
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (112) 2021

46

1. Introduction

Low-density parity-check codes are linear error-cor-
recting block codes, which are characterized by their sparse
parity-check matrices (usually means the number of ones in
such a matrix is below 1–2 % for LDPC codes) and are able
to perform close to the Shannon limit [1, 2]. An example of
such matrix can be found in Fig. 1 along with its graphical
representation, a Tanner graph. They were first introduced
in 1960 [3]. They were however impractical to implement at
the time and were forgotten until they were independently
reinvented in the 1990’s [1, 4, 5]. Their architecture is effi-
cient and supports parallelism in decoding, computational
simplicity, and various code rates. They can also employ
several principles used in turbo codes to achieve high er-
ror-correcting performance [1].

In Table 1, a list of abbreviations used in this paper can
be found.

LDPC codes are used in a variety of applications, in-
cluding satellite communications, Deep Space Network,

Digital Video Broadcasting standards (DVB-S2, DVB-C2,
DVB-T2), IEEE 802.11, IEEE 802.16e (WiMAX), LTE
networks [6]. For the best error-correcting performance,
LDPC codes are usually decoded by iterative soft-deci-
sion algorithms, e. g. sum-product algorithm (SPA) and its
variations like min-sum algorithm (MSA). There also exist
layered decoding approaches (row-layered decoding and
column-layered decoding). Hard-decision or soft-decision
encoding can be used. LDPC codes are divided into two
categories: regular and irregular. Regular LDPC codes have
constant column and row weight of their parity-check ma-
trices (they have the same number of ones in every column
and also the same number of ones in every row of the matrix).
Column and row weight of an irregular LDPC code is not
constant throughout the whole parity-check matrix [1, 7].

Progressive Edge-Growth (PEG) is an algorithm for
computer-based design of random-structure LDPC codes.
Its role is to generate a Tanner graph (a bipartite graph,
which represents a parity-check matrix, as seen in Fig. 1)
with as few short cycles as possible [7]. When looking at

How to Cite: Durcek, V., Kuba, M., Dado, M. (2021). Investigation of random-structure regular LDPC codes construction

based on progressive edge-growth and algorithms for removal of short cycles. Eastern-European Journal of Enterprise Tech-

nologies, 4 (9 (112)), 46–53. doi: https://doi.org/10.15587/1729-4061.2021.225852

INVESTIGATION OF
RANDOM-STRUCTURE

REGULAR LDPC CODES
CONSTRUCTION BASED

ON PROGRESSIVE
EDGE-GROWTH AND

ALGORITHMS FOR
REMOVAL OF SHORT

CYCLES
V i k t o r D u r c e k
Corresponding author

PhD*
E-mail:	viktor.durcek@feit.uniza.sk

M i c h a l K u b a
PhD*

M i l a n D a d o
Professor,	PhD*

*Department	of	Multimedia	and	Information-
Communication	Technologies

University	of	Zilina
Univerzitna	str.,	8215/1,	Zilina,	Slovakia,	010	26

This paper investigates the construction of random-
structure LDPC (low-density parity-check) codes using
Progressive Edge-Growth (PEG) algorithm and two
proposed algorithms for removing short cycles (CB1 and
CB2 algorithm; CB stands for Cycle Break).

Progressive Edge-Growth is an algorithm for
computer-based design of random-structure LDPC
codes, the role of which is to generate a Tanner graph (a
bipartite graph, which represents a parity-check matrix
of an error-correcting channel code) with as few short
cycles as possible. Short cycles, especially the shortest
ones with a length of 4 edges, in Tanner graphs of LDPC
codes can degrade the performance of their decoding
algorithm, because after certain number of decoding
iterations, the information sent through its edges is no
longer independent.

The main contribution of this paper is the unique
approach to the process of removing short cycles in
the form of CB2 algorithm, which erases edges from
the code’s parity-check matrix without decreasing the
minimum Hamming distance of the code. The two cycle-
removing algorithms can be used to improve the error-
correcting performance of PEG-generated (or any other)
LDPC codes and achieved results are provided. All these
algorithms were used to create a PEG LDPC code which
rivals the best-known PEG-generated LDPC code with
similar parameters provided by one of the founders of
LDPC codes.

The methods for generating the mentioned error-
correcting codes are described along with simulations
which compare the error-correcting performance of the
original codes generated by the PEG algorithm, the PEG
codes processed by either CB1 or CB2 algorithm and also
external PEG code published by one of the founders of
LDPC codes

Keywords: LDPC, low-density parity-check, PEG,
progressive edge-growth, channel coding, Tanner graphs

UDC 681
DOI: 10.15587/1729-4061.2021.225852

Received date 17.05.2021

Accepted date 17.07.2021

Published date 31.08.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

Information and controlling system

47

Fig. 1, two groups of nodes can be seen: the square-shaped
nodes are called check nodes (CN) and the circle-shaped
nodes are called variable nodes (VN; sometimes also called
symbol nodes) [8]. A cycle is a path which consists of unique
edges and also starts and ends in the same node (the length
of the shortest possible cycle in a Tanner graph is 4 edges).
Short cycles in Tanner graphs of LDPC codes can degrade
the performance of their decoding algorithm, because after a
certain number of decoding iterations, the information sent
through its edges is no longer independent [9].

The proposed method of LDPC code construction consists
of generating an LDPC code with the PEG algorithm and
then using a loop-removing algorithm (either CB1 or CB2) to
remove any excess short cycles from this LDPC code. Specific
implementations of the PEG algorithm along with CB1 and
CB2 loop-removing algorithms will be described below.

Table	1

List	of	Abbreviations

Abbreviation English meaning

BER Bit Error Rate

BI-AWGN Binary-Input Additive Gaussian White Noise

CB Cycle Break

CN Check Node

DVB-C Digital Video Broadcasting (Cable)

DVB-S Digital Video Broadcasting (Satellite)

DVB-T Digital Video Broadcasting (Terrestrial)

Eb/N0 Energy per Bit to Noise Power Spectral Density Ratio

IEEE Institute of Electrical and Electronics Engineers

LDPC Low-Density Parity-Check

LTE Long Term Evolution

MATLAB Matrix Laboratory

MSA Min-Sum Algorithm

PEG Progressive Edge-Growth

QC-LDPC Quasi-Cyclic Low-Density Parity-Check

SPA Sum-Product Algorithm

VN Variable Node

WiMAX Worldwide Interoperability for Microwave Access

2. Literature review and problem statement

LDPC codes created by the PEG algorithm are clas-
sified as random, because their parity-check matrices
mostly lack structure, other than being a linear code [10].
Although LDPC codes constructed by this algorithm are
among the best codes with large girth, their disadvantage
is the high complexity of encoding and decoding, which is
often too high for many hardware implementations [11, 12].
However, there exist LDPC codes with structured pari-
ty-check matrices. One type of these codes is called qua-
si-cyclic LDPC (QC-LDPC) codes. Their parity-check ma-
trices comprise several submatrices called circulants (every
row in a circulant matrix is a cyclic shift of their previous
row). This structure lowers their complexity and makes
them much more hardware-friendly. Although PEG LDPC
codes themselves are often impractical for hardware imple-
mentations, there exist several methods for construction of
QC-LDPC codes with the use of the PEG algorithm (while
retaining the advantages of QC-LDPC codes) [13–18],
e. g. by generating each submatrix of the final parity-check
matrix using the PEG algorithm. In [13], the construction
of PEG-QC-LDPC codes (type of LDPC codes with the
advantage of lower memory requirements) than PEG codes
is described together with modifications to also maximize
its girth properties. The paper [14] describes how to intro-
duce the quasi-cyclic property to non-binary LDPC codes
based on the PEG algorithm, while retaining their good
error-correcting performance (the authors of this paper
state that the PEG algorithm is considered one of the
most successful approaches for the construction of finite
length LDPC codes), but it is concluded that this method
requires further research because of short cycles which ap-
pear in smaller matrices. The paper [15] presents so-called
QC-PEG-Root-Check-LDPC codes which perform well
in block fading channels. The authors state that this is a
unique approach because they have not found any similar
publications which focus on these channel conditions. The
paper [16] contains methods for constructing both regular
and irregular quasi-cyclic LDPC codes with error-cor-
recting benefits of progressive edge-growth codes. The
authors state that their proposed codes exhibit BER per-
formance comparable to random-structure LDPC codes.
In [17], an optimized belief propagation based progressive
edge-growth method for constructing QC-LDPC codes is
proposed. Compared to PEG, this construction method
improves decoding convergence by up to 11.7 % and in-
creases success probability by up to 10 times, according to
the authors of the paper. The paper [18] introduces a per-
mutation shift determining kind of PEG algorithm used to
construct QC-LDPC protograph codes. The advantage of
this method is that it can construct both binary or non-bi-
nary codes. This variety of methods makes the PEG LDPC
codes worthy of further research and is also a reason why
generated codes mentioned in this paper were compared to
other LDPC codes from external sources of the same class,
e. g. with random structure of the parity-check matrix [1].

Various methods for the removal or detection of short
loops in Tanner graphs were published. For example, in [19],
a parity-check matrix is used to construct a so-called adja-
cency matrix, the purpose of which is detection of cycles.
Removed edges are placed back into different places in the
Tanner graph of the parity-check matrix. The paper [20]
uses a transformed parity-check matrix to create a relative

Fig.	1.	A	parity-check	matrix	and	its	Tanner	graph:		
a	–	parity-check	matrix;	b	–	Tanner	graph

1 0 1 0 1 0
1 0 0 1 0 1H =
0 1 1 0 0 1
0 1 0 1 1 0

c1 c2 c3 c4

v1 v2 v3 v4 v5 v6

a	

1 0 1 0 1 0
1 0 0 1 0 1H =
0 1 1 0 0 1
0 1 0 1 1 0

c1 c2 c3 c4

v1 v2 v3 v4 v5 v6

b

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (112) 2021

48

matrix of its Tanner graph, which in turn is used to detect
cycles in the original parity-check matrix. The validity of the
method is shown on one example LDPC code in the paper.
Combinational analysis of the parity-check matrix is used as
a method for loop detection in [21]. In [22–24], a modified
message-passing algorithm, which is meant for decoding
of LDPC codes, is used to detect the short cycles. This
approach has basically the same complexity as the underly-
ing decoding algorithm. The following method in [25] was
specifically designed for QC-LDPC codes: eigenvalues of a
so-called directed edge matrix based on the code’s Tanner
graph are used to count loops in the matrix. The next meth-
od for short cycle analysis and elimination was created with
convolutional LDPC codes in mind and is described in [26].
It is based on the graphical structure of short cycles and uses
a polynomial syndrome former matrix.

After studying various methods of short cycle detection
and elimination, we have decided to try a more direct ap-
proach: detection of short cycles directly from the binary
parity-check matrix. The second realization after studying
the mentioned publications was that there are no methods
(at least according to our research) of short cycle elimina-
tion which take into account how the minimum Hamming
distance of the code is affected by the removal of each edge
from its Tanner graph.

3. The aim and objectives of the study

The aim of this study was to develop a new methodology
of LDPC code construction based on opportunities realized
after studying other published methods of random-structure
LDPC code construction, namely finding out how intro-
ducing various randomizations into the Progressive Edge-
Growth process will affect its output LDPC codes in com-
bination with detection of short cycles directly from LDPC
code’s binary parity-check matrix and a unique approach of
short-cycle elimination based on tracking minimum Ham-
ming distance of the code after erasure of each edge from its
parity-check matrix.

The following objectives of our investigation have been
set to achieve the setting goals:

– select simulation parameters and properties of LDPC
codes for these simulations, which are related to the code
chosen as our base for comparison;

– generate LDPC codes of various densities using im-
plemented PEG algorithms. Examine how removing short
cycles of different length from these codes’ parity-check
matrices affects their error-correcting performance. Deter-
mine the best codes from the spectrum of generated LDPC
codes and compare their error-correcting performance to
each other;

– compare the error-correcting performance of PEG
codes with and without their short cycles removed. Deter-
mine the best use cases for each proposed loop-removing
algorithm and pinpoint differences in their output LDPC
codes;

– choose one best-performing LDPC code from previ-
ous simulations and test its performance against the best
known code of the same type (chosen as a base for compar-
isons at the start of the study). Verify the validity of the
proposed methodology and competitiveness of generated
codes in comparison with the best random-structure regu-
lar LDPC codes.

4. Materials and methods

4. 1. Implementations of Progressive Edge-Growth
algorithm

Four versions of the PEG algorithm were used in
simulations. LDPC codes generated by these algorithms
(PEG 1–4) have shown no difference in their error-cor-
recting performance, but all four algorithms were still used
to generate codes for the simulations. This is because after
processing these codes with the proposed loop-removing al-
gorithms, the error-correcting performance of the resulting
codes tends to be different.

Progressive Edge-Growth algorithm needs these input
data:

– number of rows in the desired parity-check matrix
(=number of check nodes in its Tanner graph);

– number of columns in the desired parity-check matrix
(=number of variable nodes in its Tanner graph);

– number of ones in every column of the desired pari-
ty-check matrix (degree distribution; degree of every vari-
able node in its Tanner graph);

The output of the PEG algorithm is a parity-check ma-
trix based on the input parameters. The algorithm focuses on
one variable node at a time [27]. It chooses one node, assigns
all of its connections to check nodes (based on the degree
distribution on input) in a way that creates the least amount
of short cycles in the final parity-check matrix and then
moves on to another variable node and repeats the process
until each variable node has all its connections assigned. It
starts with the lowest-degree VNs and works its way to the
highest-degree ones.

The basic PEG algorithm works in the following way:
1. The first connections are made to the (yet) zero-de-

gree CNs.
2. When there are no more zero-degree CNs left, the con-

nections are made to the CNs, which are unreachable from
the current VN, favoring the lowest-degree CNs.

3. If every CN can be reached from the current VN, a
connection is made to the most distant CN (the one with the
most edges on the path leading to it).

Lowest-degree nodes are most susceptible to decoding
errors. Therefore, the PEG algorithm tries to make these
nodes part of the longest cycles in the created graph. The
longer the cycle, the longer the information flowing through
remains independent during decoding (not being processed
by the same nodes as often), which in turn makes the nodes
it connects less susceptible to decoding errors.

The proposed implementation of the PEG algorithm in
the MATLAB programming environment needs four input
values. Three of them were described above, the fourth re-
quired input value is the weight of CN degrees in decision
making (relative to the distance between starting VN and
the current CN). At the point in time when every CN is
accessible from the current VN, the next unassigned edge
should be connected to a CN which is the furthest away pos-
sible from this VN and which also has a low degree. Because
of this, the algorithm determines the length of the shortest
path to each and every CN from the currently selected VN.
The fourth input parameter in this implementation of the
PEG algorithm determines whether the degree of a CN has
the same weight in the choice of CN as its distance from the
current VN.

The proposed implementation of the PEG algorithm has
four versions with various degrees of added randomization

Information and controlling system

49

in certain operations. During the edge-growth process,
there may be situations when several lowest-degree VNs
with the same priority can be chosen as the next node to
start distributing edges from. Likewise, it happens during
the edge-growth process that there are several CNs with the
same priority to connect the next edge to. When there are
several VNs or CNs with the same selection priority during
the process, the selection can be done on the first-come, first-
serve basis or it can be randomized. By choosing different
combinations of these selection methods for CNs and VNs,
four versions of proposed PEG algorithm were created:

PEG 1:
– selection of a random VN with the same degree;
– selection of a random CN with the same priority;
PEG 2:
– selection of the first VN with the same degree;
– selection of a random CN with the same priority;
PEG 3:
– selection of a random VN with the same degree;
– selection of the first CN with the same priority;
PEG 4:
– selection of the first VN with the same degree;
– selection of the first CN with the same priority.
Matrices generated by the PEG 4 algorithm possess

the most visible structure. Algorithms PEG 3 and PEG 2
add more randomization to the process and binary matri-
ces created by the PEG 1 algorithm have the most random
placements of ones. Although the structure of these matri-
ces is visibly different, their error-correcting performance
proved to be identical (any differences were statistically
insignificant). Even though this was the case, all four PEG
algorithm versions were used in simulations because after
processing their codes by loop-removal algorithms (they
will be described below), the resulting codes had different
error-correcting capabilities in some cases.

4. 2. Algorithms for Removal of Short Cycles in Tan-
ner graphs

Degradation of LDPC decoding performance led to the
creation of two proposed algorithms which remove short cy-
cles from Tanner graphs (provided in the form of a matrix).
These algorithms will be referred to as CB1 and CB2 (which
stands for Cycle Break). The algorithms need two inputs: a
parity-check matrix (or a binary matrix in general) and a
maximum length of cycles to remove – valid value is an even
integer equal or larger than 4. If the value of this parameter
equals 6, the algorithm will only remove cycles of length 4
and 6. If the parameter equals 8, the algorithm will only
remove cycles of length 4, 6 and 8.

Compared to other loop-removing algorithms, CB1 and
CB2 search for short cycles directly in the provided binary
parity-check matrix. They directly scan its ones and zeroes,
search for every possible path based on their patterns and
regularly check, whether the current path does not create
cycles of specified lengths (the input parameter: maximum
length of cycles to remove).

4. 2. 1. Description of CB1 algorithm for removal of
short cycles

At first, the CB1 algorithm chooses a check node and
progressively scans every unique path (in the Tanner
graph of the input matrix) that originates in the said
check node while taking note of each cycle it finds along

the way. After this analysis, the program has a complete
list of every cycle (of length given by the “maximum
length” input parameter or shorter) which intersects the
currently chosen check node. The next step is to create a
list of all edges found in these listed cycles, the edges be-
ing ordered by the frequency of their occurrence in the list
of cycles. The goal of the CB1 algorithm is to remove all
possible cycles of specified length while not making any
check node isolated in the process (degree of a node can-
not get lower than 2). When an edge is removed (meaning
when one is removed from the parity-check matrix), all
the cycles this edge was a part of are removed from the
list of found cycles. The process of edge erasure continues
(by investigating the next most frequent edge) until all
the listed cycles are removed or until the only edges left
to erase are those which would make a check node isolated
by their erasure. Afterwards, the program chooses an-
other check node and repeats the aforementioned process
(again makes a list of every cycle leading through it and
tries to remove them) until every check node is analyzed
and left for another one.

4. 2. 2. Description of CB2 algorithm for removal of
short cycles

Based on shortcomings of the CB1 algorithm (in some
cases, the stopping criterion was too loose; the algorithm
removed too many ones from parity-check matrices and
severely degraded performance of the LDPC codes), we
designed and implemented the CB2 algorithm – which
works in similar ways to the CB1 algorithm (it does not
isolate check nodes in the process of removing cycles),
but before removing a cycle, it also takes into consider-
ation the changes to the minimum Hamming distance of
the current code, which would be caused by the removal.
Same as CB1, CB2 also chooses an anchor check node and
locates every cycle (of specified lengths) leading through
this node and sorts edges of these cycles based on the most
frequent occurrence in this group of cycles. But it only
removes an edge in the case when it does not result in a
drop of the minimum Hamming distance of the code (while
also not making nodes isolated). Calculations of minimum
Hamming distance makes the CB2 algorithm much more
computationally expensive compared to the CB1 algorithm
because this distance needs to be frequently recalculated
during the whole process. After finishing work with one
CN, it chooses a different one, etc.

We chose minimum Hamming distance as a criterion
in the CB2 algorithm, because it is one of the basic param-
eters of error-correcting codes in the coding theory and
reflects their error detection and correction capabilities.
The higher the minimum Hamming distance, the more
errors can be corrected in a given code word. In our case,
the estimation of minimum Hamming distance was done
by rearranging the parity-check matrix of an LDPC code
to the co-called row-echelon form, from which the gener-
ator matrix of the LDPC code was calculated. In the next
step, a row with the lowest Hamming weight needs to be
found in this generator matrix. The Hamming weight of
this row is used as an estimation of the LDPC code’s min-
imum Hamming distance.

Both loop-removing algorithms were successfully test-
ed with parity-check matrices of different sizes, up to
8,000×10,000.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (112) 2021

50

5. Results of the study of LDPC construction and
performance-enhancing algorithms

5. 1. Simulation Parameters
Several series of computer simulations were conducted

taking advantage of high-performance computing and us-
ing a network of computer workstations (computer cluster)
available for research purposes in the University of Žilina to
test the error-correcting performance of LDPC codes creat-
ed by the mentioned PEG algorithms with and without also
utilizing the proposed algorithms for the removal of short
cycles (CB1, CB2) with various sets of parameters. Simu-
lations were run and algorithms were implemented using
MATLAB programming environment and C programming
language.

LDPC codes for these simulations were generated by all
four versions of the proposed PEG1-4 algorithms with multi-
ple densities of parity-check matrices (Each matrix generat-
ed had a constant VN degree distribution of 2, 3, 4, 5, 6 and
9, which are equal to the number of ones in every column of
the matrix, also called column weight) and dimensions of
252×504 (the matrix size was chosen so the error-correcting
performance of tested codes can be compared to the best
known regular PEG code with these parameters according to
one of the founders of LDPC codes [28]). Every LDPC code
was tested in a binary-input additive white Gaussian noise
channel (BI-AWGN) with a signal-to-noise ratio (Eb/N0)
range from –2 dB to 10 dB with a graph data point simulat-
ed each 0.5 dB (total 25 data points for each code). In the
Eb/N0 range of –2÷1 dB (first 7 graph data points), 105 bits
were encoded, exposed to BI-AWGN and decoded for each
data point. In the Eb/N0 range of 1.5÷10 dB (last 18 graph
data points), 108 random data bits were processed in the
same way for each data point (an identical binary input se-
quence was used in each simulation).

Each of these matrices (every PEG algorithm and all
densities) had their error-correcting performance tested in
simulations, but each of these matrices was also processed by
both CB1 and CB2 algorithms for the removal of short cy-
cles. Each matrix was processed by both of these algorithms
several times, each time with different of the parameter
“maximum length of cycles to remove” (used values for both
algorithms: 4, 6 and 8). So, each of the original matrices gen-
erated by the PEG algorithms spawned several new codes,
all of which had their error-correcting capabilities tested
with parameters described above and below.

Input data bit sequences were encoded using generator
matrices retroactively calculated from each parity-check
matrix. Simulated LDPC decoder uses a custom implemen-
tation of the box-plus log-SPA, the sum-product algorithm
working in logarithmic domain with the box-plus approxi-
mation used in the CN processors [1]. The number of decod-
ing iterations was set to 20.

5. 2. Comparison of the best CB1-processed codes
with different density

In Fig. 2, the error-correcting performance of selected
best codes processed by the CB1 loop-removing algorithm
is compared. The LDPC codes are grouped into these cat-
egories based on their column weight (or column weight of
the PEG code they originated from). In the legend of Fig. 2,
the number between two slashes (e. g. /2/) represents the
column weight of the original PEG matrix the specific code

is related to and the number in brackets (e.g. CB1(6)) rep-
resents the maximum length of cycles the CB1 algorithm
was set up to remove. The best codes were chosen depending
on how soon they were able to reach the lowest BER in the
simulated ranges (some codes had better error-correcting
performance in lower Eb/N0 ranges but hit an error floor too
early to be considered the best code in their category).

The best code from this graph is the PEG2-CB1 code
which originated from the PEG2 code with a column weight
of 3 which had its cycles of lengths 4 and 6 removed by the
CB1 algorithm. In marginal cases, the PEG codes with col-
umn weight of 2 and 9 (and their related versions processed
by the CB1 algorithm) have shown the worst performance in
the higher Eb/N0 ranges, parity-check matrices being either
too sparse or too dense, respectively.

5. 3. Comparison of CB1 and CB2 codes to each other
and to the PEG codes they originate from

The CB1 algorithm managed to improve the perfor-
mance of the PEG codes which the CB2 algorithm left un-
touched, namely the PEG codes with sparser parity-check
matrices, specifically with a constant VN degree of 2 and 3
(CB1: looser condition before edge erasure; more aggressive
erasure of edges). CB2 detected the same groups of cycles
as CB1 but did not erase any edges because of its stricter
pre-erasure criterion. In Fig. 3, an example of error-correct-
ing performance comparison between a code generated by
the PEG 4 algorithm and its version with cycles of length 4
and 6 removed by the CB1 algorithm (marked as PEG4-
CB1) can be seen. An improvement in performance is visible.

In simulations, PEG codes generated with denser pari-
ty-check matrices (constant column weight of 4, 5, 6 and 9),
the CB1 algorithm removed too many edges in most cases
and degraded error-correcting the performance of these
codes overall. On the other hand, the CB2 algorithm man-
aged to improve performance of codes in these cases. In
Fig. 4, an example of such an improvement can be seen.

The parity-check matrix from Fig. 4 was generated by
the PEG 1 algorithm with a constant VN degree of 5 (the
code marked PEG). This matrix was then used as an input
for both CB1 and CB2 algorithms (with a maximum length
of cycles to remove set to 6, in case from Fig. 4). The CB1
algorithm significantly degraded the error-correcting ca-

Fig.	2.	Best	codes	processed	by	the	CB1	algorithm	per	density

Information and controlling system

51

pabilities of the original PEG code while CB2 managed to
improve them. The denser the generated matrix (higher VN
degree), the higher the improvement achieved by the remov-
al of short cycles by the CB2 algorithm.

5. 4. Comparison of the best LDPC code generated by
the proposed methods to an external code with similar
parameters

The overall best code acquired from all described simula-
tions is a 252×504 code with its parity-check matrix generated
by the PEG2 algorithm with constant column weight of 3 and
then processed by the CB1 loop-removing algorithm set up to
remove short cycles, specifically of length 4 and 6. Length of
data word (252 bits) and length of code word (504 bits) were
chosen so the codes can be directly compared to codes from
external sources.

A PEG-generated LDPC code declared by a founder of
LDPC codes [4, 5] as being the best known regular Gal-
lager (504, 252) code was chosen as a basis for comparison
to the best code from conducted simulations (Fig. 5). The
parity-check matrix was taken directly from [28] and its
error-correcting performance was tested with the same soft-

ware the proposed LDPC codes were tested with, under the
exact same conditions.

As can be observed in Fig. 5, the performance of both
compared codes is very similar: none of the codes hit any er-
ror floor within the simulated boundaries and stay very close
in terms of BER, which confirms the validity of the proposed
methodology and algorithms.

6. Discussion of the research results of LDPC
construction and performance-enhancing algorithms

Two algorithms for the removal of short cycles in Tanner
graphs of LDPC codes, CB1 and CB2 algorithms, were pro-
posed in Section 4 along with four implementations of the
Progressive Edge-Growth algorithm PEG1-4, which were
mainly used for generating input matrices for CB1 and CB2
algorithms. The results of simulations conducted to measure
the error-correcting performance of random-structure LDPC
codes generated by combining the mentioned algorithms were
shown and analyzed in Section 5. Each of the two loop-remov-
ing algorithms is suitable for use in specific situations, namely:
the CB1 algorithm removes cycles more aggressively because
of its looser pre-removal deciding criterion and managed to
improve the error-correcting performance of PEG codes with
sparser parity-check matrices (constant column weight: 2, 3;
results can be seen in Fig. 3), but degraded the performance
of PEG codes with denser parity-check matrices (constant
column weight: 4÷9; an example of this can be seen in Fig. 4)
in most cases. Because of its stricter pre-removal criterion,
the CB2 algorithm managed to improve the performance of
the codes with denser matrices (as seen in Fig. 4) in most
cases but did not remove any cycles in cases of the codes
with sparser matrices, making the CB1 algorithm the better
choice in these particular cases. The proposed custom algo-
rithms and described methodology were verified by creating
a PEG LDPC code with similar error-correcting performance
to a best-known PEG-generated LDPC code with similar
parameters provided by one of the founders of LDPC codes
in [28]. A comparison of these codes can be found in Fig. 5.
Parameters of the code and methods for generating this code
are described throughout the paper.

Fig.	3.	Error-correcting	performance	of	codes	with	column	
weight	of	3

Fig.	4.	Error-correcting	performance	comparison	before	
and	after	removal	of	short	cycles	by	both	CB1	and	CB2	

algorithms

Fig.	5.	Comparison	to	the	best-known	PEG-generated	LDPC	
code	with	these	parameters	according	to	D.	MacKay

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (112) 2021

52

The mentioned simulation results and comparisons show
that the proposed methodology and its unique approach to
code construction can generate LDPC codes which compete
with the best codes in the same category. The paper provides
a set of several methods and algorithms which can be use-
ful together as a methodology of code construction (other
publications usually just focus on a single part of the whole
process; related references can be found in Section 2). Or
they can be used separately for partial tasks too, e.g. PEG
code generation and cycle detection and/or elimination in
existing LDPC codes or general Tanner graphs.

As a part of this study, a wide spectrum of codes was
generated, analyzed, and compared. But parameters of each
one of these codes were kept within certain constants (e.g.
the dimensions of 252×504) defined by the external code
chosen as a base for comparison [28]. The process of simu-
lating operations of each of these codes took several months
and a lot of processing power. Future efforts could lead to a
choice of a vastly different code as a basis for comparison,
e.g. an irregular LDPC code with different code rate and
dimensions or to the application of methods from [13–18] to
construct QC-LDPC codes using the algorithms described
in this paper. These structured codes would be better suited
for hardware implementation.

7. Conclusions

1. LDPC codes for the simulations were generated by all
four versions of the PEG1-4 algorithms with multiple densi-
ties of parity-check matrices, where each matrix generated

had a constant VN degree distribution of 2, 3, 4, 5, 6 and 9. The
chosen matrix dimensions were 252×504 so the error-cor-
recting performance of tested codes can be compared to the
best known regular PEG code with these parameters.

2. The best code from the compared set of CB1-generat-
ed LDPC codes was the PEG2-CB1 code which originated
from the PEG2 code with a column weight of 3 which had
its cycles of lengths 4 and 6 removed by the CB1 algorithm.

3. The results of our simulations and comparisons have
shown that each of the proposed CB1 and CB2 algorithms is
suitable for different use cases. The CB1 algorithm produces
better codes in cases of codes with sparser parity-check ma-
trices and the CB2 algorithm is a better choice when improve-
ment of a code with the denser parity-check matrix is desired.

4. The methodology of LDPC code construction using cus-
tom versions of the PEG algorithm and two cycle-removing CB
algorithms described in this paper was used to create an LDPC
code of specific parameters and compared to the best known
code with these parameters listed in the database of codes pro-
vided in [28] by one of the founders of LDPC codes. The results
of the described simulations and comparisons of these codes
show that our methodology can produce error-correcting codes
which rival best known codes in their class.

Acknowledgments

This paper was written as a part of the following scien-
tific projects: Slovak Research and Development Agency
APVV-17-0631 (Co-existence of photonics sensor systems
and networks in the framework of the internet of things).

References

1. Ryan, W. E., Lin, S. (2009). Channel Codes: Classical and Modern. Cambridge University Press. doi: https://doi.org/10.1017/

cbo9780511803253

2. Vandendriessche, P. (2009). Some low-density parity-check codes derived from finite geometries. Designs, Codes and Cryptography,

54 (3), 287–297. doi: https://doi.org/10.1007/s10623-009-9324-9

3. Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on Information Theory, 8 (1), 21–28. doi: https://doi.org/

10.1109/tit.1962.1057683

4. MacKay, D. J. C., Neal, R. M. (1996). Near Shannon limit performance of low density parity check codes. Electronics Letters,

32 (18), 1645. doi: https://doi.org/10.1049/el:19961141

5. MacKay, D. J. C. (1997). Good error-correcting codes based on very sparse matrices. Proceedings of IEEE International Symposium

on Information Theory. doi: https://doi.org/10.1109/isit.1997.613028

6. Arora, K., Singh, J., Randhawa, Y. S. (2019). A survey on channel coding techniques for 5G wireless networks. Telecommunication

Systems, 73 (4), 637–663. doi: https://doi.org/10.1007/s11235-019-00630-3

7. Richardson, T., Urbanke, R. (2008). Modern Coding Theory. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511791338

8. Blahut, R. E. (2003). Algebraic Codes for Data Transmission. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511800467

9. Fan, J., Xiao, Y., Kim, K. (2008). Design LDPC Codes without Cycles of Length 4 and 6. Research Letters in Communications, 2008, 1–5.

doi: https://doi.org/10.1155/2008/354137

10. Liu, X., Zhang, W., Fan, Z. (2009). Construction of Quasi-Cyclic LDPC Codes and the Performance on the PR4-Equalized MRC

Channel. IEEE Transactions on Magnetics, 45 (10), 3699–3702. doi: https://doi.org/10.1109/tmag.2009.2023422

11. Jiang, X.-Q., Lee, M. H., Wang, H.-M., Li, J., Wen, M. (2016). Modified PEG algorithm for large girth Quasi-cyclic protograph

LDPC codes. 2016 International Conference on Computing, Networking and Communications (ICNC). doi: https://doi.org/

10.1109/iccnc.2016.7440704

12. Hailes, P., Xu, L., Maunder, R. G., Al-Hashimi, B. M., Hanzo, L. (2016). A Survey of FPGA-Based LDPC Decoders. IEEE

Communications Surveys & Tutorials, 18 (2), 1098–1122. doi: https://doi.org/10.1109/comst.2015.2510381

13. Prompakdee, P., Phakphisut, W., Supnithi, P. (2011). Quasi Cyclic-LDPC codes based on PEG algorithm with maximized girth

property. 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS). doi: https://

doi.org/10.1109/ispacs.2011.6146165

14. Huang, Y., Cheng, Y., Zhang, Y., Han, H. (2010). Construction of non-binary quasi-cyclic LDPC codes based on PEG algorithm.

2010 IEEE 12th International Conference on Communication Technology. doi: https://doi.org/10.1109/icct.2010.5689251

Information and controlling system

53

15. Uchoa, A. G. D., Healy, C., de Lamare, R. C., Souza, R. D. (2012). Generalised Quasi-Cyclic LDPC codes based on Progressive Edge

Growth Techniques for block fading channels. 2012 International Symposium on Wireless Communication Systems (ISWCS). doi:

https://doi.org/10.1109/iswcs.2012.6328513

16. Zongwang Li, Vijaya Kumar, B. V. K. (2004). A class of good quasi-cyclic low-density parity check codes based on progressive edge

growth graph. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. doi: https://doi.org/

10.1109/acssc.2004.1399513

17. Lei, Y., Dong, M. (2017). An Efficient Construction Method for Quasi-Cyclic Low Density Parity Check Codes. IEEE Access, 5,

4606–4610. doi: https://doi.org/10.1109/access.2017.2678515

18. Jiang, X.-Q., Hai, H., Wang, H.-M., Lee, M. H. (2017). Constructing Large Girth QC Protograph LDPC Codes Based on PSD-PEG

Algorithm. IEEE Access, 5, 13489–13500. doi: https://doi.org/10.1109/access.2017.2688701

19. McGowan, J. A., Williamson, R. C. (2003). Loop removal from LDPC codes. Proceedings 2003 IEEE Information Theory Workshop

(Cat. No.03EX674). doi: https://doi.org/10.1109/itw.2003.1216737

20. Li, B., Wang, G., Yang, H. (2009). A new method of detecting cycles in Tanner graph of LDPC codes. 2009 International Conference

on Wireless Communications & Signal Processing. doi: https://doi.org/10.1109/wcsp.2009.5371660

21. Hu, P., Zhao, H. (2010). Improved method for detecting the short cycles of LDPC codes. 2010 IEEE International Conference on

Information Theory and Information Security. doi: https://doi.org/10.1109/icitis.2010.5689706

22. Karimi, M., Banihashemi, A. H. (2013). Message-Passing Algorithms for Counting Short Cycles in a Graph. IEEE Transactions on

Communications, 61 (2), 485–495. doi: https://doi.org/10.1109/tcomm.2012.100912.120503

23. Li, J., Lin, S., Abdel-Ghaffar, K. (2015). Improved message-passing algorithm for counting short cycles in bipartite graphs. 2015

IEEE International Symposium on Information Theory (ISIT). doi: https://doi.org/10.1109/isit.2015.7282488

24. Cho, S., Cheun, K., Yang, K. (2018). A Message-Passing Algorithm for Counting Short Cycles in Nonbinary LDPC Codes. 2018

IEEE International Symposium on Information Theory (ISIT). doi: https://doi.org/10.1109/isit.2018.8437844

25. Karimi, M., Banihashemi, A. H. (2012). Counting Short Cycles of Quasi Cyclic Protograph LDPC Codes. IEEE Communications

Letters, 16 (3), 400–403. doi: https://doi.org/10.1109/lcomm.2012.020212.112311

26. Su, Z., Qiu, Q., Zhou, H. (2016). Analysis and elimination of short cycles in LDPC convolutional codes. 2016 2nd IEEE International

Conference on Computer and Communications (ICCC). doi: https://doi.org/10.1109/compcomm.2016.7924880

27. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M. (2001). Progressive edge-growth Tanner graphs. GLOBECOM’01. IEEE Global

Telecommunications Conference (Cat. No.01CH37270). doi: https://doi.org/10.1109/glocom.2001.965567

28. MacKay, D. J. C. The Inference Group. Available at: http://www.inference.org.uk/is/

