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1. Introduction

Elements of many modern structures are often designed to 
work under the conditions of thermal heating, which contrib-
ute to the emergence of temperature stresses in them. This is 
typical for tools and structures in the heat and power indus-
try. Their performance is largely determined by the level of 
concentration and intensity of these stresses in some areas, for 
example, in the neighborhood of technological heterogeneities 
(cracks, inclusions). At the same time, the destruction of ma-
terials is associated with the presence of sharp concentrators 
of stresses such as cracks. Therefore, the thermoelastic state 
near a crack must be studied to calculate strength in terms 
of destruction mechanics, which is especially important for 
structures made of high-strength and low-plastic materials 
that are exposed to the influence of various types of heat 
loads. Of importance are the theoretical and practical studies 
into the distribution of stresses in the neighborhood of stress 
concentrators such as cracks. At the same time, the intensity 

of stresses at crack vertices is expressed through stress inten-
sity coefficients (SICs). These parameters make it possible to 
determine the limit value of the heat load at which a crack 
begins to grow and the body locally collapses.

Consequently, investigating the dependence of stress 
intensity coefficients on the shape of an inclusion, its 
mechanical and thermal characteristics, is important for 
strength calculation from the point of view of destruction 
mechanics. In particular, for the case of piece-homogeneous 
bodies with a crack, it is possible to reduce the stress inten-
sity coefficients by selecting the appropriate mechanical 
and thermal-physical characteristics of the composite’s 
components.

Thus, the relevance of our research is predetermined 
by the importance of studying the thermoelastic state of 
piece-homogeneous bodies with cracks for practical appli-
cations in terms of assessing the strength and durability of 
structural elements, as well as in theoretical terms for devising 
new effective methods for determining temperature stresses.

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

How to Cite: Zelenyak, V., Kolyasa, L., Klapchuk, M., Oryshchyn, O., Vozna, S. (2021). Determining patterns in thermo-

elastic interaction between a crack and a curvilinear inclusion located in a circular plate. Eastern-European Journal of 

Enterprise Technologies, 6 (7 (114)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.243990

DETERMINING PATTERNS 
IN THERMOELASTIC 

INTERACTION BETWEEN 
A CRACK AND A 

CURVILINEAR INCLUSION 
LOCATED IN A CIRCULAR 

PLATE
V o l o d y m y r  Z e l e n y a k 

PhD, Associate Professor*
L u b o v  K o l y a s a 

PhD, Associate Professor*
M y r o s l a v a  K l a p c h u k 

Corresponding author
PhD, Associate Professor*

Е-mail: m.klapchuk@gmail.com 
O k s a n a  O r y s h c h y n 

PhD, Associate Professor*
S v i t l a n a  V o z n a 

PhD, Associate Professor
Department of Applied Mathematics**

*Department of Mathematics**
**Lviv Polytechnic National University

S. Bandery str., 12, Lviv, Ukraine, 79013

A two-dimensional mathematical model of the thermo-
elastic state has been built for a circular plate containing a 
curvilinear inclusion and a crack, under the action of a uni-
formly distributed temperature across the entire piece-ho-
mogeneous plate. Using the apparatus of singular integral 
equations (SIEs), the problem was reduced to a system 
of two singular integral equations of the first and second 
kind on the contours of the crack and inclusion, respective-
ly. Numerical solutions to the system of integral equations 
have been obtained for certain cases of the circular disk 
with an elliptical inclusion and a crack in the disk outside 
the inclusion, as well as within the inclusion. These solu-
tions were applied to determine the stress intensity coeffi-
cients (SICs) at the tops of the crack.

Stress intensity coefficients could later be used to deter-
mine the critical temperature values in the disk at which a 
crack begins to grow. Therefore, such a model reflects, to 
some extent, the destruction mechanism of the elements of 
those engineering structures with cracks that are operated 
in the thermal power industry and, therefore, is relevant.

Graphic dependences of stress intensity coefficients on 
the shape of an inclusion have been built, as well as on its 
mechanical and thermal-physical characteristics, and a 
distance to the crack. This would make it possible to ana-
lyze the intensity of stresses in the neighborhood of the 
crack vertices, depending on geometric and mechanical 
factors.

The study’s specific results, given in the form of plots, 
could prove useful in the development of rational modes 
of operation of structural elements in the form of circular 
plates with an inclusion hosting a crack.

The reported mathematical model builds on the earlier 
models of two-dimensional stationary problems of thermal 
conductivity and thermoelasticity for piece-homogeneous 
bodies with cracks
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2. Literature review and problem statement

Two-dimensional thermoelasticity problems for bodies 
with cracks were considered earlier. Work [1] examines the 
thermoelasticity problem of connected dissimilar half-plates 
with a functionally graded layer, weakened by a pair of two 
offset interphase cracks. The integral Fourier transform 
method was used. The statement of the current problem 
of non-isothermal crack is reduced to two sets of singular 
integral equations of the Cauchy type for temperature and 
thermal stress fields in the connected system.

Paper [2] considers the problem of stress concentration 
in the neighborhood of the crack vertices for a crack of the 
finite length, located perpendicular to the interface of two 
elastic bodies – the half-plane and strip. Using the method of 
generalized integral transformations, the problem is reduced 
to solving a singular integral equation with the Cauchy nu-
cleus. The integral equation is solved by a colocation method 
and by small parameters. The authors obtained values of 
intensity coefficients of normal stresses near the crack ver-
tices for different combinations of geometric and physical 
parameters of the problem.

Work [3] reports a solution to the problem of thermoelas-
ticity. Thermal impact on crack growth under different ther-
mal and mechanical conditions was investigated, based on 
the edge method (ES-FEM); this method is more accurate 
than a standard finite-element method (FEM).

Paper [4] investigated the thermoelastic state in a half-
plane with a rectilinear rigid inclusion under a homogeneous 
heat flow set on infinity. The singular integral equations 
(SIEs) obtained were solved by the method of orthogonal 
polynomials. A general case of the system of randomly ori-
ented cracks in the half-plane was studied in [5].

A problem of the circular absolutely rigid inclusion of an ar-
bitrary shape, which is located in the transversal-isotropic half-
space under the conditions of smooth contact with the second 
half-space, was reduced to a system of two-dimensional singu-
lar integral equations. The asymptotic stresses in the vicinity 
of an inclusion were investigated; directions of the highest and 
lowest concentration of stresses [6] were determined.

Two-dimensional problems of thermoelasticity for bod-
ies with cracks were also studied by the method of singular 
integral equations (SIEs). In particular, the authors of [7] 
investigated the thermoelastic state in a three-layer hollow 
cylinder with a crack. Temperature conditions of the first kind 
were set on the surfaces of the cylinder. The stress intensity 
coefficients were calculated at the top of an inner edge crack. 
Work [8] applied an SIE method to consider the problems 
of stationary thermal conductivity and thermoelasticity in a 
semi-finite plate containing an inner curvilinear crack. The 
plate is heated on the local area of the edge by heat flow. A 
similar problem was considered in [9] for the case of an edge 
crack in the half-plane. In work [10], the same method was 
applied to investigate the thermoelastic interaction between 
a two-component circular inclusion and a crack located in the 
plate under the conditions of a steady uniform temperature.

Work [11] investigated the thermoelastic state in a half-
space, which is locally heated by the heat flow of its free sur-
face and contains the inclusion and crack. In [12], a method 
of the functions of a complex variable was used to solve the 
problems of thermal conductivity and thermoelasticity with 
special Cauchy nuclei for bodies with the thermal cylindrical 
inclusion and crack.

The review of literary sources [7‒12] allows us to con-
clude that the thermoelastic state was mostly studied for 
infinite and semi-infinite bodies, both homogeneous and 
with circular inclusions and cracks. And there are almost no 
solutions for finite bodies with curvilinear (in particular, el-
liptical) inclusions and cracks, as well as for multicomponent 
composite bodies with cracks. Given this, it is important to 
further investigate the effect of temperature on the stressed 
state of piece-homogeneous bodies with cracks. In partic-
ular, to construct mathematical models to determine heat 
loads at which a crack begins to grow, and the body is locally 
destroyed. The study of such models could make it possible 
to suggest an approach to preventing the growth of cracks, 
for example, by selecting the components of a piece-homoge-
neous plate with appropriate mechanical and thermophysi-
cal characteristics.

3. The aim and objectives of the study

The purpose of this work is to determine the two-dimen-
sional thermoelastic state in a circular plate containing a 
curvilinear inclusion and a crack under the action of uniform 
temperature distribution across the entire piece-homoge-
neous plate with a crack. This would make it possible to 
determine the critical values of the heat load in order to pre-
vent the growth of the crack, which could prevent the local 
destruction of the plate.

To accomplish the aim, the following tasks have been set:
– to build two-dimensional mathematical models of the 

thermoelasticity problem in the form of singular integral 
equations on the contour of a crack and a curvilinear inclu-
sion to determine the perturbed thermal stresses due to the 
presence of the inclusion and crack;

– to obtain numerical solutions to the singular integral 
equations of the thermoelasticity problem in the partial case 
of a circular plate with an elliptical inclusion and a recti-
linear crack under the conditions of uniform temperature 
distribution in the specified region;

– to derive and investigate the stress intensity coeffi-
cients at crack vertices, depending on the thermal char-
acteristics of a piece-homogeneous plate, and to identify 
mechanical effects.

4. The study materials and methods

We have theoretically studied the two-dimensional 
thermoelastic state in a circular plate containing a cur-
vilinear inclusion and a crack based on the method of the 
function of a complex variable. To this end, a two-dimen-
sional mathematical model of the thermoelastic state was 
built, in the form of a system of two singular integral equa-
tions of the first and second kind on the contours of the 
crack and inclusion, respectively.

We have obtained the numerical solutions to the system 
of integral equations for the particular cases of a circular 
disk with an elliptical inclusion and a crack, heated to a 
steady temperature. These solutions were used to deter-
mine the stress intensity coefficients at the crack’s vertices.

Graphic dependences have been built of the stress inten-
sity coefficients on the shape of an inclusion, its mechanical 
and thermal characteristics, and a distance to the crack.
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5. Results of studying the thermoelastic state  
in a circular plate with the curvilinear  

inclusion and crack 

5. 1. Building a two-dimensional mathematical model 
of the thermoelasticity problem

We have considered a circular plate containing a cur-
vilinear inclusion with contour L1 and a crack L2 located in 
the disk matrix, or in the inclusion. We believe that the con-
tours Ln ( )1,2n =  have no common points. Each Ln ( )1,2n =  
contour is assigned to the local coordinate systems xnOnyn, 
whose Onxn axis forms an αn angle with the Ox axis, and 
the On points determine in the xOy coordinate system the 
complex coordinates 0 0 0.n n nz x iy= +  The association between 
the coordinates of points in the area S in the local and main 
coordinate systems is given by the ratios 0,ni

n nz z e zα= +  
,z x iy= +  .n n nz x iy= +

Let there be a uniform temperature distribution across 
the entire piece-homogeneous circular plate with a crack 

( ), const 0,cT x y T= = ≠  which differs from the temperature 
TC=0 of the relaxed initial state. This temperature does 
not create a perturbed temperature field at the crack’s 
vertices, and, therefore, the perturbed thermoelastic state 
from the crack. Temperature stresses here occur only due 
to different values of the temperature coefficients of lin-
ear expansion for the inclusion and disk matrix. We shall 
determine these stresses from the solution to the thermo-
elasticity problem.

Supposing that the conditions for an ideal mechanical 
(the equality of stresses and movements) contact are speci-
fied on the inclusion’s contour L1:

( ) ( ) ( ) ( )1 1 1 1 ,N t iT t N t iT t
+ −

   + = +   

( ) ( )1 1 1 1 0,u iv u iv
+ −+ − + =  1 1,t L∈ 		   (1)

the cracks’ banks L2 in the process of deformation do not 
come into contact and there are no forced loads on them

( ) ( )2 2 0.N t iT t
±

 + =  		   (2)

The plate’s contour L0 of radius R0 is also considered free 
from loads. 

In ratios (1), (2), there are the following designations: 
N(tn), T(tn) is the normal and tangent components of stresses, 
u1, v1 are the components of displacement. 

Complex potentials, based on the use of known com-
plex potentials for a homogeneous disk with cracks [13], 
are to be chosen for a piece-homogeneous disk in the 
following form

( ) ( ) ( )1 2 ,z z zΦ = Φ + Φ  

( ) ( ) ( )1 2 ,z z zΨ = Ψ + Ψ 	 (3)

where
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Here, g1(t1) is an unknown function on the inclusion’s con-
tour L1; ( )2 2g t′  – unknown function on the crack’s contour. 
Complex potentials Φ1(z), Ψ1(z), Φ2(z), Ψ2(z) characterize the 
perturbed thermally strain state caused by the inclusion.

Having satisfied, with the use of potentials (3), the sec-
ond equality of boundary condition (1) on the contour of the 
inclusion, and boundary condition (2) on the crack’s con-
tour, we obtain a system of two singular integral equations, 
respectively, of the second and first kind relative to two un-
known functions Q1(t1) and Q2(t2) on the contours L1 and L2

( ) ( )
( ) ( )
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( ) ( )
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τ  

,nk k nH = ζ − η  ;nnk kT = ζ − η  

0,ni
n n ne zαη = τ +  ( )1,2; 1,2 ;k n= =

( ) ( )1 1 1 1 ;Q t g t=  ( ) ( )2 2 2 2' ;Q t g t=  

( )1 1 10.5 1 1 ;A  = + χ + Γ + χ 

1 1 1 ;B = χ − Γ χ  1 11 ;C = − Γ  2 1;B =  2 1;C = −

( ) ( )1
1 1 1 0;t tP Tτ = Γ β − β ⋅  ( )2 2 0;P τ =

3 4 ,χ = − µ  1,t t Eβ = α

1 13 4 ,χ = − µ  1 1 1,t t Eβ = α  1 1  / .G GΓ =

Here, αt, G, E, μ ( )1 1 1 1, , ,t G Eα µ  are the temperature co-
efficient of linear expansion, the shear module, the elasticity 
module (Young), the Poisson coefficient of the matrix-disk 
(respectively, inclusion). 

The system of equations (4) has a single solution for its ar-
bitrary right-hand side, provided the following condition is met

( )
1

2 2 2
1

' d 0,g t t
−

=∫ 	  (5)

which ensures that movements are unambiguous when by-
passing the crack’s contour. 

Having found the unknown functions Q1(t1) and Q2(t2) 
from the system of equations (4), (5), we then can obtain 
the distribution of thermal stresses throughout the entire 
piece-homogeneous plate with a crack; in particular, the 
stress intensity coefficients (SICs) KI, KII in the vertices of 
the crack are found from [13]

( )
2 2

2 2 2 2lim 2 ,I II
t l

K iK t l Q t
±

± ± ±

→

 − = π −  


where indexes “–” refer to the beginning of the crack ( ),k kt l −=  
and “+” – its end ( ).k kt l +=

5. 2. Applying a method of mechanical quadrature to 
determine the stress intensity coefficients in the vertices 
of the crack

We consider a circular disk of radius R0 containing an 
elliptical inclusion with half-axes a and b, limited by the 

contour L1 with a common center; associate it with the xOy 
coordinate system with its origin in the center of the disk. 
On the segment of the axis Ox, beyond the inclusion (Fig. 1), 
or in the inclusion (Fig. 2), there is a crack of length 2l, the 
banks of which are unloaded. There are no loads on the disk’s 
contour L0, and, on the inclusion’s contour L1, the conditions 
for an ideal mechanical (the equality of stress and displace-
ment) contact are specified. Let the circular piece-homoge-
neous disc with a crack be evenly heated to a steady tem-
perature const 0,cT = ≠  which differs from the temperature 
of the relaxed initial state. Stresses, in this case, occur only 
due to different values of the temperature coefficients of 
linear expansion for the inclusion and disk matrix. This ther-
moelasticity problem is reduced to a system of two singular 
integral equations (4), (5) on a closed (the inclusion’s con-
tour L1) and open (the crack’s contour L2) contours, relative 
to two unknown functions Q1(t1) and Q2(t2). 

The solution to the system of equations (4), considering 
condition (5), was found numerically by the method of mechan-
ical quadratures [14]. To this end, after replacing the variables

Fig. 1. Circular plate with an elliptical inclusion and a crack 
outside the inclusion

Fig. 2. Circular plate with an elliptical inclusion and a crack 
inside the inclusion
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( )1 cos sin ;t a ib= ω θ = θ + θ  ( )1 ;τ = ω β  2 ;t l= ξ  2 lτ = η

the system of integral equations (4), (5) for the thermoelas-
ticity problem is reduced to the normalized form

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

*2
11 1

1 1 *
0 11 1

*1
12 2 *

1*
1 12 2

,
d

,

,
d ,

,

R
A

S

R
P

S

π

−

 θ β ψ θ +
 ψ β + θ +
 + θ β ψ θ 

 ξ β ψ ξ +
 + ξ = β
 + ξ β ψ ξ 

∫

∫  0 2 ;< β ≤ π 	 (6)

( ) ( )
( ) ( )
( ) ( )

( ) ( )

*2
21 1

*
0 21 1

*1
22 2

*
1 22 2

,
d

,

,
d 0,

,

R

S

R

S

π

−

 θ η ψ θ +
  θ +
 + θ η ψ θ 

 ξ η ψ ξ +
 + ξ =
 + ξ η ψ ξ 

∫

∫  1;η <

( )
1

2
1

d 0,
−

ψ ξ ξ =∫ 					     (7)

where

( ) ( )( )1 1 ;Qψ θ = ω θ  

( ) ( )2 2 ;Q lψ ξ = ξ  

( ) ( ) ( )( ) ( )*
11 11, , ' ;R Rθ β = ω θ ω β ω θ

( ) ( ) ( )( ) ( )*
11 11, , ' ;S Sθ β = ω θ ω β ⋅ω θ  

( ) ( )( )*
12 12, , ;R R l lξ β = ξ ω β ⋅

( ) ( )( )*
12 12, , ;S S l lξ β = ξ ω β ⋅  

( ) ( )( ) ( )*
21 21, , ' ;R R lθ η = ω θ η ⋅ω θ

( ) ( )( ) ( )*
21 21, , ' ;S S lθ η = ω θ η ⋅ω θ  

( ) ( )*
22 22, , ;R R l l lξ η = ξ η ⋅

( ) ( )*
22 22, , ;S S l l lξ η = ξ η ⋅ 	  

( ) ( )1
1 1 0.t tP Tβ = Γ β − β ⋅

A solution to the system of equations (6) and (7) is to be 
found in the class of functions, unlimited at 1,ξ = ±  that is in 

the form of ( ) ( )2
2 2

,
1

u ξ
ψ ξ =

− ξ
 where ( )2 ku ξ  is the continuous  

 
functions on the segment [–1; 1], as well as in the class of 
2π-periodic continuous ψ1(θv) functions.

Using Gauss quadrature formulas for a regular integral, 
and quadrature formulas for calculating the integral along 
a closed contour [13], for the system of equations (6), (7), 
we obtain a system of (m+n) linear algebraic equations in 
the form
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 + θ β ψ θ 
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 + = β
 + ξ β ξ 

∑

∑  1, ;s m= 	  (8)
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m S
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n S u

π

=

=

 θ η ψ θ +
  +
 + θ η ψ θ 

 ξ η ξ +
 + =
 + ξ η ξ 

∑ ∫
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( )2
1

1
0;

n

k
k

u
n =

ξ =∑ 		   (9)

to determine m unknows ψ1(θv), 1,v m=  and n unknowns 
u2(ξk), 1, .k n=

Using the solutions to the system of equations (8), (9), 
we find the stress intensity coefficients

( )2 1 ,I IIK iK u l± ±− = ±

where 

( ) ( ) ( )2 2
1

1 2 1
1 1 ctg ;

4

n
k

k
k

k
u u

n n=

−
= − − ξ π∑  

( ) ( ) ( )2 2
1

1 2 1
1 1 ctg .

4

n
k n

k
k

k
u u

n n
+

=

−
− = − − ξ π∑

The numerical values of the stress intensity coefficients 
KI, KII are real quantities that characterize the stressed-
strained state in the neighborhood of the crack’s vertices.

5. 3. Investigating the dependence of stress intensity 
coefficients on the thermal and mechanical characteris-
tics of the components of a piece-homogeneous plate

Numerical results for the dimensionless stress intensity 
coefficients /

cI I TF K K± ±=  ( )0 ,IIK =  where ,
c

t
T cK T l= ⋅β  were 

obtained for different values of the parameters of the problem. 
Fig. 3 shows the built dependences of IF ±  on parameter 

δ=l/a when χ=χ1=2; R0/a=10, d/a=2, b/a=2.

For a crack beyond the inclusion on the line of its smaller 
axis, the SIC IF −  in the crack top closer to the inclusion is 
greater than at the far IF +  for different relative values of the 
hardness of the inclusion and the disk G1/G. At the same 
time, IF ±  decreases both with the growth of the crack and 
with an increase in the rigidity of the inclusion. In addition, 

0,IF ± >  if the temperature coefficient of linear expansion 

Fig. 3. Dependence of dimensionless SICs IF ± on 
parameter δ=l/a: curves 1 – G1/G=2,5; 1 / 4;t tα α =  curves 

2 – G1/G=0,5; 1 / 4.t tα α = ; solid lines – right vertex ( ),IF +  
dashed lines – left vertex ( ).IF −
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of the inclusion is greater than that of the disk ( )1 .t tα > α   
If 1 ,t tα < α then 0.IF ± <  The banks of the crack then come 
into contact, which is not taken into consideration in a given 
model.

Fig. 4 shows the built dependences of 

( )/
cI I T I I IF K K K K K+ −= = =

on parameter δ=l/a when χ=χ1=2; R0/a=10.

If the crack is in the elliptical inclusion on the line of its 
axis (the centers of the inclusion and crack coincide), then 
an increase in the relative rigidity of the inclusion and disk 
G1/G leads to a decrease in SIC FI for different shapes of the 
inclusion. At the same time, when the inclusion is more (less) 
rigid than the disk, FI increases (decreases) with the growth 
of the crack. In addition, if the temperature coefficient of the 
linear expansion of the inclusion is less than that of the disk 
( )1 ,t tα < α  then FI>0. If it is larger ( )1

t tα > α  – then FI<0; the 
banks of the crack are in contact, which is not considered in 
a given model.

6. Discussion of results of studying the interaction 
between a crack and an elliptical inclusion, provided that 

the temperature in the plate is evenly distributed

We have used a method of mechanical quadratures to nu-
merically solve the singular integral equations. Its advantage 
is the fact that for fixed parameters of the problem, it makes 
it possible to derive a solution with a predefined accuracy. 
And the disadvantage is that when changing any parameter 
of the problem, the calculation has to be repeated again.

Other methods are also used to solve a singular integral 
equation. For example, the method of sequential approxima-
tions, or the method of collocations. However, both methods 
are not effective enough. As regards the first one, it is due to 
the mandatory regularization of the equation, which is quite 
difficult; the second one – due to the imperfection of the 
discrete analog of the equation.

The following restrictions are inherent: the proposed 
model does not take into consideration the possible contact 
of the crack banks. Therefore, in some cases, the stress in-

tensity coefficient IF ±  can acquire negative values, which we 
exclude from consideration. However, such a result can also 
be used to obtain a solution to the thermoelasticity problem 
by a superposition method. To this end, it is necessary to 
take into consideration the effect, in addition to the speci-
fied temperature field, of other temperature or force factors 
that together would not lead to contact between the crack’s 
banks.

If it is necessary to take into consideration the contact of 
the banks of the crack, the problem should be stated differ-
ently, as a mixed problem on the banks of the crack. At the 
same time, its solution is significantly complicated, but it can 
also be obtained by singular integral equations. 

The next limitation is the numerical method of mechan-
ical quadratures, which is used only for inner cracks. There-
fore, if the vertex of the crack reaches the connection line of 
the inclusion-matrix, then a quadrature method of solving 
the integral equation based on the Gauss-Jacobi quadrature 
formula [13] should be applied.

In the considered problem, the banks of the cracks do not 
touch. Then, according to the σθ-criterion (according to the 
hypothesis of the initial growth of the crack), critical values 
for the steady temperature Tcr can be found from the equa-
tions of the limit equilibrium [15] when the crack begins to 
grow and the plate is locally destroyed, using the following 
formula

1

1

.C
cr

K
T

F ±= 			    (10)

Here, K1C is a constant that characterizes the resistance 
of the material to destruction and which is determined ex-
perimentally.

Based on the analysis of numerical results for SIC 1F ±  at 
fixed values of temperature coefficients of linear expansion, 
the disk and inclusion shear modulus, the following conclu-
sions arise from formula (10). For a crack that is beyond the 
inclusion (Fig. 1), less rigid than the matrix (G1<G), the 
growth of the crack would begin from the left vertex (close to 
the inclusion) since a lower critical temperature is required 
there. If the inclusion is more rigid than the matrix (G1>G), 
then approximately simultaneously at both vertices. To start 
the growth of the crack in both vertices, which is inside the 
inclusion less rigid than the matrix (G1<G) (Fig. 3), one 
requires a lower critical temperature than in the case of an 
inclusion that is more rigid than the matrix (G1>G).

The practical value of this work relates to the possibility 
for a more complete consideration of the actual stressed-
strained state in the piece-homogeneous structural elements 
with cracks that operate under conditions of various heat 
loads. The study’s specific results, given in the form of plots, 
may prove useful in the development of rational modes of 
operation of structural elements in the form of circular 
plates with an inclusion hosting a crack. At the same time, 
it becomes possible to prevent the growth of cracks due to 
the appropriate selection of a composite’s components with 
appropriate mechanical and thermophysical characteristics.

7. Conclusions

1. A two-dimensional mathematical model has been built 
for the problem of stationary thermoelasticity for a circular 
plate with a curvilinear inclusion and a crack, in the form 

Fig. 4. Dependence of dimensionless SIC FI 	
on parameter δ=l/a Curves 1 – G1/G=0,5; 1 / 0.5;t tα α =  	

curves 2 – G1/G=2; 1 / 0.5.t tα α =  Solid lines correspond to 
b/a=0.5 (the larger ellipse axis is parallel to the crack line), 

the dashed lines correspond to b/a=2 (the larger axis of the 
ellipse is perpendicular to the crack line)
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of a system of two singular integral equations (SIEs) of the 
first kind on the crack contour and the second kind on the 
contour of the inclusion. This makes it possible to obtain a 
numerical solution to an SIE system by applying the method 
of mechanical quadratures. The advantage of the applied 
method is that it makes it possible to obtain a solution to 
the integral equation with high accuracy compared to the 
asymptotic method of a small parameter, which is used only 
for certain types of integral equations.

2. The numerical solution to the system of singular in-
tegral equations in the partial case of a circular plate with 
an elliptical inclusion and a straight crack was derived. In 
this case, the crack is located either in the disk outside the 
inclusion or in the inclusion, under the effect of a uniformly 
distributed temperature across the entire circular plate. Us-
ing this solution helped determine the stress intensity coeffi-
cients in the vertices of the crack. Subsequently, they can be 
used to determine a critical value for the stable temperature 
in a plate at which a crack begins to grow. If the crack is 
out of the inclusion, less rigid than the matrix (G1<G), then 
the growth of the crack begins from the left vertex (close 

to the inclusion). In this case, a lower critical temperature 
is required, which is determined from formula (10). If the 
crack is inside the inclusion that is less rigid than the matrix 
(G1<G), then a lower critical temperature is required to start 
the growth than if the crack is in a more rigid inclusion than 
the matrix (G1>G). 

3. We have built graphical dependences of stress inten-
sity coefficients on the shape of an inclusion and its char-
acteristics. It was found that the appropriate selection of 
thermal-physical characteristics for an inclusion could lead 
to the creation of compressive or stretching normal stresses 
in the neighborhood of the crack vertices. This is important 
in terms of managing body strength within the mechanics of 
destruction. In addition, if the temperature coefficient of the 
linear expansion of an inclusion is greater than that of the 
disk ( )1 ,t tα > α  then compression stresses occur in the neigh-
borhood of both vertices of the crack inside the inclusion. It 
then ensures that the crack growth is stopped. If the crack is 
outside the inclusion, then compression stresses occur in the 
neighborhood of the crack vertices, provided 1 ,t tα < α  which 
also causes the crack to stop growing.
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