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The transportation problem is well known and has very important 
applications. For this well-researched model, there are very efficient 
approaches for solving it that are available. These approaches include for-
mulating the transportation problem as a linear program and then using the 
efficient methods such as the simplex method or interior point algorithms.

The Hungarian method is another efficient method for solving both the 
assignment model and the general transportation model. An assignment 
problem is a special case of the transportation model in which all supply 
and demand points are 1. Every transportation problem can be convert-
ed into an assignment problem since rows and columns can be split so that 
each supply and each demand point is 1.

The transportation simplex method is another method that is also used 
to solve the general transportation problem. This method is also called the 
modified distribution method (MODI). To use this approach, a starting 
solution is required and the closer the starting solution to the optimal solu-
tion, the fewer the iterations that are required to reach optimality.

The fourth method for transportation models is the network simplex 
method, which is the fastest so far. Unfortunately, all these approaches for 
transportation models are serial in nature and are very difficult to paral-
lelize, which makes it difficult to efficiently use the available massively par-
allel technology. There is a need for an efficient approach for the transporta-
tion problem, which is easily parallelizable. This paper presents a See-Saw 
approach for solving the general transportation problem. This is an extension 
of the See-Saw approach for solving the assignment problem. The See-Saw 
moves can be done independently, which makes the approach proposed in this 
paper more promising than the available methods for transportation models
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1. Introduction

The general transportation problem is a well-researched 
model and there are very efficient approaches for solving this 
important problem that are available. These approaches include 
formulating the transportation problem as a linear program and 
then using the efficient methods such as the simplex method or 
interior point algorithms. The Hungarian method is another 
efficient method for the general transportation problem and 
the third one is the transportation simplex method. The fourth 
one is the network simplex method, which is the fastest so far. 
Unfortunately, all these approaches are serial in nature and are 
very difficult to parallelize, which makes it difficult to efficient-
ly use the available massively parallel technology [1]. There is 
a need for an efficient approach for the transportation problem, 
which is easily parallelizable. This paper presents a See-Saw 
approach for solving the general transportation problem. This 
is an extension of the See-Saw approach for solving the as-
signment problem [2]. The See-Saw moves can be done inde-
pendently, which makes the approach proposed in this paper 
more promising than the available methods. The transportation 
problem has applications in production planning, telecommu-
nication, scheduling and military operations [3].

2. Literature review and problem statement

The method presented in the paper [2] has the weakness 
that it can only solve the transportation problem when both 

supply and demand are exactly one. There is a need for a method 
that can solve a transportation problem with any size of supply 
or any demand. The general transportation can be formulated as 
a linear programming (LP) model. For this model, there are two 
main efficient algorithms, which are the simplex method and 
the interior point algorithm. The simplex method has proved to 
be effective for solving LPs even though it has an exponential 
worst case complexity and is affected by degeneracy [4]. Trans-
portation models are highly degenerate problems. There are 
variants of the simplex method where the columns are pivoted 
and other variants where rows are pivoted. The simplex method 
follows the boundary of the convex region in its search process 
and this method is weak for very large LPs. On the other hand, 
the interior point algorithms start from the interior of the con-
vex region and move towards the optimal solution, which lies 
at the boundary of the feasible region [5]. The interior point 
algorithms are not affected by degeneracy and the number of 
iterations required to reach optimality is not affected by the size 
of the problem. Interior point algorithms are good for large LPs.

The Hungarian method is another efficient method for 
solving both the assignment model and the general transporta-
tion version [6]. An assignment problem is a special case of the 
transportation model in which all supply and demand points 
are 1. Every transportation problem can be converted into an 
assignment problem since rows and columns can be split so that 
each supply and each demand point is 1.

The transportation simplex method is also used to solve the 
general transportation problem. This method is also called the 
modified distribution method (MODI). To use this approach, 
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a starting solution is required and the closer the starting 
solution to the optimal solution, the fewer the iterations that 
are required to reach optimality. To move from the starting 
solution towards the optimal solution, a Lagrangian function 
of the formulated LP is constructed. The Lagrangian multi-
pliers are calculated at every stage until optimality is verified. 
There are three main methods that are used to find starting 
solutions. These are the North-West Corner (NWC) method, 
Least Cost (LM) method and Vogel’s Approximation (VA) 
method [7]. In addition to these three main approximating 
methods, there are heuristics such as the particle swarm [8] 
that can be also used to accurately find a starting solution. 

The network simplex method is currently the most effi-
cient method for solving the general transportation problem. 
This method relies on converting the transportation into 
a minimum cost flow problem and then solving the prob-
lem [9]. This method is approximately 300 times faster than 
the transportation simplex method.

Another important feature of the transportation problem 
is that its cost matrix is unimodular [10]. This implies that its 
optimal solution is integer and this makes it easier to solve 
than the general linear integer problem. 

The main weakness of all these known approaches is that 
they are serial in nature. In other words, these methods are not 
easily parallelizable. There is a need to come up with a method 
that is easily parallelizable, so as to take advantage of the on-
going developments in parallel processing. 

3. The aim and objectives of the study

The aim of the study is to develop a method for the trans-
portation problem, which is parallelizable. 

To achieve this aim, the following objectives are ac
complished:

– to explain the See-Saw rule;
– to apply the See-Saw rule that was developed for the 

assignment problem to the general transportation problem;
– to illustrate the proposed approach by a numerical 

illustration.

4. Materials and methods

In order to come up with a good method for the general 
transportation model, five known approaches for the general 
transportation problem were analyzed. These are the linear 
programming method, Hungarian method, transportation 
simplex method, network simplex method and See-Saw me
thod for assignment models. The first four of these methods  
are serial in nature and are not easy to parallelize. The See-
Saw method for assignment models was modified so that it 
can also solve the general transportation problem. This is 
a theoretical method and is easily parallelizable.

In this paper, the general transportation problem is given 
as shown in Table 1.

Table 1
Transportation problem

с11 с12 … с1n S1

с21 с22 … С2n S2

… … … … …
сm1 сm2 … сmn Sm

D1 D2 … Dn T

Where cij is the cost of supplying from source point Si  
to demand point Dj.

T = (S1+S2+…+Sm) = (D1+D2+…+Dn).

A transportation problem is called a balanced transpor-
tation problem if the total supply is equal to total demand, 
which is in this case equal to T. Any unbalanced transpor-
tation problem can be balanced by adding either a dummy 
column or dummy row. 

Weakness of the available approaches for the transporta-
tion model.

The available approaches for the transportation problem 
are linear programming, Hungarian method, MODI and the 
network simplex method. The main challenge of these algo-
rithms is that they are all serial in nature. These algorithms 
are very difficult to parallelize thus we cannot take advantage 
of the available massively parallel computing technology. 
There is a need for a method for the transportation models, 
which is easy to parallelize and take advantage of the conti
nuous developments in parallel computing. 

See-Saw algorithm.
The algorithm is based on the See-Saw game whereby 

two people sit at the ends of a long plank, which is balanced 
in the middle on a fixed support. When one person goes down 
the other goes up and vice versa. An important feature of this 
game is that both individuals cannot go up or down at the 
same time. This approach is not new and was proposed for the 
assignment model. In this paper, we slightly modify it so that 
it also solves the general transportation problem. 

5. Results of the development of the heuristic

5. 1. Solution methods
There are efficient methods that are available for the 

transportation model. The efficient approaches include mo
deling as a linear programming problem, Hungarian method, 
transportation simplex method and network simplex method.

5. 1. 1. Linear programming
The transportation problem given in Table 1 can be mo

deled as a linear programming model given in (1):

Z c x c x c xRELAX mn mn= + + +Minimize 11 11 12 12 ... ,

Subject to:

x x x Sn11 12 1 1+ + + =... ,

x x x Sn21 22 2 2+ + + =... ,
…
x x x Sm m mn m1 2+ + + =... , 	 (1)

x x x Dm11 21 1 1+ + + =... ,  

x x xm12 22 2 1+ + + =... ,
…
x x x Dm m mn m1 2+ + + =... .

xij ≥ 0.

This can be solved efficiently using interior point algo-
rithms or some variants of the simplex method. The optimal 
solution of this linear programming model is guaranteed to be 
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integer because its coefficient matrix is unimodular. In other 
words, this coefficient matrix has at most two nonzero (1s) 
in all its columns.

5. 1. 2. Hungarian method
The Hungarian method was developed from two Hunga

rian theorems. The Hungarian method is not affected by de-
generacy. This method is centered on the fact that subtract-
ing or adding a constant to a row or column of Table 1 does 
not change the optimal solution. This is possible if Table 1 is 
balanced as given in (2):

D D D S S S S Dn m1 2 1 2+ + + = + + + = =... ... . 	 (2)

If the table is not balanced, then it can be balanced by 
the addition of a dummy column or dummy row. Let pi be  
a constant subtracted from row i and qj be a constant sub-
tracted from column j. Thus, the cost element cij changes  
to cij as given in (3):

c c p qij ij i j= − − . 	 (3)

Thus, the total cost can be explained as follows:

Total Cost =


c x c p q xij ij
ji

ij i j ij
ji

∑∑ ∑∑= − −( ) ;

Total Cost = − ( ) − ( )∑∑ ∑ ∑c x p qij ij
ji

i
i

j
j

1 1 ;

Total Cost constant.= −∑∑ c xij ij
ji

	 (4)

The Hungarian method can solve both the assignment 
model and the general transportation model. The assignment 
model is a special transportation model in which all supplies 
and all demands are equal to 1. In addition, every transpor-
tation model can be expressed as an assignment problem by 
splitting all rows and all columns so that the amounts de-
manded and supplies are all equal to 1.

5. 1. 3. Transportation simplex method
The transportation simplex method is also called modi-

fied distribution method (MODI) and relies on the strategy 
of approximating the solution to the transportation problem 
and improving it until it is optimal. The transportation model 
given in (1) has equality constraints and its Lagrangian func-
tion (L) can be constructed as given in (5):

L c x u x v xij ij
j

m

i

n

j ij
j

n

i ij
i

n

= + −






+ −





==

∑∑ ∑ ∑
11

1 1 ,	 (5)

where ui and vj are Lagrangian multipliers and the optimality 
conditions are as given in (6), (7):

∂
∂

= − =∑L
u

x
i

ij
i

n

1 0.	 (6)

∂
∂

= − =∑L
v

x
j

ij
j

n

1 0. 	 (7)

For this method to be efficient, the approximated starting 
solution must be near optimal. There are three main methods 
that are used to find the starting solution. These are North 
West Corner (NWC) method, Least Cost (LC) method and 
Vogel’s Approximation (VA) method. 

5. 1. 4. Network simplex method
This is a special-purpose simplex method, which is much 

more efficient than the ordinary simplex method. In this me
thod, the transportation problem is first modeled as a mini-
mum cost flow problem. At each stage of the task, it is solved as 
a minimum spanning tree resulting in very fast computations.

5. 1. 5. See-Saw rule for assignment models
To apply the See-Saw rule that was developed for the 

assignment problem to the general transportation problem.
The assignment rule has special features that make it easy 

to apply the See-Saw rule. In an assignment model, there is 
exactly one allocation in every column and when considering 
two columns, a movement up in one column implies a move-
ment down in the other column and vice versa. In the general 
transportation model, there is more than one allocation in the 
same column. An example of an allocation in an assignment 
model is given in Table 2.

Table 2

Example of an allocation in an assignment model

21 17[1] 7 19 48 27 1

129 49 5[1] 65 36 25 1

89 33 39 46 30[1] 39 1

5 6 7 3[1] 2 3 1

64[1] 65 9 87 56 83 1

51 125 5 59 92 45[1] 1

1 1 1 1 1 1 6

Note that there is at least one allocation in every column 
and at least one allocation in every row.

5. 2. General transportation model
In the general transportation model, there is more than 

one allocation in the same column. The See-Saw moves for an 
assignment model are simple. In other words, there is a single 
See-Saw move for every pair of columns. For a transportation 
model, there is more than one allocation in a single column. 
An example of an allocation in the general transportation 
problem is given in Table 3.

Table 3

Example of an allocation in the general transportation model

23[10] 20 10 22 51 30 10

132[10] 52[80] 8[110] 68[30] 39[60] 28 290

92 35 42 49 33[5] 42 5

8 9 10 6 5[105] 5[90] 195

20 80 110 30 170 90 500

Note that there are 2 allocations in the first column and 
3 allocations in the fifth column. For every pair of columns that 
involve the first column, we have at least 2 See-Saw moves.

5. 2. 1. See-Saw Moves
In a See-Saw move, two columns are paired. In these two 

paired columns, the allocations in the two columns are deter-
mined. A See-Saw move of the first allocation in the first column 
with all the allocations in the other paired column is done. The 
profit or cost of the See-Move is noted. The process is repeated 
on all other columns and the most profitable See-Saw move is se-
lected. Given the element (2i) in column i paired with column j,  
we can have 3 possible See-Saw moves as given in Fig. 1–3.
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In Fig. 3, the movement is from cell 2i to 7i in column i 
and from cell 7j to 2ij in the other column j.

5. 2. 2. Profitability
A See-Saw move is profitable if the cost before the move 

is bigger than the cost after the move. From Table 3, the in-
equalities (8), (9) can be drawn.

Profitable See-Saw move:

c c c ci
i

j
j

j
j

j
j

2 2 1 1 1 1 2 2α α α α  +   >   +   . 	 (8)

Costly See-Saw move:

c c c ci
i

j
j

j
j

j
j

2 2 1 1 1 1 2 2α α α α  +   <   +   . 	 (9)

Neither profitable nor costly:

c c c ci
i

j
j

j
j

j
j

2 2 1 1 1 1 2 2α α α α  +   =   +   . 	 (10)

The See-Saw move given in (10) is neither costly nor 
profitable. This move is important in determining alternate 
solutions.

Simplifying the See-Saw move.
In a See-Saw move, the move is profitable if the cost of 

keeping quantities in their current position is higher than 
the cost of keeping them at new positions. In other words, we 
can easily determine if the See-Saw move is profitable or not 
without the full computation of (8). Suppose we are making 
the See-Saw move as given in Fig. 4.

The paired columns are i and j. Profitability in a See-Saw 
move can be determined even if the amount being moved is 
not known.

c c c cki i kj j− > −
 

, 	 (11)

i.e.

c c c cki j kj i+ > +
 

. 	 (12)

 

 

 

с1i 1 1[α ]jjc  

2 2[α ]i
ic  с2j 

с3i 3 3[α ]j
jc  

с4i с4j 
с5i с5j  

6 6[α ]i
ic  с6j 

с7i 7 7[α ]jc  
… … 

[α ]i
mi mc  сmj 

Fig. 1. See-Saw move (a)

Fig. 2. See-Saw move (b )

Fig. 3. See-Saw move (c )
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mi mc  сmj 
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The expression in (12) is made up of cross sums and this 
makes the See-Saw moves very easy to compute. The See-
Saw moves are made up of additions and subtractions only. If

c c c cki j kj i+ = +
 

. 	 (13)

Then there exists an alternate solution giving the same 
solution.

The See-Saw algorithm that was developed for the trans-
portation models is summarized as follows.

Step 1. Use either the LC or VA to determine a stating 
solution for the transportation problem.

Step 2. Pair the columns starting from the left. Select the 
best See-Saw move. Repeat the procedure until there is no See-
Saw move possible to all the unoccupied cells and go to Step 3.

Step 3. Current solution is optimal.
The current solution is optimal if no profitable See-Saw 

move is possible, i.e.:

c c c cki j kj i+ ≤ +
 

.

If a See-Saw move is not profitable then it is not neces-
sary to take such a move. This is illustrated in a numerical 
illustration given in Table 4.

5. 3. Numerical illustration
The transportation problem for the full numerical illus-

tration is given in Table 4.
Using the least cost (LC) method, the starting solution 

becomes as given in Table 5.

Table 4

Full example of the See-Saw rule for the general 
transportation model

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

Table 5
Least Cost starting solution 

9 15 23 14[30] 34 30

5[10] 10[30] 12[10] 23 33 50

7 15 17[20] 19 29 20

29 20 26 31 8[20] 20

10 30 30 30 20 120

Total Cost (LC) = + + +
+ + + =

5 10 10 30 12 20

17 20 14 30 8 20 1

( ) ( ) ( )

( ) ( ) ( ) ,, .390 	 (14)

See-Saw moves.
Iteration 1. The first iteration is composed of applying 

See-Saw moves by pivoting Columns 1–4 as given in Table 6.
Pivoting Column 1 (Iteration 1).

Table 6
Pivoting column 1 

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

See-Saw moves for pivoting Column 1.

c c c c21 33 31 23 5 17 7 12 22 19+ > + ⇒ + > + ⇒ > .

This is profitable and 10 to be moved.

c c c c21 14 11 24 5 14 9 23 19 31+ < + ⇒ + < + ⇒ < .

This is not profitable.

c c c c21 45 41 25 5 8 29 33 13 62+ < + ⇒ + < + ⇒ < .

This is not profitable.
Pivoting Column 2 (Iterations 1). The pivoting iterations are 

shown in Tables 11–16. Pivoting of Column 2 is given in Table 7.

Table 7
Pivoting column 2

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

See-Saw moves for pivoting Column 2.

c c c c22 33 32 23 10 17 15 12 27 27+ = + ⇒ + > + ⇒ = .  

Alternate solution to this exists.

c c c c22 14 12 24 10 14 15 23 24 38+ < + ⇒ + < + ⇒ < .

 

 

 

c1i c1j 
c2i c2j 
… … 
cki  ckj 
… …  
 ... …  
c6i clj 
… … 
… … 
cmi cmj 

Fig. 4. Simplifying the See-Saw move
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This is not profitable.

c c c c22 45 42 25 10 8 20 33 18 53+ < + ⇒ + < + ⇒ < .

This is not profitable.
Pivoting Column 3 which is Iteration 1 is given in Table 8.

Table 8
Pivoting column 3

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

See-Saw moves for pivoting Column 3.
Note that there are two allocations in this column and  

we need See-Saw moves for each of the allocations. 

c c c c23 14 13 24 12 14 23 23 26 46+ < + ⇒ + < + ⇒ < .  

This is not profitable. 

c c c c23 45 24 43 12 8 33 26 20 59+ < + ⇒ + < + ⇒ < .

This is not profitable.

c c c c33 14 13 34 17 14 23 19 31 42+ < + ⇒ + < + ⇒ < .  

This is not profitable. 

c c c c33 45 43 35 17 8 33 26 25 59+ < + ⇒ + < + ⇒ < .

This is not profitable.
Pivoting Column 4 which is also Iteration 1 is given  

in Table 9.

Table 9
Pivoting column 4

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

See-Saw moves for pivoting Column 4. Note that there 
is only one See-Saw move possible after pivoting Column 4.

c c c c14 45 44 14 14 8 31 34 22 65+ < + ⇒ + < + ⇒ < .  

This is not profitable. 
The solution obtained from pivoting Columns 1–4 is 

given in Table 10.

Table 10
Solution after Iteration 1

9 15 23 14[30] 34 30

5 10[30] 12[20] 23 33 50

7[10] 15 17[10] 19 29 20

29 20 26 31 8[20] 20

10 30 30 30 20 120

Total Cost (Iteration 1)= + +
+ + +

7 10 10 30

12 20 17 10 14 30

( ) ( )

( ) ( ) ( )) ( ) , .+ =8 20 1 360 	 (15)

Comparing this solution with the starting solution, we 
can notice that only one allocation in the first column has 
changed. The rest remains the same. So we need one pivot for 
Iteration 2. This is done by pivoting Column 1.

In Iteration 2, Column 1 is pivoted as given in Table 11.

Table 11
Pivoting column 1

9 15 23 14 34 30

5 10 12 23 33 50

7 15 17 19 29 20

29 20 26 31 8 20

10 30 30 30 20 120

See-Saw moves for pivoting Column 1 in Iteration 2.

c c c c31 22 22 32 7 10 5 15 17 20+ < + ⇒ + < + ⇒ < .

This is not profitable.

c c c c31 23 21 33 7 12 5 17 19 22+ < + ⇒ + < + ⇒ < .

This is not profitable.

c c c c31 14 11 34 7 14 9 19 21 28+ < + ⇒ + < + ⇒ < .

This is not profitable.

c c c c31 45 41 35 7 8 29 29 15 58+ < + ⇒ + < + ⇒ < .

This is not profitable.
This means the current solution (Table 10) is optimal. 

Also from Iteration 1, when pivoting Column 2 we have evi
dence of an alternate solution. From Table 10, the alternate 
optimal solution becomes as given in Table 12.

Table 12
Alternate optimal solution 

9 15 23 14[30] 34 30

5 10[20] 12[30] 23 33 50

7[10] 15[10] 17 19 29 20

29 20 26 31 8[20] 20

10 30 30 30 20 120

Total Cost Iteration 1( ) = ( )+ ( ) +

+ ( )+ ( ) + ( )
7 10 10 20

15 10 12 30 14 30 ++ ( ) =8 20 1 360, . 	 (16)

The proposed approach has the advantage that pivoting 
of the four columns in Iteration 1 can be done independently 
allowing the use of parallel processors. 

6. Discussion of the results of the development  
of the heuristic 

The numerical illustration in Table 4 has 3 rows and 5 co
lumns and required 6 allocations to come up with a feasible 
starting solution. In this case, the LC was used to come up 
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with a starting solution whose total cost amounted to 1,370.  
This is highly accurate since the optimal solution had a total 
cost of 1,360. To get to this optimal solution, 2 iterations of the 
See-Saw approach were necessary. The first iteration required 
4 column pivots to come up with a new solution. The second iter-
ation required only 1 column pivot since all the other 4 columns 
did not change in the first iteration. The second iteration showed 
that the solution obtained in the first iteration was optimal since 
c c c cki j kj i+ ≤ +

 

 for all cells of the transportation problem. Since 
there was no change in allocations for the last 4 columns and that 
the first iteration had c c c c22 33 32 23+ = + , which indicated the 
existence of an alternate solution, the solution obtained in the 
second iteration is optimal and that an alternate solution exists, 
which also gave a total of 1,360. The total number of pivots was 
4+1 = 5 for the given problem. The illustration also showed that 
the See-Saw moves and pivots can be done at the same time. Pa
rallel processors can be tasked to handle the 4 pivots in iteration 1. 

Before this study, there were four main approaches for 
the general transportation problem. These approaches are 
modeling the transportation problem as a linear program-
ming problem, using the Hungarian method, using the trans-
portation simplex method (also called MODI method) and 
applying the network simplex method.

Linear programming has been successively used to solve 
the general transportation problem. The mathematical for-
mulation of the transportation problem is easily determined. 
The problem with this linear programming formulation is 
that it is seriously affected by the problem of degeneracy. The 
obvious advantage of linear programming formulation is that 
it does not require a starting solution.

The Hungarian method is also used to solve the general 
transportation problem and this method is not affected by 
degeneracy. It is sometimes computationally expensive to 
reach the optimal solution using the Hungarian method. 
In other words, this method sometimes takes a significant 
amount of computational time to find the optimal solution. 
This method, just like the linear programming formulation, 
also does not require a starting solution.

The transportation simplex method, which is also called 
the modified distribution method (MODI), is also used to 
solve the general transportation problem. In this approach,  
a starting solution is required. The closer the starting solution 
is to the optimal solution, the fewer the MODI iterations 
that are required to move to the optimal solution. There are 
methods that are used to quickly find good starting solutions. 
Unfortunately using any of the starting solution methods also 
increases the total computational time for the problem.

The fourth available method for the general transportation 
problem is called the network simplex method. Of these four 
methods that are already known, the network simplex method 
is the most efficient in terms of computational time. Even 
though this method is efficient, it is serial in nature and is not 
easy to split its algorithm into parallel parts and take advan-
tage of the developments in computer parallel processing. 

The numerical illustration given from Table 4 to Fig. 3, 4 
showed that the See-Saw moves and pivots can be done at 
the same time. Computer parallel processors can be tasked to 
handle the 4 pivots in iteration 1 at the same time. Also note 
that the Saw-Saw moves within each pivot can also be done 
independently.

The proposed approach has its own way of detecting 
alternate solutions. Any alternate exists if the See-Saw move 
is neither profitable nor a loss. In Table 7, pivoting Column 2 
results in a See-Saw move, which gives a new cost of 27, 
but the current position gives a cost of 27. In this case, the 
See-Saw move is neither profitable nor a loss and shows the 
existence of an alternate solution.

The only weakness of the proposed approach is that there 
are no computational results. 

7. Conclusions

1. The See-Saw rule for the assignment model was ex-
plained. The See-Saw movement is feasible and possible if 
it results in a decrease in the total assignment cost. This is  
a quantitative measure and is used to determine the feasibi
lity of the See-Saw move.

2. The See-Saw rule that was developed to solve the as-
signment model can be extended to the general transportation 
model. This comes from the fact that any transportation mo
del can be expressed as a combination of assignment models.  
Unlike in an assignment model where we can have a single 
movement per column at a time, a general transportation 
model can have more than one movement per column. In this 
case, quantitative indicators are also used to determine See-
Saw moves in transportation problems. The only difference 
with assignment See-Saw moves is that there are more than 
one quantitative indicator used per column.

3. The numerical illustration clearly showed how the 
See-Saw moves can be done independently. Parallel proces-
sors can then be tasked to handle the independent See-Saw 
moves. Solving the tasks in parallel can significantly reduce 
the computational time of the proposed heuristic.
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This paper describes the process of shoot-
ing a mobile armored combat vehicle with 
directed fragmentation-beam shells as a dis-
crete-continuous random process. Based on 
this approach, a stochastic model has been pro-
posed in the form of a system of Kolmogorov-
Chapman differential equations.

A universal model of the process of defeat-
ing a moving armored target with directed 
fragmentation-beam shells has been built, 
which would provide preconditions for experi-
mental studies into the effectiveness of various 
variants of the components of the artillery sys-
tem for three-shot firing.

The execution of an artillery task is consi
dered as a set of certain procedures characte
rized by the average value of its duration. They 
are dependent on the firing phases involving 
a prospective automatic gun and the explo-
sive destruction of fragmentation-beam shells 
while the explosive destruction of each shell 
case is characterized by the self-propaga-
tion of the reaction of explosive transforma-
tions based on tabular data on the target. 
An indicator of the functionality of various 
design options for fragmentation-beam shells 
is the probability of causing damage by «useful 
fragments» in the vulnerable compartments of  
a combat armored vehicle.

Devising universal models for the process 
of shooting a moving armored vehicle forms 
preconditions for further full-time experi-
ments in accordance with the design solutions 
defined as a result of modeling. It is possible 
to use the developed discrete-continuous sto-
chastic model in other modeling tasks to deter-
mine the optimal value of defeat.

As regards the practical application of dis-
crete-continuous stochastic models, one can 
argue about the possibility of reducing the cost 
of performing design tasks related to weapons 
by 25 % and decreasing the likelihood of mak-
ing mistakes at the stage of system engineer-
ing design

Keywords: discrete-continuous stochastic 
model, graph of states and transitions, frag-
mentation-beam shells
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1. Introduction

The current state of saturation of the world armies with 
armored vehicles and manpower in terms of protected means 

of individual (combat) equipment [1] did not affect the 
change in their product range towards reducing high-ex-
plosive fragmentation (HE-FRAG) shells that reached the 
limit of their capabilities [2]. However, we shall focus only  


