CONTROL PROCESSES

DEVELOPMENT OF A METHOD TO IMPROVE THE RELIABILITY OF ASSESSING THE CONDITION OF THE MONITORING OBJECT IN SPECIAL-PURPOSE INFORMATION SYSTEMS

Oleg Sova
Corresponding author
Doctor of Technical Sciences, Senior Researcher, Head of Department*
E-mail: soy_135@ukr.net

Hryhorii Radzivilov
PhD, Associate Professor, Deputy Head of the Institute for Research**

Andrii Shyshatskyy
PhD, Senior Researcher, Senior Research Fellow
Department of Electronic Warfare Development
Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine
Povitroloskiy ave., 28, Kyiv, Ukraine, 03049

Pavel Shvets
PhD, Associate Professor
Department of Power Supply and Energy Management
Odessa Polytechnic National University
Shevchenko ave., 1, Odessa, Ukraine, 65044

Valentyna Tkachenko
PhD, Associate Professor
Department of Transport Law and Logistics
National Transport University
Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine, 01010

Serhii Nevhad
PhD
Language Testing Research Center
Educational and Research Center for Foreign Languages
The National Defence University of Ukraine named after Ivan Cherniakhovskyi
Povitroloskiy ave., 28, Kyiv, Ukraine, 03049

Oleksandr Zhuk
Doctor of Technical Sciences, Associate Professor, Head of Department
Department of Information Security in Telecommunication Systems and Networks**

Serhii Kravchenko
PhD, Associate Professor
Department of Software Engineering
National Aviation University
Liubomysy Huzara ave., 1, Kyiv, Ukraine, 03058

Bohdan Molodetskyy
PhD, Head of Department
Research Department
Research Institute of the Ministry of Defense of Ukraine
Yuri Iyenko, str., 81, Kyiv, Ukraine 04050

Hennadii Miahkykh
Lecturer*

**Military Institute of Telecommunications and Informatization named after Heroes of Kruty Moskovsky str., 45/1, Kyiv, Ukraine, 01011

Published date 28.04.2022
Received date 22.02.2022
Accepted date 14.04.2022
DOI: 10.15587/1729-4061.2022.254122

1. Introduction

The growing volume of information circulating in various systems of collection, processing and transmission of information leads to significant use of computing resources of hardware. The armed forces of technically developed countries have integrated decision-making architectures based on:

– artificial intelligence and nanotechnology;
– efficient processing of large amounts of information;
The work [11] carried out an analysis of the main approaches to cognitive modeling. Cognitive analysis allows you to: investigate problems with fuzzy factors and relationships; take into account changes in the external environment and take advantage of objectively formed trends in the situation. However, the question of describing complex and dynamic processes remains unexplored in this paper.

The work [12] presents a method for analyzing large amounts of data. This method is focused on finding hidden information in large data sets. The method involves the operations of generating analytical baselines, reducing variables, detecting sparse features and specifying rules. The disadvantages of this method include the inability to take into account different strategies for evaluating decisions, the lack of consideration of the type of uncertainty of the input data.

The work [13] shows the mechanism of transformation of information models of construction objects to their equivalent structural models. This mechanism is designed to automate the necessary operations of transformation, modification and addition during such an exchange of information. The disadvantages of this approach include the inability to assess the adequacy and reliability of the information transformation process and make appropriate adjustments to the resulting models.

The work [14] carried out the development of an analytical web platform to study the geographical and temporal distribution of incidents. The web platform contains several information panels with statistically significant results by territory. The disadvantages of the analytical platform include the inability to assess the adequacy and reliability of the information transformation process, as well as high computational complexity. Also, the disadvantages of the research include the ambiguity of solution search.

The work [15] developed a method of fuzzy hierarchical assessment of the quality of library services. This method allows you to evaluate the quality of libraries by a variety of input parameters. The disadvantages of this method include the inability to assess the adequacy and reliability of the assessment and, accordingly, determine the assessment error.

The work [16] carried out an analysis of 30 algorithms for processing large amounts of data. Their advantages and disadvantages are shown. It is found that the analysis of large amounts of data should be carried out in layers, in real time and have the ability to self-study. The disadvantages of these methods include high computational complexity and the inability to verify the adequacy of the estimates.

The work [17] presents an approach to evaluating input data for decision support systems. The essence of the proposed approach is to cluster the basic set of input data, analyze them, and then train the system based on the analysis. The disadvantages of this approach are the gradual accumulation of evaluation and learning errors due to the inability to assess the adequacy of decisions.

The work [18] presents an approach to processing data from different sources of information. This approach allows processing data from various sources. The disadvantages of this approach include the low accuracy of the estimate and the inability to verify the reliability of the estimate.

The work [19] carried out a comparative analysis of existing decision support technologies, namely: analytic hierarchy process, neural networks, fuzzy set theory, genetic algorithms and neuro-fuzzy modeling. The advantages and disadvantages of these approaches are indicated. The scope of their application is determined. It is shown that the analytic hierarchy process works well with complete initial information, but it has a high share of subjectivity due to the need for experts to compare alternatives and choose evaluation criteria. The use of fuzzy set theory and neural networks...
is justified for forecasting problems in conditions of risk and uncertainty.

The work [20] developed a method of structural-target analysis of the development of poorly structured systems. An approach to the study of conflict situations caused by contradictions in the interests of the subjects affecting the development of the studied system and methods for solving poorly structured problems based on the formation of scenarios. The problem is defined as a mismatch of the existing state of the system to the required one, specified by the subject of management. However, the disadvantages of the proposed method include the problem of local optimum and the inability to conduct a parallel search.

The work [21, 22] presents a cognitive approach to the simulation of complex systems. The advantages of this approach, describing the hierarchical composition of the system, are shown. The disadvantages of the proposed approach include the lack of consideration of the computing resources of the system.

An analysis of the works [9–21] showed that common shortcomings of the above studies are:
- not taking into account the impact of destabilizing factors affecting the efficiency of special-purpose information systems;
- the existing methods of assessing the condition of the monitoring object are intended for general-purpose information systems, which does not allow using them for special-purpose systems;
- variety of information sources;
- lack of the possibility to form a hierarchical system of indicators;
- lack of consideration of computing resources of the system;
- lack of mechanisms for adjusting the system of indicators during the evaluation;
- lack of mechanisms for deep learning of knowledge bases;
- lack of accounting for computing resources available in the system.

To this end, it is proposed to develop a method of increasing the efficiency of assessment in special-purpose information systems.

3. The aim and objectives of the study

The aim of the study is to increase the efficiency of data processing in special-purpose information systems with a given reliability.

To achieve the aim, the following objectives were set:
- to set a task of assessing the monitoring object state in special-purpose information systems;
- to develop a method of increasing the efficiency of assessing the monitoring object state in special-purpose information systems;
- to give an example of using the proposed method in the analysis of the operational situation of a group of troops (forces).

4. Materials and methods of the study

The study used the general provisions of the theory of artificial intelligence to solve the problem of object state analysis in intelligent decision support systems. Thus, the theory of artificial intelligence is the basis of this study. The study used fuzzy cognitive models, an improved genetic algorithm, and evolving artificial neural networks. The simulation was performed using MathCad 2014 software (USA) and Intel Core i3 PC (USA).

5. Results of the study on the development of a method for assessing the monitoring object state in special-purpose information systems

5.1. Setting the task of assessing the monitoring object state in special-purpose information systems

Let the control system of the object state analysis process be represented by a sign-oriented graph. In general, the task of determining the state of the monitoring object is reduced to calculations by the formula:

$$A_i(k+1) = f \left(\sum_{j=1}^{N} A_j(k)W_{ij} \right) \times \zeta_j,$$

where $A_i(k+1)$ is the new state of the graph vertex; $A_i(k)$ is the previous state of the graph; W_{ij} is the weight matrix; f is the threshold function of the graph; ζ_j is the operator taking into account the degree of awareness of the object state; ζ_j is the operator taking into account the degree of noise of the object state data. The calculation process is iterative – after setting the initial states of the vertices, the values of the states are recalculated until the difference between the current and previous states is less than a given value.

Expression (1) allows you to form a description of the state of the monitoring object by presenting it in the form of a graph. The graph is built for each individual object. This description is universal and allows you to describe the object of analysis, taking into account the hierarchy and individual specifics of each monitoring object. While writing expression (1) as a multidimensional time series, the description process can be given for a dynamic system. Expression (1) while constructing a mathematical description of the monitoring object state takes into account the degree of awareness about the object state and data noise.

5.2. Development of a method to increase the efficiency of evaluation in intelligent decision support systems

The evaluation method in intelligent decision support systems consists of the following sequence of actions (Fig. 1).

1. Entering initial data. At this stage, the initial data on the state of the monitored object is entered. The number of sources of monitoring devices, type of initial data and their volume are determined.

2. Determining the degree of uncertainty of the initial data. At this stage, the degree of uncertainty of the initial data is determined based on the authors’ previous studies. The degree of uncertainty of the initial data is as follows: complete uncertainty; partial uncertainty and full awareness [2, 23].

3. Construction of a classifier tree.

This stage of the method can be described as preparatory, including the choice of:
- the structure of individual binary classifiers (detectors);
- dimensions and number of layers;
- training parameters and algorithms;
- types of activation, membership and nuclear functions [24–28].
A set of training rules is developed for each detector. Defining different sets of such rules, you can form a group of detectors, each of which is built on the basis of an evolving artificial neural network. Detectors within each group are combined into a classifier based on one-vs-all, one-vs-one approaches, or their various derivative variations [28–35].

In the first approach, each detector

$$F_{\mu}^{(i)}: \mathbb{R} \rightarrow [0, 1] (k = 1, ..., m)$$

is trained from data \(\{x_i, c_i = k\}_{i=1}^m\) and the operation of the group of detectors \(F_{\mu}^{(i)}\) is described by the principle excluding:

$$F_{\mu}^{(i)}(z) = \begin{cases} 0, & \text{if } \forall k \in [1, ..., m] F_{\mu}^{(i)}(z) = 0, \\ \{k | F_{\mu}^{(i)}(z) = 1\}^m_{k=1}, & \text{otherwise}. \end{cases} \tag{2}$$

In the second approach, each of the \(C_{m+1}^2 = \frac{(m+1) \cdot m}{2}\) detectors \(F_{\mu}^{(i)}\) is trained from a set of objects belonging to only two classes with labels \(k_0, k_1, \ldots, \{\{x_i, 0|c_i = k_0\}_{j=1}^m \cup \{x_i, 1|c_i = k_1\}_{j=1}^m\}^m_{i=1}, 0 \leq k_0 < k_1 \leq m\) and the operation of the group of detectors \(F_{\mu}^{(i)}\) is determined by max-wins voting:

$$F_{\mu}^{(i)} = \left[\arg \max_{m \in [0, m]} \left(\sum_{i=1}^m \left[F_{\mu}^{(i)}(z) = 0 \right] + \sum_{i=1}^m \left[F_{\mu}^{(i)}(z) = 1 \right] \right) \right]. \tag{3}$$

4. Identifying available hardware computing resources.

At this stage, the available hardware computing resources of the network are determined. Based on this, possible classification options are determined: binary classification tree, genetic algorithm, fuzzy cognitive models and acyclic graph.

Table 1 shows the characteristics of the considered schemes of combining detectors into a multi-class model, designed to correlate the input object of one or more of the \((m+1)\) class labels.

<table>
<thead>
<tr>
<th>Combining scheme</th>
<th>Number of detectors to be trained</th>
<th>Minimum number of detectors involved in object classification</th>
<th>Maximum number of detectors involved in object classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-vs-all</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>One-vs-one</td>
<td>(\frac{(m+1) \cdot m}{2})</td>
<td>(\frac{(m+1) \cdot m}{2})</td>
<td>(\frac{(m+1) \cdot m}{2})</td>
</tr>
<tr>
<td>Classification tree</td>
<td>(m)</td>
<td>1</td>
<td>(m)</td>
</tr>
<tr>
<td>Directed acyclic graph</td>
<td>(\frac{(m+1) \cdot m}{2})</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>Fuzzy cognitive model</td>
<td>((m \times m)) (m)</td>
<td>((m \times m)) (m)</td>
<td>((m \times m)) (m)</td>
</tr>
<tr>
<td>Genetic algorithm</td>
<td>((m \times m)) ((m \times m))</td>
<td>((m \times m)) ((m \times m))</td>
<td>((m \times m)) ((m \times m))</td>
</tr>
</tbody>
</table>

5. Determining the membership of the monitoring object to a certain class.

The classification binary tree can be mentioned as one of the derivative variations of the previous approaches for combining detectors [25]. Formally, this structure is given recursively as follows:

$$CBT_\mu = \left\{ \left(F_{\mu}^{(i)}(\mu), CBT_{\mu\backslash k_1}, CBT_{\mu\backslash k_2} \right) \right\} \text{ if } \#\mu \geq 2,$$

$$\text{if } \#\mu = 1,$$

where \(\mu = \{0, ..., m\}\) is the original set of class labels; \(L_\mu \subseteq \mu\) is the arbitrarily generated or defined subset; \(\mu \notin L_\mu \leq \#\mu\); \(R_\mu = \mu \setminus L_\mu\) is the left classification subtree; \(CBT_{\mu\backslash k_1}\) is the right classification subtree; \(F_{\mu\backslash k_1}^{(i)}\) is the nodal detector trained on the elements of the set:

$$\{(x_i, 0|c_i = k_0\}_{j=1}^m \cup \{x_i, 1|c_i = k_1\}_{j=1}^m\}^m_{i=1}, (k_0 < k_1).$$

The output of the detector is set to 0 if the input object \(x_j\) belongs to a class with a label \(\tau_j \in L_\mu\) and 1 if the object \(x_j\) belongs to a class with a label \(\tau_j \in R_\mu\).

Therefore, the operation of the group of detectors \(F_{\mu}^{(i)}\) represented as nodes of such a tree is described by the recursive function \(\phi_{\mu}^{(i)}\) that specifies the sequential dichotomy of the set \(\mu\):

$$F_{\mu}^{(i)} = \phi_{\mu}^{(i)}(\mu, z),$$

$$\phi_{\mu}^{(i)}(\mu, z) = \begin{cases} \mu, & \text{if } \#\mu = 1, \\ \phi_{\mu\backslash k_1}^{(i)}(L_\mu, z) & \text{if } \#\mu \geq 2 \land F_{\mu\backslash k_1}^{(i)}(z) = 0, \\ \phi_{\mu\backslash k_2}^{(i)}(R_\mu, z) & \text{if } \#\mu \geq 2 \land F_{\mu\backslash k_2}^{(i)}(z) = 1. \end{cases} \tag{5}$$

Applying the function \(\phi_{\mu}^{(i)}\) to the original set of class labels and the monitoring object allows you to unambiguously search for the class label of this object. This is because as you go down the classification tree, a disjunctive division of the set of class labels occurs. Once the terminal detector is reached and triggered, there is only one possible label left to classify the input object \(z\) as the output \(F_{\mu}^{(i)}(\mu, z)\). Therefore, conflicts are not possible for the classification tree when classifying objects that may occur for the other two combining approaches.

Another approach is a directed acyclic graph, which organizes \(C_{m+1}^2 = \frac{(m+1) \cdot m}{2}\) detectors into a coherent dynamic structure, which can be given by the following formula:

$$DAG_\mu = \left\{ \left(F_{\mu\backslash k_1}^{(i)}, DAG_{\mu\backslash k_1}^{(i)}, DAG_{\mu\backslash k_1}^{(i)} \right) \right\} \text{ if } \#\mu \geq 2,$$

$$\mu, \text{if } \#\mu = 1. \tag{6}$$

Here, as in the one-vs-one approach, each node detector \(F_{\mu\backslash k_1}^{(i)}\) is trained from the elements:

$$\{(x_i, 0|c_i = k_1\}_{j=1}^m \cup \{x_i, 1|c_i = k_1\}_{j=1}^m\}^m_{i=1}, (k_0 < k_1).$$

Traversal of the considered graph is performed using the recursive function \(\xi_{\mu}^{(i)}\) that specifies the elemental «splitting» from the set \(\mu\):

$$F_{\mu}^{(i)} = \xi_{\mu}^{(i)}(\mu, z),$$

$$\xi_{\mu}^{(i)}(\mu, z) = \begin{cases} \mu, & \text{if } \#\mu = 1, \\ \xi_{\mu\backslash k_1}^{(i)}(\mu\backslash k_1, z) & \text{if } \#\mu \geq 2 \land F_{\mu\backslash k_1}^{(i)}(z) = 0, \\ \xi_{\mu\backslash k_2}^{(i)}(\mu\backslash k_2, z) & \text{if } \#\mu \geq 2 \land F_{\mu\backslash k_2}^{(i)}(z) = 1. \end{cases} \tag{7}$$
Starting Algorithm for Implementing the Method of Object State Analysis

1. **Enter data** \(\Psi = \{\psi_i\} \)
2. **Process** undefined initial data
3. **Construct** a classifier tree
4. **Identify** available resources
5. **Determine** the object membership
6. **Adjust** classifier parameters
7. **Define** object parameters
8. **Conclude** on the object state
9. **Train** knowledge bases

![Algorithm Flowchart](image)

If the detector \(F_{\psi_{ik}}^{(i)} \) votes for the \(k_0 \)-th class, the object \(z \), i.e. \(F_{\psi_{ik}}^{(i)} (z) = 0 \), the label \(k_1 \) is removed from the set \(\mu \) as obviously incorrect, and if not, the label \(k_0 \) is excluded. The process is repeated until the set \(\mu \) degenerates into a single element.

Of the six schemes considered, only the classification binary tree has a variable number of detectors that can be used in the object classification process.

The minimum value is reached when the detector \(F_{\psi_{ik}}^{(i)} \) located at the root of the tree is activated and trained to recognize only one class of objects among all the others, and \(F_{\psi_{ik}}^{(i)} (z) = 0 \) \(F_{\psi_{ik}}^{(i)} (z) = 1 \), i.e. when \(\#L_0 = 1(\#L_1 = 1) \). The maximum value is reached when the tree is represented by a sequential list and the most remote detector is activated.

In the case of a balanced tree, this indicator can be \(\log_2 (m+1) \) or \(\log_2 (m+1) \). Each classifier \(F_{\psi_{ik}}^{(i)} (i = 1, ..., P) \) contains \(q_i \) groups \(F_{\psi_{ik}}^{(i)} (j = 1, ..., q_i) \), each of which combines \(m \) detectors \(F_{\psi_{ik}}^{(i)} (k = 1, ..., m) \) using the one-vs-all approach. Each of the groups \(F_{\psi_{ik}}^{(i)} \) of detectors is trained from different random samples, which may include repeated and re-ranked elements from the original training set \(Y_{\mu} \). The groups \(F_{\psi_{ik}}^{(i)} \) are combined into the classifier \(F^{(i)} \) based on a hybrid rule, which is a mixture of majority voting and max-wins voting:

\[
F^{(i)} (z) = \left\{ \begin{array}{l}
\frac{\sum_{z_i \in F_{\psi_{ik}}^{(i)} (z)} \frac{1}{2} q_i \wedge \ldots \wedge \max_{\tau \in F^{(i)} (z)} \Xi (\tau)}{\sum_{z_i \in F_{\psi_{ik}}^{(i)} (z)} 1} \end{array} \right.
\]

In this formula, due to the requirement \(\Xi (\tau) > \frac{1}{2} q_i \), the classifier \(F^{(0)} \) becomes unable to resolve conflicts that arise under the condition

\[
\# \left\{ \tau \in \Xi (\tau) > \frac{1}{2} q_i \right\} = 2
\]

(in this case, the output of the classifier is an empty set \(\emptyset \)).

During the operation of the interpreter, the correctness of the processed data is checked and the fields of the objects inside the classifier tree are initialized. By using such a structure within the proposed method, it becomes possible to build multi-level schemes.

This method has a distributed architecture, in which data are collected by secondary sensor nodes (intelligence devices) and all processing of aggregate data streams is performed on a centralized server.

6. **Define** the parameters of the object of the corresponding class.

This stage of the method performed on the side of sensors (intelligence devices) consists in compiling raw intelligence into classification blocks, selecting their parameters and performing analysis using several parallel template search algorithms.

The essence of the procedure is to break down a given time interval \(\Delta_{0} = [0, L] \) of length \(L \), during which a number of parameters are continuously monitored, into smaller intervals \(\Delta_{0}^{(1)}, \Delta_{0}^{(2)}, ..., \Delta_{0}^{(k)} \) of equal length \(0 < L \leq L' \) from the beginning of which is offset \(0 < \delta \leq L' \) and \(\delta = \frac{L - L'}{k} \). During the time intervals \(\Delta_{0}^{(1)}, ..., \Delta_{0}^{(k)} \), the values of \(o_0, ..., o_{k-1} \) parameters are recorded, and their average value (intensity) and within the time window of length \(L' \) is calculated by the formula \(\bar{o} = \frac{1}{k} \sum_{i=0}^{k-1} o_i \).

The study used an interval with the value of the parameter \(L' \) equal to five seconds. The length of the smoothing interval \(L' \) was chosen as one second. The offset \(\delta \) was specified as half a second. This approach eliminates rare and random network bursts and thus reduces the number of malfunctions.

7. **Pre-processing** of analysis object data.

Before the detectors are trained, the data of the parameters are pre-processed to reduce the effect of their strong variability.

Many methods, including neural networks and the principal component method, are sensitive to such fluctuations and require that all features of the processed vectors have the same scale.

7.1 **Normalization** of vector components.

The first step of pre-processing each component \(x_j \) of the vector \(\chi \in \{X_j\}_{j=1}^{m} \) involves normalizing it with the function...
Control processes

\[f(x) = \frac{x_i - x_i^{(\text{max})}}{x_i^{(\text{max})} - x_i^{(\text{min})}} \quad (\text{in the case of } x_i^{(\text{max})} = x_i^{(\text{min})}, \text{we can consider } f(x) = 0), \text{where } x_i^{(\text{min})} = \min_{j} x_j \text{ and } x_i^{(\text{max})} = \max_{j} x_j. \]

2. Minimizing the feature space.

Reducing the number of significant features using the principal component method [26–30], described as a sequence of the following steps.

2.1. Calculation of the mathematical expectation of a random vector, presented in this case as elements of the training data set:

\[
\{x_i = \{\bar{x}_j\}_{j=1}^{M} \mid j \leq N_x\},
\]

\[
\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i - \bar{x},
\]

(9)

2.2. Formation of elements of unbiased theoretical covariance matrix:

\[
\Sigma = \{\sigma_{i,j}\}_{i=1}^{N_x} \leq \lambda \cdot \text{det}(\Sigma - \lambda \cdot I) = 0,
\]

\[
\lambda \geq \lambda_1 \geq \ldots \geq \lambda_n \geq 0.
\]

(10)

2.3. Finding the eigenvalues \(\{\lambda_1\}_{i=1}^{n} \) and eigenvectors \(\{v_i\}_{i=1}^{n} \) of the matrix \(\Sigma \) as the root of the equations (Jacobi's rotation method was used for this purpose):

\[
|\det(\Sigma - \lambda \cdot I)| = 0,
\]

\[
(\Sigma - \lambda \cdot I) \cdot v = 0,
\]

(11)

2.4. Ranking the eigenvalues \(\{\lambda_i\}_{i=1}^{n} \) in descending order and their corresponding eigenvectors \(\{v_i\}_{i=1}^{n} \):

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0.
\]

(12)

2.5. Selection of the required number \(\hat{n} \leq n \) of main components:

\[
\hat{n} = \min \{ \hat{\zeta}_{k}(j) \}^{v},
\]

where \(\zeta_{k}(j) = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{k} \lambda_i} \) is the measure of informativity \([1]\), \(0 \leq k \leq 1\) is the expert selected value.

2.6. Centering of the feature vector \(z \) into a new coordinate system defined by orthonormal vectors \(\{v_i\}_{i=1}^{n} \):

\[
y = (y_1, \ldots, y_n)^{v} = (v_1, \ldots, v_n)^{v} \cdot z,
\]

\[
y = v^v \cdot z \text{ is called the } i\text{-th principal component of the vector } z.
\]

2.7. Designing the feature vector \(z \) into a new coordinate system defined by orthonormal vectors \(\{v_i\}_{i=1}^{n} \):

\[
y = (y_1, \ldots, y_n)^{v} = (v_1, \ldots, v_n)^{v} \cdot z,
\]

\[
y = v^v \cdot z \text{ is called the } i\text{-th principal component of the vector } z.
\]

3. Training of each classifier generates a request to train the lower-level classifiers specified in the list of its dependencies and generate their output data to form the input data of the top-level classifier.

The consequence of cascade training is the «lazy» loading of classifiers: the training (recognition) involves those classifiers that are found in the list of dependencies of the classifier responsible for forming a general solution in the set of classification rules.

This property is especially useful while analyzing the dynamic rules of training classifiers, i.e., the rules, the successful or unsuccessful operation of which affects the initialization of another rule. In particular, this is typical for a classification tree, where the rules are nested.

The method makes it possible to build multilevel schemes with arbitrary nesting of classifiers and their «lazy» connection during the analysis of the input vector.

3.3. An example of applying the proposed method in the analysis of the operational situation of a group of troops (forces)

Simulation of the solution search method was carried out according to the algorithm in Fig. 2 and expressions (1)–(13). Simulation of the proposed evaluation method was performed in the MathCad 14 software environment (USA). The task to be solved during the simulation was to assess the elements of the operational situation of the group of troops (forces).

Initial data for assessing the operational situation using the proposed method:

- the number of sources of information on the condition of the monitoring object – 3 (radio monitoring devices, earth remote sensing devices and unmanned aerial vehicles), «Kolchuga-M» radio reconnaissance equipment (Ukraine), images from the «Sich-1M» satellite (Ukraine) and intelligence from «Leleka» unmanned aerial vehicles (Ukraine) were used as sources of intelligence. The simulation was carried out as part of monitoring the group of Russian armed forces on the border with Ukraine. To simplify the simulation, the same number of each tool was taken – 4 tools;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;

- the number of information features to determine the monitoring object state – 12. These parameters include: affiliation, type of organizational and staff structure, priority, minimum width on the front, maximum width on the front. The number of personnel, the minimum depth on the front, the maximum depth on the flank, the total number of personnel, the number of samples of weapons and military equipment (weapons), the number of types of weapons and the number of communication devices are also taken into account;
The analysis of the data given in Table 2 shows that the proposed method has an acceptable computational complexity. The proposed method gives adequate solutions with a complex hierarchical structure of the monitoring object. The efficiency of the proposed method averages from 12 to 20% for different combination schemes.

6. Discussion of the results of developing an evaluation method

The developed formalized approach allows evaluating highly dynamic, complex and hierarchical objects. This creates a versatile approach and allows you to evaluate different types of objects that have different origins and membership to the management.

Table 2 shows the results of the comparison of the proposed method and known ones in the unidirectional, bidirectional and tridirectional search.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Combination schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>one-vs-all</td>
</tr>
<tr>
<td>Training: number of training samples – 8,000</td>
<td></td>
</tr>
<tr>
<td>Time (sec.)</td>
<td>min 11,235.000</td>
</tr>
<tr>
<td></td>
<td>max 12,228.000</td>
</tr>
<tr>
<td></td>
<td>avg 11,822.000</td>
</tr>
<tr>
<td>CPU utilization (%)</td>
<td>min 92.700</td>
</tr>
<tr>
<td></td>
<td>max 100.000</td>
</tr>
<tr>
<td>RAM utilization (%)</td>
<td>min 62.496</td>
</tr>
<tr>
<td></td>
<td>max 92.352</td>
</tr>
<tr>
<td></td>
<td>avg 95.487</td>
</tr>
<tr>
<td>Time (sec.)</td>
<td>min 1782.000</td>
</tr>
<tr>
<td></td>
<td>max 6996.000</td>
</tr>
<tr>
<td></td>
<td>avg 2,767.429</td>
</tr>
<tr>
<td>CPU utilization (%)</td>
<td>min 92.700</td>
</tr>
<tr>
<td></td>
<td>max 800.000</td>
</tr>
<tr>
<td></td>
<td>avg 455.184</td>
</tr>
<tr>
<td>RAM utilization (%)</td>
<td>min 62.496</td>
</tr>
<tr>
<td></td>
<td>max 83.867</td>
</tr>
<tr>
<td></td>
<td>avg 263.452</td>
</tr>
<tr>
<td>Training: number of training samples – 16,000</td>
<td></td>
</tr>
<tr>
<td>Time (sec.)</td>
<td>min 383.000</td>
</tr>
<tr>
<td></td>
<td>max 387.000</td>
</tr>
<tr>
<td></td>
<td>avg 384.669</td>
</tr>
<tr>
<td>CPU utilization (%)</td>
<td>min 92.800</td>
</tr>
<tr>
<td></td>
<td>max 100.000</td>
</tr>
<tr>
<td>RAM utilization (%)</td>
<td>min 63.656</td>
</tr>
<tr>
<td></td>
<td>max 88.957</td>
</tr>
<tr>
<td></td>
<td>avg 82.348</td>
</tr>
<tr>
<td>Time (sec.)</td>
<td>min 64.000</td>
</tr>
<tr>
<td></td>
<td>max 701.000</td>
</tr>
<tr>
<td></td>
<td>avg 660.857</td>
</tr>
<tr>
<td>CPU utilization (%)</td>
<td>min 86.400</td>
</tr>
<tr>
<td></td>
<td>max 93.000</td>
</tr>
<tr>
<td></td>
<td>avg 113.028</td>
</tr>
<tr>
<td>RAM utilization (%)</td>
<td>min 64.477</td>
</tr>
<tr>
<td></td>
<td>max 91.031</td>
</tr>
<tr>
<td></td>
<td>avg 82.987</td>
</tr>
</tbody>
</table>
Control processes

- to increase the speed of object condition assessment;
- to reduce the use of computing resources of decision support systems.

The proposed approach should be used to solve problems of evaluating complex and dynamic processes characterized by a high degree of complexity.

This study is a further development of research aimed at developing methodological principles for improving the efficiency of information and analytical support published earlier [2, 4–6, 23]. Further research should be aimed at reducing computational costs when processing various types of data in special-purpose systems.

7. Conclusions

1. The description of the problem of analyzing the object state in special-purpose information systems, which is flexible and universal, is formalized. A criterion for the effectiveness of this method was the efficiency of the process of object state analysis with a given reliability of the obtained estimate. In the course of the research, the concept of the evaluation method in special-purpose information systems is formulated. In this concept, the analysis process is presented as a hierarchical graph. This allows you to create a hierarchical description of a complex process by levels of generalization and conduct an appropriate analysis of its state.

2. We defined the algorithm for implementing the method, which allows:
 - taking into account the type of uncertainty and noise of data;
 - taking into account the available computing resources of the object state analysis system;
 - accurate training of detectors by combining training procedures (lazy training and training procedure developed in [2]);
 - selective use of system resources by connecting only the necessary types of detectors;
 - building a top-level classifier using various low-level schemes for combining them and aggregating compositions.

3. An example of using the proposed method in assessing the operational situation of the group of troops (forces) is given. This example showed an increase in the efficiency of data processing by 12–20% using additional advanced procedures.

Acknowledgments

The author’s team is grateful for assistance in preparing the paper to:
- doctor of technical sciences, professor Oleksiy Kuvshinov – deputy head of the educational and scientific institute of the Ivan Chernyahkovskiy National Defense University of Ukraine;
- honored worker of science and technology of Ukraine, doctor of technical sciences, professor Vadym Slyusar – chief research fellow of the Central Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine;
- doctor of technical sciences, professor Oleksandr Rothstein – professor of the Mahon Lev Jerusalem Polytechnic Institute;
- PhD, associate professor Oleksandr Bashkirov – leading research fellow of the Central Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine.

References

