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1. Introduction

Low-density parity-check codes are linear error-cor-
recting block codes, which are characterized by their sparse 
parity-check matrices (usually means the number of ones in 
such a matrix is below 1–2  % for LDPC codes) and are able 
to perform close to the Shannon limit [1, 2]. An example of 
such matrix can be found in Fig. 1 along with its graphical 
representation, a Tanner graph. They were first introduced 
in 1960 [3]. They were however impractical to implement at 
the time and were forgotten until they were independently 
reinvented in the 1990’s [1, 4, 5]. Their architecture is effi-
cient and supports parallelism in decoding, computational 
simplicity, and various code rates. They can also employ 
several principles used in turbo codes to achieve high er-
ror-correcting performance [1].

In Table 1, a list of abbreviations used in this paper can 
be found.

LDPC codes are used in a variety of applications, in-
cluding satellite communications, Deep Space Network, 

Digital Video Broadcasting standards (DVB-S2, DVB-C2, 
DVB-T2), IEEE 802.11, IEEE 802.16e (WiMAX), LTE 
networks [6]. For the best error-correcting performance, 
LDPC codes are usually decoded by iterative soft-deci-
sion algorithms, e. g. sum-product algorithm (SPA) and its 
variations like min-sum algorithm (MSA). There also exist 
layered decoding approaches (row-layered decoding and 
column-layered decoding). Hard-decision or soft-decision 
encoding can be used. LDPC codes are divided into two 
categories: regular and irregular. Regular LDPC codes have 
constant column and row weight of their parity-check ma-
trices (they have the same number of ones in every column 
and also the same number of ones in every row of the matrix). 
Column and row weight of an irregular LDPC code is not 
constant throughout the whole parity-check matrix [1, 7].

Progressive Edge-Growth (PEG) is an algorithm for 
computer-based design of random-structure LDPC codes. 
Its role is to generate a Tanner graph (a bipartite graph, 
which represents a parity-check matrix, as seen in Fig. 1) 
with as few short cycles as possible [7]. When looking at 
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structure LDPC (low-density parity-check) codes using 
Progressive Edge-Growth (PEG) algorithm and two 
proposed algorithms for removing short cycles (CB1 and 
CB2 algorithm; CB stands for Cycle Break).

Progressive Edge-Growth is an algorithm for 
computer-based design of random-structure LDPC 
codes, the role of which is to generate a Tanner graph (a 
bipartite graph, which represents a parity-check matrix 
of an error-correcting channel code) with as few short 
cycles as possible. Short cycles, especially the shortest 
ones with a length of 4 edges, in Tanner graphs of LDPC 
codes can degrade the performance of their decoding 
algorithm, because after certain number of decoding 
iterations, the information sent through its edges is no 
longer independent.

The main contribution of this paper is the unique 
approach to the process of removing short cycles in 
the form of CB2 algorithm, which erases edges from 
the code’s parity-check matrix without decreasing the 
minimum Hamming distance of the code. The two cycle-
removing algorithms can be used to improve the error-
correcting performance of PEG-generated (or any other) 
LDPC codes and achieved results are provided. All these 
algorithms were used to create a PEG LDPC code which 
rivals the best-known PEG-generated LDPC code with 
similar parameters provided by one of the founders of 
LDPC codes.

The methods for generating the mentioned error-
correcting codes are described along with simulations 
which compare the error-correcting performance of the 
original codes generated by the PEG algorithm, the PEG 
codes processed by either CB1 or CB2 algorithm and also 
external PEG code published by one of the founders of 
LDPC codes

Keywords: LDPC, low-density parity-check, PEG, 
progressive edge-growth, channel coding, Tanner graphs

UDC 681
DOI: 10.15587/1729-4061.2021.225852

Received date 17.05.2021

Accepted date 17.07.2021

Published date 31.08.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license



Information and controlling system

47

Fig. 1, two groups of nodes can be seen: the square-shaped 
nodes are called check nodes (CN) and the circle-shaped 
nodes are called variable nodes (VN; sometimes also called 
symbol nodes) [8]. A cycle is a path which consists of unique 
edges and also starts and ends in the same node (the length 
of the shortest possible cycle in a Tanner graph is 4 edges). 
Short cycles in Tanner graphs of LDPC codes can degrade 
the performance of their decoding algorithm, because after a 
certain number of decoding iterations, the information sent 
through its edges is no longer independent [9].

The proposed method of LDPC code construction consists 
of generating an LDPC code with the PEG algorithm and 
then using a loop-removing algorithm (either CB1 or CB2) to 
remove any excess short cycles from this LDPC code. Specific 
implementations of the PEG algorithm along with CB1 and 
CB2 loop-removing algorithms will be described below.

Table	1

List	of	Abbreviations

Abbreviation English meaning

BER Bit Error Rate

BI-AWGN Binary-Input Additive Gaussian White Noise

CB Cycle Break

CN Check Node

DVB-C Digital Video Broadcasting (Cable)

DVB-S Digital Video Broadcasting (Satellite)

DVB-T Digital Video Broadcasting (Terrestrial)

Eb/N0 Energy per Bit to Noise Power Spectral Density Ratio

IEEE Institute of Electrical and Electronics Engineers

LDPC Low-Density Parity-Check

LTE Long Term Evolution

MATLAB Matrix Laboratory

MSA Min-Sum Algorithm

PEG Progressive Edge-Growth

QC-LDPC Quasi-Cyclic Low-Density Parity-Check

SPA Sum-Product Algorithm

VN Variable Node

WiMAX Worldwide Interoperability for Microwave Access

2. Literature review and problem statement

LDPC codes created by the PEG algorithm are clas-
sified as random, because their parity-check matrices 
mostly lack structure, other than being a linear code [10]. 
Although LDPC codes constructed by this algorithm are 
among the best codes with large girth, their disadvantage 
is the high complexity of encoding and decoding, which is 
often too high for many hardware implementations [11, 12]. 
However, there exist LDPC codes with structured pari-
ty-check matrices. One type of these codes is called qua-
si-cyclic LDPC (QC-LDPC) codes. Their parity-check ma-
trices comprise several submatrices called circulants (every 
row in a circulant matrix is a cyclic shift of their previous 
row). This structure lowers their complexity and makes 
them much more hardware-friendly. Although PEG LDPC 
codes themselves are often impractical for hardware imple-
mentations, there exist several methods for construction of 
QC-LDPC codes with the use of the PEG algorithm (while 
retaining the advantages of QC-LDPC codes) [13–18], 
e. g. by generating each submatrix of the final parity-check 
matrix using the PEG algorithm. In [13], the construction 
of PEG-QC-LDPC codes (type of LDPC codes with the 
advantage of lower memory requirements) than PEG codes 
is described together with modifications to also maximize 
its girth properties. The paper [14] describes how to intro-
duce the quasi-cyclic property to non-binary LDPC codes 
based on the PEG algorithm, while retaining their good 
error-correcting performance (the authors of this paper 
state that the PEG algorithm is considered one of the 
most successful approaches for the construction of finite 
length LDPC codes), but it is concluded that this method 
requires further research because of short cycles which ap-
pear in smaller matrices. The paper [15] presents so-called 
QC-PEG-Root-Check-LDPC codes which perform well 
in block fading channels. The authors state that this is a 
unique approach because they have not found any similar 
publications which focus on these channel conditions. The 
paper [16] contains methods for constructing both regular 
and irregular quasi-cyclic LDPC codes with error-cor-
recting benefits of progressive edge-growth codes. The 
authors state that their proposed codes exhibit BER per-
formance comparable to random-structure LDPC codes. 
In [17], an optimized belief propagation based progressive 
edge-growth method for constructing QC-LDPC codes is 
proposed. Compared to PEG, this construction method 
improves decoding convergence by up to 11.7 % and in-
creases success probability by up to 10 times, according to 
the authors of the paper. The paper [18] introduces a per-
mutation shift determining kind of PEG algorithm used to 
construct QC-LDPC protograph codes. The advantage of 
this method is that it can construct both binary or non-bi-
nary codes. This variety of methods makes the PEG LDPC 
codes worthy of further research and is also a reason why 
generated codes mentioned in this paper were compared to 
other LDPC codes from external sources of the same class, 
e. g. with random structure of the parity-check matrix [1].

Various methods for the removal or detection of short 
loops in Tanner graphs were published. For example, in [19], 
a parity-check matrix is used to construct a so-called adja-
cency matrix, the purpose of which is detection of cycles. 
Removed edges are placed back into different places in the 
Tanner graph of the parity-check matrix. The paper [20] 
uses a transformed parity-check matrix to create a relative 

Fig.	1.	A	parity-check	matrix	and	its	Tanner	graph:		
a	–	parity-check	matrix;	b	–	Tanner	graph
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matrix of its Tanner graph, which in turn is used to detect 
cycles in the original parity-check matrix. The validity of the 
method is shown on one example LDPC code in the paper. 
Combinational analysis of the parity-check matrix is used as 
a method for loop detection in [21]. In [22–24], a modified 
message-passing algorithm, which is meant for decoding 
of LDPC codes, is used to detect the short cycles. This 
approach has basically the same complexity as the underly-
ing decoding algorithm. The following method in [25] was 
specifically designed for QC-LDPC codes: eigenvalues of a 
so-called directed edge matrix based on the code’s Tanner 
graph are used to count loops in the matrix. The next meth-
od for short cycle analysis and elimination was created with 
convolutional LDPC codes in mind and is described in [26]. 
It is based on the graphical structure of short cycles and uses 
a polynomial syndrome former matrix.

After studying various methods of short cycle detection 
and elimination, we have decided to try a more direct ap-
proach: detection of short cycles directly from the binary 
parity-check matrix. The second realization after studying 
the mentioned publications was that there are no methods 
(at least according to our research) of short cycle elimina-
tion which take into account how the minimum Hamming 
distance of the code is affected by the removal of each edge 
from its Tanner graph.

3. The aim and objectives of the study

The aim of this study was to develop a new methodology 
of LDPC code construction based on opportunities realized 
after studying other published methods of random-structure 
LDPC code construction, namely finding out how intro-
ducing various randomizations into the Progressive Edge-
Growth process will affect its output LDPC codes in com-
bination with detection of short cycles directly from  LDPC 
code’s binary parity-check matrix and a unique approach of 
short-cycle elimination based on tracking minimum Ham-
ming distance of the code after erasure of each edge from its 
parity-check matrix.

The following objectives of our investigation have been 
set to achieve the setting goals:

– select simulation parameters and properties of LDPC 
codes for these simulations, which are related to the code 
chosen as our base for comparison;

– generate LDPC codes of various densities using im-
plemented PEG algorithms. Examine how removing short 
cycles of different length from these codes’ parity-check 
matrices affects their error-correcting performance. Deter-
mine the best codes from the spectrum of generated LDPC 
codes and compare their error-correcting performance to 
each other;

– compare the error-correcting performance of PEG 
codes with and without their short cycles removed. Deter-
mine the best use cases for each proposed loop-removing 
algorithm and pinpoint differences in their output LDPC 
codes;

– choose one best-performing LDPC code from previ-
ous simulations and test its performance against the best 
known code of the same type (chosen as a base for compar-
isons at the start of the study). Verify the validity of the 
proposed methodology and competitiveness of generated 
codes in comparison with the best random-structure regu-
lar LDPC codes.

4. Materials and methods

4. 1. Implementations of Progressive Edge-Growth 
algorithm

Four versions of the PEG algorithm were used in 
simulations. LDPC codes generated by these algorithms 
(PEG 1–4) have shown no difference in their error-cor-
recting performance, but all four algorithms were still used 
to generate codes for the simulations. This is because after 
processing these codes with the proposed loop-removing al-
gorithms, the error-correcting performance of the resulting 
codes tends to be different.

Progressive Edge-Growth algorithm needs these input 
data:

– number of rows in the desired parity-check matrix 
(=number of check nodes in its Tanner graph);

– number of columns in the desired parity-check matrix 
(=number of variable nodes in its Tanner graph);

– number of ones in every column of the desired pari-
ty-check matrix (degree distribution; degree of every vari-
able node in its Tanner graph);

The output of the PEG algorithm is a parity-check ma-
trix based on the input parameters. The algorithm focuses on 
one variable node at a time [27]. It chooses one node, assigns 
all of its connections to check nodes (based on the degree 
distribution on input) in a way that creates the least amount 
of short cycles in the final parity-check matrix and then 
moves on to another variable node and repeats the process 
until each variable node has all its connections assigned. It 
starts with the lowest-degree VNs and works its way to the 
highest-degree ones.

The basic PEG algorithm works in the following way:
1. The first connections are made to the (yet) zero-de-

gree CNs.
2. When there are no more zero-degree CNs left, the con-

nections are made to the CNs, which are unreachable from 
the current VN, favoring the lowest-degree CNs.

3. If every CN can be reached from the current VN, a 
connection is made to the most distant CN (the one with the 
most edges on the path leading to it).

Lowest-degree nodes are most susceptible to decoding 
errors. Therefore, the PEG algorithm tries to make these 
nodes part of the longest cycles in the created graph. The 
longer the cycle, the longer the information flowing through 
remains independent during decoding (not being processed 
by the same nodes as often), which in turn makes the nodes 
it connects less susceptible to decoding errors.

The proposed implementation of the PEG algorithm in 
the MATLAB programming environment needs four input 
values. Three of them were described above, the fourth re-
quired input value is the weight of CN degrees in decision 
making (relative to the distance between starting VN and 
the current CN). At the point in time when every CN is 
accessible from the current VN, the next unassigned edge 
should be connected to a CN which is the furthest away pos-
sible from this VN and which also has a low degree. Because 
of this, the algorithm determines the length of the shortest 
path to each and every CN from the currently selected VN. 
The fourth input parameter in this implementation of the 
PEG algorithm determines whether the degree of a CN has 
the same weight in the choice of CN as its distance from the 
current VN.

The proposed implementation of the PEG algorithm has 
four versions with various degrees of added randomization 
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in certain operations. During the edge-growth process, 
there may be situations when several lowest-degree VNs 
with the same priority can be chosen as the next node to 
start distributing edges from. Likewise, it happens during 
the edge-growth process that there are several CNs with the 
same priority to connect the next edge to. When there are 
several VNs or CNs with the same selection priority during 
the process, the selection can be done on the first-come, first-
serve basis or it can be randomized. By choosing different 
combinations of these selection methods for CNs and VNs, 
four versions of proposed PEG algorithm were created: 

PEG 1: 
– selection of a random VN with the same degree;
– selection of a random CN with the same priority;
PEG 2:
– selection of the first VN with the same degree;
– selection of a random CN with the same priority;
PEG 3:
– selection of a random VN with the same degree;
– selection of the first CN with the same priority;
PEG 4:
– selection of the first VN with the same degree;
– selection of the first CN with the same priority.
Matrices generated by the PEG 4 algorithm possess 

the most visible structure. Algorithms PEG 3 and PEG 2 
add more randomization to the process and binary matri-
ces created by the PEG 1 algorithm have the most random 
placements of ones. Although the structure of these matri-
ces is visibly different, their error-correcting performance 
proved to be identical (any differences were statistically 
insignificant). Even though this was the case, all four PEG 
algorithm versions were used in simulations because after 
processing their codes by loop-removal algorithms (they 
will be described below), the resulting codes had different 
error-correcting capabilities in some cases.

4. 2. Algorithms for Removal of Short Cycles in Tan-
ner graphs

Degradation of LDPC decoding performance led to the 
creation of two proposed algorithms which remove short cy-
cles from Tanner graphs (provided in the form of a matrix). 
These algorithms will be referred to as CB1 and CB2 (which 
stands for Cycle Break). The algorithms need two inputs: a 
parity-check matrix (or a binary matrix in general) and a 
maximum length of cycles to remove – valid value is an even 
integer equal or larger than 4. If the value of this parameter 
equals 6, the algorithm will only remove cycles of length 4 
and 6. If the parameter equals 8, the algorithm will only 
remove cycles of length 4, 6 and 8.

Compared to other loop-removing algorithms, CB1 and 
CB2 search for short cycles directly in the provided binary 
parity-check matrix. They directly scan its ones and zeroes, 
search for every possible path based on their patterns and 
regularly check, whether the current path does not create 
cycles of specified lengths (the input parameter: maximum 
length of cycles to remove).

4. 2. 1. Description of CB1 algorithm for removal of 
short cycles

At first, the CB1 algorithm chooses a check node and 
progressively scans every unique path (in the Tanner 
graph of the input matrix) that originates in the said 
check node while taking note of each cycle it finds along 

the way. After this analysis, the program has a complete 
list of every cycle (of length given by the “maximum 
length” input parameter or shorter) which intersects the 
currently chosen check node. The next step is to create a 
list of all edges found in these listed cycles, the edges be-
ing ordered by the frequency of their occurrence in the list 
of cycles. The goal of the CB1 algorithm is to remove all 
possible cycles of specified length while not making any 
check node isolated in the process (degree of a node can-
not get lower than 2). When an edge is removed (meaning 
when one is removed from the parity-check matrix), all 
the cycles this edge was a part of are removed from the 
list of found cycles. The process of edge erasure continues 
(by investigating the next most frequent edge) until all 
the listed cycles are removed or until the only edges left 
to erase are those which would make a check node isolated 
by their erasure. Afterwards, the program chooses an-
other check node and repeats the aforementioned process 
(again makes a list of every cycle leading through it and 
tries to remove them) until every check node is analyzed 
and left for another one.

4. 2. 2. Description of CB2 algorithm for removal of 
short cycles

Based on shortcomings of the CB1 algorithm (in some 
cases, the stopping criterion was too loose; the algorithm 
removed too many ones from parity-check matrices and 
severely degraded performance of the LDPC codes), we 
designed and implemented the CB2 algorithm – which 
works in similar ways to the CB1 algorithm (it does not 
isolate check nodes in the process of removing cycles), 
but before removing a cycle, it also takes into consider-
ation the changes to the minimum Hamming distance of 
the current code, which would be caused by the removal. 
Same as CB1, CB2 also chooses an anchor check node and 
locates every cycle (of specified lengths) leading through 
this node and sorts edges of these cycles based on the most 
frequent occurrence in this group of cycles. But it only 
removes an edge in the case when it does not result in a 
drop of the minimum Hamming distance of the code (while 
also not making nodes isolated). Calculations of minimum 
Hamming distance makes the CB2 algorithm much more 
computationally expensive compared to the CB1 algorithm 
because this distance needs to be frequently recalculated 
during the whole process. After finishing work with one 
CN, it chooses a different one, etc.

We chose minimum Hamming distance as a criterion 
in the CB2 algorithm, because it is one of the basic param-
eters of error-correcting codes in the coding theory and 
reflects their error detection and correction capabilities. 
The higher the minimum Hamming distance, the more 
errors can be corrected in a given code word. In our case, 
the estimation of minimum Hamming distance was done 
by rearranging the parity-check matrix of an LDPC code 
to the co-called row-echelon form, from which the gener-
ator matrix of the LDPC code was calculated. In the next 
step, a row with the lowest Hamming weight needs to be 
found in this generator matrix. The Hamming weight of 
this row is used as an estimation of the LDPC code’s min-
imum Hamming distance.

Both loop-removing algorithms were successfully test-
ed with parity-check matrices of different sizes, up to 
8,000×10,000.
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5. Results of the study of LDPC construction and 
performance-enhancing algorithms

5. 1. Simulation Parameters
Several series of computer simulations were conducted 

taking advantage of high-performance computing and us-
ing a network of computer workstations (computer cluster) 
available for research purposes in the University of Žilina to 
test the error-correcting performance of LDPC codes creat-
ed by the mentioned PEG algorithms with and without also 
utilizing the proposed algorithms for the removal of short 
cycles (CB1, CB2) with various sets of parameters. Simu-
lations were run and algorithms were implemented using 
MATLAB programming environment and C programming 
language.

LDPC codes for these simulations were generated by all 
four versions of the proposed PEG1-4 algorithms with multi-
ple densities of parity-check matrices (Each matrix generat-
ed had a constant VN degree distribution of 2, 3, 4, 5, 6 and 
9, which are equal to the number of ones in every column of 
the matrix, also called column weight) and dimensions of 
252×504 (the matrix size was chosen so the error-correcting 
performance of tested codes can be compared to the best 
known regular PEG code with these parameters according to 
one of the founders of LDPC codes [28]). Every LDPC code 
was tested in a binary-input additive white Gaussian noise 
channel (BI-AWGN) with a signal-to-noise ratio (Eb/N0)  
range from –2 dB to 10 dB with a graph data point simulat-
ed each 0.5 dB (total 25 data points for each code). In the  
Eb/N0 range of –2÷1 dB (first 7 graph data points), 105 bits 
were encoded, exposed to BI-AWGN and decoded for each 
data point. In the Eb/N0 range of 1.5÷10 dB (last 18 graph 
data points), 108 random data bits were processed in the 
same way for each data point (an identical binary input se-
quence was used in each simulation).

Each of these matrices (every PEG algorithm and all 
densities) had their error-correcting performance tested in 
simulations, but each of these matrices was also processed by 
both CB1 and CB2 algorithms for the removal of short cy-
cles. Each matrix was processed by both of these algorithms 
several times, each time with different of the parameter 
“maximum length of cycles to remove” (used values for both 
algorithms: 4, 6 and 8). So, each of the original matrices gen-
erated by the PEG algorithms spawned several new codes, 
all of which had their error-correcting capabilities tested 
with parameters described above and below.

Input data bit sequences were encoded using generator 
matrices retroactively calculated from each parity-check 
matrix. Simulated LDPC decoder uses a custom implemen-
tation of the box-plus log-SPA, the sum-product algorithm 
working in logarithmic domain with the box-plus approxi-
mation used in the CN processors [1]. The number of decod-
ing iterations was set to 20.

5. 2. Comparison of the best CB1-processed codes 
with different density

In Fig. 2, the error-correcting performance of selected 
best codes processed by the CB1 loop-removing algorithm 
is compared. The LDPC codes are grouped into these cat-
egories based on their column weight (or column weight of 
the PEG code they originated from). In the legend of Fig. 2, 
the number between two slashes (e. g. /2/) represents the 
column weight of the original PEG matrix the specific code 

is related to and the number in brackets (e.g. CB1(6) ) rep-
resents the maximum length of cycles the CB1 algorithm 
was set up to remove. The best codes were chosen depending 
on how soon they were able to reach the lowest BER in the 
simulated ranges (some codes had better error-correcting 
performance in lower Eb/N0 ranges but hit an error floor too 
early to be considered the best code in their category).

The best code from this graph is the PEG2-CB1 code 
which originated from the PEG2 code with a column weight 
of 3 which had its cycles of lengths 4 and 6 removed by the 
CB1 algorithm. In marginal cases, the PEG codes with col-
umn weight of 2 and 9 (and their related versions processed 
by the CB1 algorithm) have shown the worst performance in 
the higher Eb/N0 ranges, parity-check matrices being either 
too sparse or too dense, respectively.

5. 3. Comparison of CB1 and CB2 codes to each other 
and to the PEG codes they originate from

The CB1 algorithm managed to improve the perfor-
mance of the PEG codes which the CB2 algorithm left un-
touched, namely the PEG codes with sparser parity-check 
matrices, specifically with a constant VN degree of 2 and 3 
(CB1: looser condition before edge erasure; more aggressive 
erasure of edges). CB2 detected the same groups of cycles 
as CB1 but did not erase any edges because of its stricter 
pre-erasure criterion. In Fig. 3, an example of error-correct-
ing performance comparison between a code generated by 
the PEG 4 algorithm and its version with cycles of length 4 
and 6 removed by the CB1 algorithm (marked as PEG4-
CB1) can be seen. An improvement in performance is visible.

In simulations, PEG codes generated with denser pari-
ty-check matrices (constant column weight of 4, 5, 6 and 9), 
the CB1 algorithm removed too many edges in most cases 
and degraded error-correcting the performance of these 
codes overall. On the other hand, the CB2 algorithm man-
aged to improve performance of codes in these cases. In 
Fig. 4, an example of such an improvement can be seen. 

The parity-check matrix from Fig. 4 was generated by 
the PEG 1 algorithm with a constant VN degree of 5 (the 
code marked PEG). This matrix was then used as an input 
for both CB1 and CB2 algorithms (with a maximum length 
of cycles to remove set to 6, in case from Fig. 4). The CB1 
algorithm significantly degraded the error-correcting ca-

Fig.	2.	Best	codes	processed	by	the	CB1	algorithm	per	density
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pabilities of the original PEG code while CB2 managed to 
improve them. The denser the generated matrix (higher VN 
degree), the higher the improvement achieved by the remov-
al of short cycles by the CB2 algorithm.

5. 4. Comparison of the best LDPC code generated by 
the proposed methods to an external code with similar 
parameters

The overall best code acquired from all described simula-
tions is a 252×504 code with its parity-check matrix generated 
by the PEG2 algorithm with constant column weight of 3 and 
then processed by the CB1 loop-removing algorithm set up to 
remove short cycles, specifically of length 4 and 6. Length of 
data word (252 bits) and length of code word (504 bits) were 
chosen so the codes can be directly compared to codes from 
external sources.

A PEG-generated LDPC code declared by a founder of 
LDPC codes [4, 5] as being the best known regular Gal-
lager (504, 252) code was chosen as a basis for comparison 
to the best code from conducted simulations (Fig. 5). The 
parity-check matrix was taken directly from [28] and its 
error-correcting performance was tested with the same soft-

ware the proposed LDPC codes were tested with, under the 
exact same conditions.

As can be observed in Fig. 5, the performance of both 
compared codes is very similar: none of the codes hit any er-
ror floor within the simulated boundaries and stay very close 
in terms of BER, which confirms the validity of the proposed 
methodology and algorithms.

6. Discussion of the research results of LDPC 
construction and performance-enhancing algorithms

Two algorithms for the removal of short cycles in Tanner 
graphs of LDPC codes, CB1 and CB2 algorithms, were pro-
posed in Section 4 along with four implementations of the 
Progressive Edge-Growth algorithm PEG1-4, which were 
mainly used for generating input matrices for CB1 and CB2 
algorithms. The results of simulations conducted to measure 
the error-correcting performance of random-structure LDPC 
codes generated by combining the mentioned algorithms were 
shown and analyzed in Section 5. Each of the two loop-remov-
ing algorithms is suitable for use in specific situations, namely: 
the CB1 algorithm removes cycles more aggressively because 
of its looser pre-removal deciding criterion and managed to 
improve the error-correcting performance of PEG codes with 
sparser parity-check matrices (constant column weight: 2, 3; 
results can be seen in Fig. 3), but degraded the performance 
of PEG codes with denser parity-check matrices (constant 
column weight: 4÷9; an example of this can be seen in Fig. 4) 
in most cases. Because of its stricter pre-removal criterion, 
the CB2 algorithm managed to improve the performance of 
the codes with denser matrices (as seen in Fig. 4) in most 
cases but did not remove any cycles in cases of the codes 
with sparser matrices, making the CB1 algorithm the better 
choice in these particular cases. The proposed custom algo-
rithms and described methodology were verified by creating 
a PEG LDPC code with similar error-correcting performance 
to a best-known PEG-generated LDPC code with similar 
parameters provided by one of the founders of LDPC codes 
in [28]. A comparison of these codes can be found in Fig. 5. 
Parameters of the code and methods for generating this code 
are described throughout the paper.

Fig.	3.	Error-correcting	performance	of	codes	with	column	
weight	of	3

Fig.	4.	Error-correcting	performance	comparison	before	
and	after	removal	of	short	cycles	by	both	CB1	and	CB2	

algorithms

Fig.	5.	Comparison	to	the	best-known	PEG-generated	LDPC	
code	with	these	parameters	according	to	D.	MacKay
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The mentioned simulation results and comparisons show 
that the proposed methodology and its unique approach to 
code construction can generate LDPC codes which compete 
with the best codes in the same category. The paper provides 
a set of several methods and algorithms which can be use-
ful together as a methodology of code construction (other 
publications usually just focus on a single part of the whole 
process; related references can be found in Section 2). Or 
they can be used separately for partial tasks too, e.g. PEG 
code generation and cycle detection and/or elimination in 
existing LDPC codes or general Tanner graphs.

As a part of this study, a wide spectrum of codes was 
generated, analyzed, and compared. But parameters of each 
one of these codes were kept within certain constants (e.g. 
the dimensions of 252×504) defined by the external code 
chosen as a base for comparison [28]. The process of simu-
lating operations of each of these codes took several months 
and a lot of processing power. Future efforts could lead to a 
choice of a vastly different code as a basis for comparison, 
e.g. an irregular LDPC code with different code rate and 
dimensions or to the application of methods from [13–18] to 
construct QC-LDPC codes using the algorithms described 
in this paper. These structured codes would be better suited 
for hardware implementation.

7. Conclusions

1. LDPC codes for the simulations were generated by all 
four versions of the PEG1-4 algorithms with multiple densi-
ties of parity-check matrices, where each matrix generated 

had a constant VN degree distribution of 2, 3, 4, 5, 6 and 9. The 
chosen matrix dimensions were 252×504 so the error-cor-
recting performance of tested codes can be compared to the 
best known regular PEG code with these parameters.

2. The best code from the compared set of CB1-generat-
ed LDPC codes was the PEG2-CB1 code which originated 
from the PEG2 code with a column weight of 3 which had 
its cycles of lengths 4 and 6 removed by the CB1 algorithm. 

3. The results of our simulations and comparisons have 
shown that each of the proposed CB1 and CB2 algorithms is 
suitable for different use cases. The CB1 algorithm produces 
better codes in cases of codes with sparser parity-check ma-
trices and the CB2 algorithm is a better choice when improve-
ment of a code with the denser parity-check matrix is desired.

4. The methodology of LDPC code construction using cus-
tom versions of the PEG algorithm and two cycle-removing CB 
algorithms described in this paper was used to create an LDPC 
code of specific parameters and compared to the best known 
code with these parameters listed in the database of codes pro-
vided in [28] by one of the founders of LDPC codes. The results 
of the described simulations and comparisons of these codes 
show that our methodology can produce error-correcting codes 
which rival best known codes in their class.
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