a piping system with clamps. It is shown that the hysteresis 
loop used is an important way of expressing the characteris-
tics of energy dispersion in the system. However, 
there remained unresolved issues related to the 
procedure for recording hysteresis loops and 
the parameters used when they were measured. 
Work [13] reports a study into the dynamics 
of oscillatory systems described by differential 
equations with the added hysteresis nonlinea
rities for the case when a hysteresis loop moves 
clockwise. Similar to the previous work, there are 
no data on measurement methods of the degree 
of influence exerted by hysteresis nonlinearities. 
The use of a hysteresis loop to assess dissipa-
tive properties was described by the authors of 
study [14]. However, the proposals are aimed at 
ensuring an increase in the vibration protective 
properties only in a narrow field of spring mass 
resonance. The methodology for converting a dis-
crete elastic-plastic model into a continual model 
reflects the views by the authors of [15]. This 
very approach, reported in [15], deserves special 
attention. Therefore, it is advisable to conduct 
a  study aimed at determining the movement 
and establishing the stability zones by reducing 
a combined discrete-continual model to the dis-
crete one. Less energy for the progress of any 
process is also important for indicators such as 
material capacity, efficiency, performance.

3. The aim and objectives of the study

The aim of this work is to determine the zones of stability 
for the modes and parameters of a vibratory machine in order 
to reduce energy consumption and improve the efficiency of 
the manufacturing process.

To accomplish the aim, the following tasks have been set:
– to substantiate the procedure and devise an estimation 

scheme for the vibratory machine taking into consideration 
the influence exerted by the technological environment; 

– to investigate and analyze changes in the basic para
meters affecting the stability zones of the vibratory machine; 

– to establish parameters for the vibratory machine sta-
bility zones.

4. Devising an estimation scheme of the vibratory 
machine and a procedure to study its movements 

taking into consideration the influence exerted by the 
technological environment

An estimation scheme of the vibratory machine, re-
gardless of its purpose within a particular manufacturing 
process, is determined on the basis of the adopted structural 
scheme (Fig. 1).

This structural scheme is general; it underlies building an 
estimation scheme of the machine taking into consideration 
a manufacturing loading, which is a certain environment 
or material to be processed. Most materials undergo three 
stages of processing in the direct or reverse direction there-
by manifesting their properties in the form of rheological 
models (Fig. 2). In the forward direction, these may include 
compacting processes [1, 16]; in the opposite direction – 
the processes of vibroacoustic treatment of liquid environ-
ments [6, 8].

The choice of a particular model is determined by the fol-
lowing considerations. A source model to use is a model with 
the distributed (continual) properties involving an assess-
ment of the qualitative pattern of the time of wave propaga-
tion compared to the period of oscillations. If there is a wave 
process in an environment under the influence of a particular 
force, it would propagate at the following rate, c [8]:

c E= ρ, 	 (1)

where E is the elasticity module; ρ is the environment density.
The state of elastic perturbation would propagate over 

a distance of l during [1]:

τ ρ= =l c l E ,

Then the ratio of the time of oscillation propagation τ 
to the period of forcing T, which was used in work [16] for 
vibration systems, can be recorded as:

1 1> <τ T . 	 (2)

Given (2), we obtain two conditions. If condition (2) is 
met in the following form:

τ < T , 	 (3)

where T is the period of oscillations T = 2π/ω (ω is the circular 
frequency of oscillations). It follows from (3) that the system 

Fig. 1 Structural scheme of energy transfer in the elements 	
of a vibratory machine

Fig. 2. Models of three stages of processing technological environments
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can be modeled with discrete inertial or elastic parameters. 
This is due to that during the period of oscillations the time 
of oscillation propagation does not affect the change in the 
state of the system. At the same time, taking into consider-
ation only the mass (inertial) or elastic forces is a complete 
idealization, which is why the discrete schemes for actual 
tasks must account for the elastic and inertial properties.

Under another condition (2) in the form:

τ ≥ T , 	 (4)

we obtain a pattern of the impact exerted by the time of os-
cillation propagation on a change in the state of the system. 
Under condition (4), the system in its movement should take 
into consideration wave phenomena and be modeled with the 
distributed parameters.

Thus, the vibration system «machine – environment», 
considering different features of their performance, will be 
represented, in terms of modeling, as the subsystems with the 
discrete (machine) and distributed (environment) parameters. 
This assumption is the following condition for choosing a ma
thematical model. Thus, one subsystem of the system is capable 
of accumulating the energy that transfers from one form to 
another (reactive resistance), while the second – energy scat-
tering (active resistance) [1]. Such assumptions underlie the 
movement equations of a vibratory machine, taking into con-
sideration the manufacturing loading. The final assumption is 
the choice of the law to change the elastic and dissipative cha
racteristics of the original model, both the vibratory machine 
and environment. Nest, the research methodology implies the 
implementation of the following operations. The equations of 
the system movement are built under modes with and without 
detachment. Then, to reduce the number of parameters, the 
equations are reduced to a dimensionless form while determin-
ing the initial conditions for movement, speeds, and time. Next, 
the initial conditions are accepted; the stages in the movement 
of the system in contact and without contact are considered. Pa-
rameters that affect the stability of the system are determined; 
its stability card is constructed; the boundaries of changes in 
the movement parameters are set. An estimation scheme of the 
vibration system «machine – environment» is shown in Fig. 3.

In the estimation scheme (Fig. 3, a), m is the mass of the ma-
chine and the reduced mass of the manufacturing environment.  
The elasticity coefficients с1 and с2 determine the impact of 
elastic forces on the movement dynamics of the vibration 
system «machine – environment». The coefficients b1 and b2 
determine the impact of dissipative forces in the system. The 
x0 and F parameters are the distance between the head and 
the limiter and the amplitude of the forced harmonious force. 
The movement is carried out at an oscillation frequency of ω, 
and t is the current time. In the scheme of determining the 
resistance forces of an environment (Fig. 3, b), the following 
designations are adopted. The displacement is denoted via x; 
the external forcing – F(t). The longitudinal displacement of 
the current cross-section of the technological environment 
column is indicated by u(z, t). The reaction of the technologi-
cal environment to oscillations in the cross-section z = 0 is ac-
cepted as Rlz = 0, the reaction of the technological environment 
in the cross-section z = h of the column is denoted via Rlz = h. The 
mass m is determined from the following expression:

m m mb c= + , 	 (5)

where mb is the weight of the vibratory machine executing 
oscillations; mс is the mass of the technological environment 
derived from determining the reaction (Fig. 3, b) according 

to the procedure given in work [8]. We accept the wave equa-
tion of the displacement of the current cross-section of the 
environment’s column in the following form [8]:

¶
¶

= +( ) ¶
¶

2

2
2

2

21
u

t
c i

u
z

γ . 	 (6)

In the given wave equation, ¶2u/¶t2 is the acceleration 
of an environment’s layer. The parameter c is the speed of 
movement in the environment’s layer; the γ coefficient is 
the resistance of the environment, which characterizes the 
quantitative amount of energy dispersion. The ¶2u/¶z2 term 
defines the second derivative from the movement of the envi-
ronment’s layer u along the coordinate of the environment’s 
column, the size of z. An imaginary unit i is an imaginary unit 
that shows the rotation between the elastic and dissipative 
component at angle π/2. The difference between the analy
tical dependence of the environment’s resistance from that 
reported in work [8] is that the resistance rate of the envi-
ronment that characterizes the quantitative value of energy 
dispersal was determined on the basis of another dependence.

a

b

Fig. 3. Vibration system «machine – environment»: 	
a – estimation scheme; b – scheme for determining the 

resistance forces of an environment

Following the approach of studies [1] and [8], and by 
omitting the intermediate operations, we obtain analytical 
expressions to determine the mass of the environment in the 
corresponding parts of the period:

– for part of the system’s movement period in the absence 
of contact with the oscillation limiter, 0 £ t £ τ1:

′ =
⋅ ⋅ ⋅ 





+ ⋅ ⋅ ⋅ ⋅ ⋅( )





 ⋅

+( )⋅
m

c S
c

h S h c h
δ

ρ ω γ ω
γ τ

γ

2 2 2

4 1

1sin

coss
;

2 1 2

ω ω γ τ τ
c

h c h
c

h





+ ⋅ ⋅











 ⋅ +( )

	 (7)
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– for part of the period of the joint movement of a vibra-
tion installation and the limiter of oscillations, τ1 £ t £ τ2:

′ =
⋅ ⋅ ⋅ 





+ ⋅ ⋅ ⋅ ⋅ ⋅( )





 ⋅

+( )⋅
m

c S
c

h S h c h
δ

ρ ω γ ω
γ τ

γ

2 2 2

4 1

2sin

coss
.

2 1 2

ω ω γ τ τ
c

h c h
c

h





+ ⋅ ⋅











 ⋅ +( )

	 (8)

The resulting formulae (7), (8) can now be used for more 
complex structural schemes of vibratory machines. Their 
discrete form simplifies the mathematical system «vibra-
tory machine – environment»; however, when performing 
numerical calculations, formulae (7), (8) considered the 
parameters of a wave process in an environment. An impor
tant result is that when the system moves beyond an impact 
zone (0 £ t £ τ1), the value of the weight of the mixture differs 
from the mass at the time of impact (τ1 £ t £ τ2); these values 
are the same only for the linear system (τ1 = τ2 = Т/2).

5. The study and analysis of changes in the basic 
parameters affecting the stability zones of  

a vibratory machine

The movement equation for the vibration system «ma-
chine – environment» (Fig. 3, a) takes the following form: 

Provided x ≤ x0:

mx b x c x F ta + + = +( )1 1 cos .ω j 	 (9)

Provided x > x0:

mx b F tb x c x x c x a + = ++( ) + −( ) + ( )1 2 1 0 2 cos ,ω j 	 (10)

where j is the initial phase of the forcing.
By dividing equations (9) and (10) by m, after the trans-

form, we obtain:

 x h x x
F
m

a t+ + = ( )+1 1
2

2

ω ω jcos  at x x≤ 0; 	 (11)

 x h x x

F
m

x x xa t

+ +( ) + + =

= ( ) >+ +

1 1
2

1
2

2
1
2

0 0

1 1e ω γ

ω j ω

( )

,cos at 	 (12)

where h
b
m1

1= ;  h
b
m2

2= ;  ω1
2 1=

c
m

;  e =
h
h

2

1

;  γ1
2 2

1

=
c
c

.

To proceed to the dimensionless coordinate system, we 
introduce the following designations:

x
F

m
a=
ω

η
1
2 ;  x

F
m

a
0

1
2=

ω
η;  τ ω= t.

Then:

x
F

m
d
d

d
dt

F
m

a a= ⋅ ⋅ = ′
ω

η
τ

τ ω
ω

η
1
2

1
2 ;  x

F
m

a= ′′
ω
ω

η
2

1
2

(in the last expressions, and hereafter, the strokes indicate 
the differentiation for τ). 

By substituting the resulting expressions in (11) and 
(12), we obtain the following equations:

γ η γβ η η τ j η2
1′′ + ′ + = +( )+cos  at η η≤ 0; 	 (13)

γ η γβ e η γ η τ j η2
1 1

21 1′′ + +( ) ′ + +( ) = +( )+cos  at η η> 0,	(14)

where

γ
ω
ω

=
1

;  β
ω1

1

1

=
h

.

Equation (13) is integrated under initial conditions 
η(0) = 0; ′ ( ) < ′η η0 0 until the moment τ1, when η(τ) = 0. The 
moment of collision between the head and limiter τ1 is ac-
cepted as the impact onset. Equation (14) is integrated under 
initial conditions η(0) = 0; ′ ( ) < ′η η0 1.

After the impact, the following condition is met:

η τ η τ ηy y( ) = ′ ( )0 0; . 

We solved equations (13) and (14) using the Mathcad 
software in a wide range of parameters of the system «vibra-
tion installation – concrete mixture». 

Impact speed, as the main parameter of the efficiency of 
an impact-vibratory machine, depends on the speed recovery 
coefficient on impact, the parameters that characterize the 
elastic and dissipative properties of the system. The maxi
mum dimensionless impact speed is determined from the 
following expression:

′ = −
−( ) −( )η

γmax .
1

1 1 2R
	 (15)

Considering (15), after simple transforms, we obtain an 
expression for the maximum value of the phase angle:

j πmax .=
3
2

	 (16)

The calculations employing the Mathcad software have 
confirmed that our study had revealed the important effect 
of phase angles on the achievement of a resonance regime at 
maximum speed. It was found that a maximum of the dimen-
sionless speed is achieved at phase angle jmax = 270°. The jmax 
phase angle value is reduced with an increase in time with 
the limiter, that is the time, which, in turn, grows with a de-
crease in the elasticity coefficient c2. For a linear system, the 
maximum value of the phase angle is jmax = 180°. In a linear 
system, the time of an impact is conditionally accepted as the 
moment when the system passes the position of equilibrium.

Thus, a jmax value changes from 180° to 270°. The depen-
dences of angles j1opt, j2opt, and j4opt on γ1 at different values 
of the elasticity coefficient are shown in Fig. 4, 5.

It follows from the diagrams in Fig. 4 that the angles j1opt  
and j4opt, in the transition from a nonlinear system with  
a completely rigid limiter to the linear one (с2 = 0), monoto-
nously change at π/2. Under the same conditions, the j2opt 
angle changes at 0.3 radians only (~17°).

The j4opt angle corresponds to the phase angle of the forc-
ing at the time when the head is detached from the limiter; 
j1opt – at the time of resistance of the head to the limiter; 
j2opt – at the time of the maximum deformation of the limiter, 
that is, at the time when the speed exceeds the resonance.

Consider the way the system parameters affect the values 
of the phase angles j1 and j2. Fig. 6, 7 show the diagrams 
of impact speed dependences on frequency, as well as the 
phase-frequency characteristics for a series of values, over  
a wide range of changes in other parameters of the vibra-
tion system.
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a

b

Fig. 4. Change in phase angles: a – j1opt, j2opt; b – j4opt

.

.

.

.

.

.

a

b

Fig. 5. Dependence of phase angles on the elasticity 
coefficient of the limiter: a – j1opt, j2opt; b – j4opt

Fig. 7 shows the following diagrams:
Fig. 6 shows the diagrams for three values of change in 

the reduced dissipative parameter: e = h h2 1 , β ω1 1 1= h , the 
ratio of frequencies γ ω ω= 1  and elastic forces: γ1

2
2 1= c c . 

Curves 1, 1a, and 1b are constructed for the following values: 
β1 = 0.4; ξ0 = 0; ε = 10; γ i

2 10= ;  ν = 1. Curves 2, 2a, 2b – for the 
following values: β1 = 0.46; ξ0 = 0; ε = 10; curves 3, 3a, 3b – for 
the following values: β1 = 0.46; ξ0 = 0; ε = 10.

– curves 1, 1а, constructed for the following values: ν = 1; 
β1 = 0.4; ξ0 = 0.075; ε = 10;

– curves 2, 2а, constructed for the following values: ν = 1; 
β1 = 0.4; ξ0 = 0; ε = 3; 

– curves 3, 3а, constructed for the following values: ν = 1; 
β1 = 0.3; ξ0 = 0; ε = 10; 

– curves 4 and 4а, constructed for the following values: 
ν = 2; β1 = 0.4; ξ0 = 0; ε = 10.

These dependences show that over a wide range of 
changes in parameters (recalculated for the dimensional 
parameters of the displacement range x0 from 0 to 6 mm, the 
mass doubled, the resistance bz increased by 3.3 times), at  

a maximum impact speed, for each value γ1
2,  the constancy of 

the j1opt and j2opt phase angles is maintained at an accuracy 
of up to 0.1 rad. The optimum values for the phase angles j1, 
j2, at which the maximum impact speed is achieved, for ma-
chines γ1

2 10 100=  and , are equal to: j1opt = 1.3π; j2opt = 1.5π; 
and j1opt = 1.4π; j2opt = 1.5π, respectively. 
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Fig. 6. Change in the basic parameters of a vibratory-impact 
machine: a – impact speed η on frequency γ ; b – phase 

angles j1 and j2 on frequency γ
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. . . . . . .
b

Fig. 7. Changes in the main parameters of a vibratory-impact 
machine: a – impact speed η on frequency γ ; b – phase 

angles j1 and j2 on frequency γ

6. Establishing the parameters for a vibratory  
machine’s stability zones

As established above, the vibratory-impact system with 
an oscillation limiter (Fig. 3, a) executes two movements: 
detachable and non-detached. To analyze and define stability 
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parameters, we accept some simplifications that do not affect 
the nature of movement (b1 = b2 = 0). Then: 

– at t < tb, the movement equation is:

m F tx= ( );

– at t < tb, the movement equation is:

mx c c x F t+ +( ) = ( )0 ;

In case of the smallness c1 ~ 0 (on condition of the mass 
vibration insulation) m from the foundation, a half-scope at 
this stage of movement is:

x0 ≤ δ; 	 (17)

where x0 is the amplitude of forced oscillations of mass m 
under a steady mode without breaking away from the limiter;  
δ is the static deformation of the limiter under the influence 
of weight force: δ = F ccm ; c is the stiffness of the limiter. 
When considering the non-detachable regime at Δ = x0, we 
obtain a system with one degree of freedom whose oscillation 
amplitude takes the following form: x F c m0 0

2= −( ),ω  or, 
taking into consideration that there is a resonance c m= ω0

2 :

x
F

m c
m

0
0

2

2

1

1
=

−















ω

ω

.

Condition (17), considering δ = F ccm , and c m= ω0
2  can 

then be recorded in the following form:

F
F

cm

0

2

2 1
=

−
ξ

ξ
, 	 (18)

where

ξ
ω

=
c

m 2 .

The ξ parameter determines the ratio of the system’s 
eigenfrequency m c mω0

2 =  when the mass is in contact with 
the spring to the frequency of forced oscillations ω2. Conse-
quently, at the predefined mass of a vibratory machine m, 
the parameters to be determined are the rigidity of elastic 
elements c and the external force F0, since the frequency 
of forced oscillations ω is typically set by the appropriate 
technology. Thus, for a single-mass vibratory machine, there 
are the following criteria that define the zone of its stability:

ξ
ω

=
c

m 2 ; 	 (19)

ξ
ω

=
c

m 2 ;  f
F
F

cm=
0

. 	 (20)

It should be taken into consideration, in this case, that 
in addition to finding the ξ and f parameters, one needs to 
know the time τ, the contact between the mass and spring. It 
is obvious that it makes up a certain proportion of the entire 
period of oscillations. The next step is to determine a change 
in the parameters’ boundary reflecting the stable operation 
mode of impact-vibration systems. Since the impact-vibratory 
machines chosen in this study are the resonant ones, it is likely 
that ξ ≥ 1. For example, at ξ = 1 3. , (19) would produce f = 1 8. 
Based on the expression for the eigenfrequency of oscillations 
ω0 = c m  under condition (17), one can determine the con-
tact time between the mass m and the oscillation limiter:

t c mk = =
2

2
0

π
ω

π . 	 (21)

Therefore, the ξ, f, and τ parameters are the criteria that de-
fine the mode of operation implemented under condition (17).

In case of violation of this condition, the movement of mass m  
would be executed with a separation from the spring under 
variable impacts against it. At the same time, the following 
modes are possible: one-impact, that is, over a single period 
of movement, the mass m executes one free flight and, conse-
quently, one impact against the spring; super-harmonic, when 
over one period of change in the forcing frequency there are 
several impacts; sub-harmonic, when the number of impacts is 
n times less than the period of change in the forcing frequency.

In Fig. 8, a, frame 1 rests on supports 5, providing in this 
way the machine’s vibration insulation. According to the 
scheme depicted in Fig. 8, b, the frame of working body 2  
directly rests on the foundation by vibration-insulating sup-
ports 5, and the forcing force is applied to frame 6. In this  
case, similar to the scheme in Fig. 8, a, there is a need to 
establish auxiliary elastic links 4. The simplest scheme, in 
structural terms, is the one in Fig. 8, c; oscillation limiter 3 is 
installed between working body 1 and mold 7.

The ξ and f values can also be taken from a stability card.
Consider the equation of movement of such systems, find 

the ξ and f parameters, and determine their difference from 
expression (19), which was derived for a single-mass vibra-
tory-impact machine. Provided that the forcing is applied to 
the mass m1, we obtain:

m x c c x c x F t1 1 0 1 1 1 2 0
 + +( ) − = cos ,ω

m x c c x c x F t1 1 0 1 1 1 2 0+ +( ) − = cos .ω 	 (22)

Equations (22) reflect the movement of the system in 
case of the contact violation.

                        a                                          b                                          c

Fig. 8. Schemes of two-mass vibration-impact machines: 	
a – the reactive mass rests on the foundation via supports; b – the weight of a working body rests via supports 	

on the foundation; c – the external forcing is applied to the reactive mass
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In a similar way, we obtain the equations for the 
joint movement of masses m1 and m2:

m x c c c x c x F t1 1 0 1 1 1 2 0
 + + +( ) − = cos ,ω

m x c c x c c x1 1 1 2 2 1 2 0 + +( ) − +( ) = , 	 (23)

where C is the rigidity of oscillation limiters 3 (Fig. 8).
The derived system of equations (22), (23) can 

be somewhat simplified considering (c0<<c) and the 
obvious connection x = x1+x2. By following these con-
ditions and deducting the first equation from the 
second one, we obtain the following notation form for 
equations (22) and (23):

– at х < 0

x c
m m

x
F
m

t+ +






=1
1 2

0

1

1 1
cos ;ω 	 (24)

– at х > 0

x c c
m m

x
F
m

t+ +( ) +






=1
1 2

0

1

1 1
cos .ω 	 (25)

The number of variables in the resulting systems (24) 
and (25) can be reduced by applying the new dimensionless 
parameters (time τ and coordinate η):

τ ω= t;  η η η= −1 2;  α =
m
m

1

2

;

η
ω

1
2 1

2

0

=
m x

F
;  η

ω
2

2 2
2

0

=
m x

F
. 	 (26)

When substituting (26) in (24) and (25), we consider:

x xi t i t
( ) = ( )ω2 .

The new system of equations will be obtained following 
the appropriate transforms:

αη η σ τ1 2− = − cos ;  η ξ η α τ2 1 2+ = − −f cos ;



η ξ η σ τ2 2 2+ = − −f cos ; 	 (27)

here

ξ
ω1

1 2 1

1 2
2=

+( )m m c

m m
,  ξ

ω2
1 2

1 2

1 2
2=

+( ) +( )m m

m m

c c
. 	 (28)

f
m g
F

m m
m

=
+



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2

0

1 2

2

. 	 (29)

The σ sign in equations (27) accounts for the phase of 
a forcing. When comparing expressions (19) and (28), (20a) 
and (29), it is not difficult to notice that the difference 
between them is that the ξ1 and ξ2 parameters in dependen
ces (28), while differing from (19), take into consideration 
the consolidated mass of the system (Fig. 8, c), as well as the 
presence of two rigidities c1 and c2. The experiments reported 
in [16] established that the rigidity c1 represents a third of the 
support springs c0; to determine the stiffness c and forcing F0,  
the ξ2 and f parameters for the implementation of the first 
stability zone (Fig. 9) are within the following limits:

0 8 1 32. . ;≤ ≤ξ  1 3 2. .≤ ≤f 	 (30)

The ξ and f values can also be taken from a stability card. 
The contact time τ also depends on the region of the 

stability zone. For the first zone, its averages can be taken as 
τ = ( )1 3 T  [16], where T is the oscillation period of a vibra-
tory machine.

Contact time, τ also depends on the area of the stability 
zone. For the first zone, its averages can be taken as [16], 
where T is the period of vibration oscillations.

When using the first stability zone, the amplification 
coefficient of oscillation amplitude kA for the ratio of frequen-
cies of forced oscillations ω to the natural oscillations ω0, 
ω/ω0 = 0.87–0.91, is kA = 5–7. Under this condition, energy 
costs for the manufacturing process decrease by 4–6 times. 
The discrepancy within these limits is due to the numerical 
values of the oscillation amplitude necessary to enable the 
technological process for a particular environment.

7. Discussion of results of studying the basic parameters 
of a vibratory machine and determining its stability zones

The results of our research show that at the predefined 
frequency of impacts and the weight of a working body, the 
effectiveness of an impact-vibratory machine is determined by 
the impact speed. This is a fundamentally new result, imply-
ing that a value of the phase angle decreases with an increase 
in time with the limiter, that is, the time, which, in turn, grows 
with a decrease in the elasticity coefficient. Our analysis of the 
analytical dependences and the above diagram (Fig. 7) has 
made it possible to establish the following. Over a wide range 
of change in the parameters at a maximum impact speed for 
each value, there is the permanence of the phase angles j1opt 
and j2opt at an accuracy of up to 0.1 rad. The optimal values of 
the phase angles j1, j2, at which the maximum impact speed 
is achieved, for impact-vibratory machines, at the numerical 
frequency ratio γ1

2 10=  and 100, are equal to j1opt = 1.3π ; 
j2opt = 1.5π; and j1opt = 1.4π; j2opt = 1.5π, respectively. These 
results became the source information to determine a vibrato-
ry machine’s stability zones. Thus, the parameter ξ determines 
the ratio of the system’s eigenfrequency when the mass is in 
contact with the spring to the frequency of forced oscillations. 
The f parameter defines the weight ratio of the vibratory ma-
chine and external force. At the specified mass of a vibratory 
machine, we identified parameters to be determined. These 
include the rigidity of elastic elements and the external force, 
as the frequency of forced oscillations is typically set by the 
appropriate technology. By solving the equations of move-
ment of two-mass vibration-impact machines, we derived 

 

Fig. 9. Stability card of vibratory-impact machines
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expressions (28), (29), which differ from expression (19) for 
a single-mass vibratory-impact machine. When using the 
first stability zone, the amplification coefficient of oscillation 
amplitude kA for the ratio of frequencies of forced oscillations 
to the natural oscillations ω0, ω/ω0 = 0.87–0.91, is kA = 5–7. 
Under this condition, energy costs for a manufacturing pro-
cess are reduced by 4–6 times. The limitations of this study 
include the missing analysis of the second and third zones of 
stability of the modes and parameters of a vibratory machine. 
Studies to address this issue are planned as a continuation of 
this work’s considerations about the idea of optimizing the 
parameters for other types of vibration equipment and other 
manufacturing processes. The proposed approach for design-
ing an energy-efficient vibratory machine that would warrant 
the zone of stability of parameters in the resonance region 
could be used for other processes. Such processes include the 
moving, stirring, and sorting of materials.

8. Conclusions

1. We have substantiated the methodology and devised 
an estimation scheme for a vibratory machine taking into 
consideration the influence of the technological environ-
ment in the form of wave coefficients, which accounts for 

the discrete-continual model of a vibratory machine and the 
processing environment. The proposed estimation scheme 
adequately reflects the actual movement of the system and 
could serve a methodological procedure for investigating 
a similar class of vibratory machines.

2. The changes in the basic parameters affecting the sta-
bility zones of a vibratory machine have been investigated 
and analyzed. This is a new result, which reveals a qualitative 
pattern of the movement of a vibratory machine enabling the 
predefined mode of its operation. It was found that at the spe
cified frequency of impacts and the weight of a working body, 
the efficiency of an impact-vibratory machine is determined by 
the impact speed. Over a wide range of changes in the parame
ters at a maximum impact speed for each value, there is the 
permanence of the phase angles j1opt and j2opt at an accuracy 
of up to 0.1 rad. The optimal values of the phase angles j1, j2, 
at which the maximum impact speed is achieved, for the im-
pact-vibratory machines, at the numerical frequency ratio, are 
equal to j1opt = 1.3π; j2opt = 1.5π; and j1opt = 1.4π; j2opt = 1.5π.

3. We have established parameters for the vibratory ma-
chines’ stability zones when using the first stability zone. The 
amplification coefficient of oscillation amplitude kA, for the ratio 
of frequencies of forced oscillations ω to the natural oscillations 
ω0, ω/ω0 = 0.87–0.91, is kA = 5–7. Under this condition, energy 
costs for the manufacturing process decrease by 4–6 times.
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