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This paper presents a numerical realization of the 
Navier-Stokes equations in irregular domains using 
the fictitious domain method with a continuation 
along with the lowest coefficient. To solve numerous 
connected issues in irregular regions, the fictitious 
domain method is broadly used. The advantage of the 
fictitious domain method is that the problem is solved 
not in the original complex domain, but in a few other, 
easier domains. Using the method, computation is 
done easily for a sufficiently wide class of problems 
with arbitrary computational domains.

The problem is solved using two methods. The pri-
mary method is based on the development of a distinct 
issue in variables of the stream function and the vor-
tex velocity using the pressure uniqueness condition. 
The second method is to understand the expressed 
issue by the fictitious domain method with a conti
nuation by lower coefficients.

Using the fictitious domain method, a computa-
tional algorithm is constructed based on the explicit 
finite difference schemes. The finite difference scheme 
is stable and has high computational accuracy and 
it gives the possibility to parallelize. Temperature 
distributions and stream functions are presented as 
numerical results.

A parallel algorithm has been developed using 
Open Multi-Processing (hereinafter OpenMP) and 
Message Passing Interface (hereinafter MPI) tech-
nologies. Within the parallel approach, we used 
OpenMP technology for parallel calculation of vorti
city and stream work, and for calculating tempera-
ture we applied MPI technology. The performance 
analysis on our parallel code shows favorable strong 
and weak scalability. The test results show that 
the code running in the parallel approach gives the 
expected results by comparing our results with those 
obtained while running the same simulation on the 
central processing unit (CPU)
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1. Introduction

The rapid growth of the performance of a modern com-
puter and the development of parallel computing techno
logies contributed to the solution of important practical 
problems in the ecology.

One example of such tasks is the performance evaluation 
and forecasting of air pollution assessment indicators. Due 
to the complexity of mathematical models describing these 
processes, calculations for one domain can take a longer time. 
Therefore, the issue of developing efficient parallel algo-
rithms that can significantly speed up calculations becomes 
relevant. High-performance computing is widely used in 
scientific studies. Every day, computer technologies and hy-
drodynamic models are being developed, which make it pos-
sible to assess and analyze various technological processes.  

In this regard, the efficiency of solving scientific problems 
increases. Many researchers proposed their algorithms using 
various methods for parallel implementation of numerical 
solution of the Navier-Stokes equation.

For numerical modeling of applied problems of hydrody-
namics, ecology with complex geometry, it is effective to use the 
fictitious domain method. When using the fictitious domain 
method, the solution of the problem is not carried out in the 
considered complex domain, it is solved in an easier domain. 
Therefore, this method has a high degree of automation when 
programming in the algorithmic languages.

Currently, there are several methods for the numerical 
solution of boundary value problems in complex geometric do-
mains, such as the method of curvilinear grids and the method 
of fictitious domains. The construction of curvilinear grids for 
the numerical solution of problems requires the transformation 
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of the equation into curvilinear coordinates, which has a more 
complex form than the original equation. When constructing 
curvilinear grids, various requirements are imposed on the 
difference equations, which makes the construction of curvi-
linear grids a complex mathematical problem. 

Therefore, research devoted to the construction of an 
efficient and easily parallelizable finite difference scheme 
and the application of the fictitious domain method for the 
numerical implementation of the Navier-Stokes equation for 
a doubly connected domain is relevant.

2. Literature review and problem statement

To begin with, we present a literature review on the ap-
plication of the fictitious domain method. In [1], the authors 
started widely using the fictitious domain method applying 
it to the elliptic type problems and Navier-Stokes equations. 
They were interested in the estimates for the error functions.

In [2], the fictitious domain method is used to solve 
many problems in computational fluid dynamics. They also 
proposed a methodology that allows the direct numerical 
simulation of incompressible viscous fluid flow past moving 
rigid bodies. They concluded the methodology is particularly 
well suited to the direct numerical simulation of particulate 
flow, such as the flow of mixtures of rigid solid particles and 
incompressible viscous fluids, possibly non-Newtonian.

In [3], the problem of a viscous incompressible fluid flow 
past obstacles with a slip boundary condition according to 
Navier’s law is considered. In this paper, they discussed a least-
squares/fictitious domain method for incompressible viscous 
flow around obstacles with Navier slip boundary condition.

Note that in [1–3] the authors gave clear definitions and 
described the importance of the fictitious domain method 
and implemented this method for solving various problems of 
computational fluid dynamics. The calculation methods were 
based on finite element methods.

In [4], the authors study the two-phase Stokes problem 
with surface tension forces. This paper explores a mixed finite 
element formulation for solving the Stokes problem with 
general surface forces causing a jump in the normal trace of 
the stress tensor at the interface, which splits the domain into 
two subdomains. 

In [5], a fictitious domain method with Distributed 
Lagrange Multipliers for simulating two-dimensional (here-
inafter 2D) unsteady shear-thinning non-newtonian incom-
pressible flow in a single-screw and twin-screw extruder 
is developed. The issues of flow motion with an arbitrary 
density of particles are considered in [6]. 

In [4–6], the authors successfully applied the fictitious 
domain method for numerical simulation of incompressible 
fluids in different areas, carried out theoretical and numerical 
analyses, and also used the finite element method. It is im-
portant to note that the finite element method won’t always 
work for parallel computing.

The work [7] is devoted to the numerical approximation of 
the fluid structure interaction for stabilization of the fluid flow 
around an unstable stationary solution in a two-dimensional 
domain, in the presence of boundary perturbations. Here 
the authors to implement the fictitious domain method ap-
plied the Extended Finite Element method with stabilization 
terms. However, numerical schemes are not clearly described. 

In [8], the energy steadiness of a one-field fictitious do-
main method is demonstrated and approved by numerical 

tests in two and three dimensions. The distinctive feature of 
this strategy is that it understands for one speed field for the 
total fluid-structure domain; the intuitive stays decoupled 
until tackling the ultimate linear algebraic equations.

In [9], the authors proposed a new framework to directly 
simulate super-quadric (hereinafter SQ) particles in fluid 
flows based on a forcing fictitious domain method. Speci
fically, a simple SQ function with five parameters has been 
used to generate different particle shapes. The results of the 
numerical solution and its stability have not been studied.

In [10], the method of fictitious domains with a penalty is 
studied for the Stokes problem with the Dirichlet boundary 
condition. It also introduces some interpolation/projection 
operators, as well as an inf-up condition with a norm depend-
ing on ∈. Using these preliminary data, error estimates for 
the finite element approximation were obtained. 

The paper [11] is devoted to the application of the fic-
titious domain method in the numerical simulation of the 
transducer of impulsive oscillations. In [12], the method of 
fictitious domains with a distributed Lagrange multiplier is 
investigated for parabolic problems of the jump type with 
moving boundaries. 

Application of the fictitious domain method to the problems 
with discontinuous coefficients started in [13]. In [14], the 
dispersed Lagrange multiplier/fictitious domain (DLM/FD) 
finite element method is examined for a non-specific Stokes 
interface issue with hop coefficients, which has a place in a sort 
of linearized stationary fluid-structure interaction issue.

Equations of the elliptic type with strongly varying coef-
ficients are investigated in [15]. In these works, a special me
thod is used for the numerical solution of these equations. For 
this, the estimates for the convergence rate of the numerical al-
gorithm are proved. Based on these estimates, a computational 
algorithm is developed and numerical calculations are carried 
out to illustrate the effectiveness of the proposed method.

In [16], the fictitious domain method is successfully im-
plemented for the elliptic equation and a theorem is proved for 
the rate of convergence of the iterative process developed. But 
the parallelization of numerical solutions is not considered.

One of the first works devoted to paralleling of the compu-
tational algorithms using the fictitious domain method started 
in [17]. Namely, a parallel computational algorithm is construc
ted for the three-dimensional Helmholtz equation. However, 
the parallel algorithm is not clearly and thoroughly described.

In [18], a parallel direct-forcing (DF) fictitious domain 
method for the simulation of particulate flows is proposed. 
Here, the authors developed an efficient parallel code of the 
fictitious domain method. The parallel approach was based on 
an implicit finite difference scheme and explicit finite difference 
scheme using MPI technology. However, the parallelization 
of a tridiagonal matrix system is not clearly described here. 

The paper [19] describes the possibilities of using the ficti-
tious domain method for problems of biomechanics. However, 
there is no justification for the convergence and stability of 
the difference scheme and clear description of parallelization. 

The work [20] suggested parallelization of the three-di-
mensional Navier-Stokes equation based on an implicit 
difference scheme. Here, parallelization processes are not ex-
plicitly described. In [21], another parallel numerical imple-
mentation of the 2D Navier-Stokes equation using pseudo- 
spectral methods is proposed. In this work, the authors par-
allelized two-dimensional spectral codes by combining the 
Parallel Task-Distribution (PTD) and Parallel Fast Fourier 
Transform (PFFT) schemes. And it showed a significant  
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improvement in parallel efficiency. But the strategy used only 
MPI technology. In [22], a parallel computational code for 
the numerical integration of the Navier-Stokes equations us-
ing the fourth-order Runge-Kutta scheme is developed. The 
paper does not consider the problems of the Navier-Stokes 
equation in doubly connected areas. In [23], a hybrid im-
plementation was developed using the MPI, OpenMP and 
Compute Unified Device Architecture (CUDA) technolo-
gies and showed that this implementation gives good results.

Most ongoing research is still often based on finite ele-
ment methods to implement fictitious domain methods for 
the Navier-Stokes equations since it does not always succeed 
in parallelization. Little attention has been paid to paral-
lelization using the possibilities of modern heterogeneous 
computer architecture.

Let us dwell on the advantages and disadvantages of the 
above variants of fictitious domain methods. The fictitious 
domain method proposed and implemented in the works 
allows satisfying the boundary conditions on the actual 
boundary using variational principles. This process in some 
cases may even behave worse than the solution of the original 
problem on a non-uniform grid consistent with a curvilinear 
boundary. The results of numerical calculations show con-
vergence to the solution in the «average» due to the use of 
variational principles, that is, the functional containing the 
main equation and the boundary condition is minimized.  
In this paper, the authors propose an explicit finite difference 
for the numerical solution, which was later implemented in 
parallel computing.

This review allows us to claim that it is reasonable and 
necessary to study the parallel numerical implementation 
of the Navier-Stokes equation in doubly connected domains 
using the fictitious domain method.

3. The aim and objectives of the study

The aim of this study is to solve numerically Navier- 
Stokes equations in doubly connected domains by the ficti-
tious domain method using parallel computing technologies.

To achieve this aim, the following objectives are accom-
plished:

– to formulate a finite difference scheme for Navier- 
Stokes equations in irregular domains using the fictitious 
domain method;

– to develop a computational algorithm to solve finite- 
difference problems and present numerical results;

– to develop a parallel approach for the numerical simulation 
of the Navier-Stokes equation in doubly connected domains.

4. Materials and methods

4. 1. Mathematical model
In this section, we study the changes in the temperature 

and stream function in the domain as shown in Fig. 1.
Fig. 1 shows the physical domain with the boundary con-

ditions of the problem. All variables presented in the figure 
are described after equations (1)–(6).

To simulate convective flows, we consider the Navier- 
Stokes equations in the Boussinesq approximation:
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where u, v are the velocity components, p is the pressure,  
θ is the temperature, Re is Reynolds number, Gr is Grashof 
number, Pr is Prandtl number, ∂D = γ1∪γ2 is the boundary of 
the domain D, D  is the closed domain with boundary.
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Fig. 1. Physical domain

It is convenient to solve problem (1)–(6) by eliminating 
pressure from the equations of motion and introducing new 
variables – stream function ψ and vortex of velocity ω. Inte-
gral conditions for pressure uniqueness play an essential role. 
In [24] for the unique solvability of the difference scheme for 
the Navier-Stokes equation, the pressure uniqueness condi-
tion of the following form is added to the system of equations:

p x y x y
D

, .( ) =∫∫ d d 0 	 (7)

The need to formulate a condition of the form (7) is due 
to the fact that the difference analog of (3) is not linearly 
independent. The work [25] proposed another version of the 
pressure unambiguity condition written as:
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where Π is the full pressure.
Let us introduce the stream function ψ and the vortex of 

velocity ω related to the velocity components by the follow-
ing relations:
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The problem (1)–(6) in variables ψ, ω can be written as 
follows [25]:
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where α, j, ξi, ηi, βi, i = 1,2 are given functions, 


n  is the out-
ward normal to the boundary ∂D.

Note that condition (8) can be written in the follow-
ing  form:
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To solve numerically the problems (10)–(16) we need to  
approximate them to finite-difference schemes, which is pre-
sented in detail in the next section.

The numerical experiment was carried out on a compu
ter with the following technical characteristics: CPU Intel  
Core (TM) i7-9800X, 3.80 GHz, RAM 64 GB, NVIDIA  
GeForce RTX 2080 TI ОС Windows 10 Pro. All calculations 
were made in the C++ programming language and visualiza-
tion was obtained using the Tecplot program.

5. Results of the study of a parallel algorithm  
for the numerical solution of the Navier-Stokes equations 

in irregular domains

5. 1. Finite difference scheme
The solution of the difference analog of the problem 

(10)–(17) will be sought in the form:
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where n is the number of iterations.
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Let us build a uniform mesh in the domain D by:
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where h1 = l1/(n1–1), h2 = l2/(n2–1). Suppose that the inner 
subdomain D0 is a rectangle of the following form:

D

x y x x x y y y

x i h y j h

i
h

k k m m

i j0 1 2

1 2 1 2

1 1

1 2

=
( ) ≤ ≤ ≤ ≤

= − = −

=

, : , ,

( ) , ( ) ;

, ,, , , , , ,

,

… = …















n j n1 21 2

Nodes of a uniform grid are constructed in the domain D.  
Consider the domain D1 covering the domain D0, i.e. D0⊂D1, 
D1 = {(x, y), xk3 ≤ x ≤ xk4, ym3 ≤ y ≤ ym4}. Consider a difference ana-
log of the condition (17) and substituting the expansion of the 
form (18). To determine λn+1, we obtain the following equation:
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Here, g is the acceleration of gravity, x is the forward 
difference, ( , ) x y  are the central differences, x , y are the 
backward difference and defined by the following formulas:
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By the fictitious domain method, let us consider the fol-
lowing problem auxiliary to (10)–(17):
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for the small parameter ε>0.
To solve numerically this problem in the multiply con-

nected domain, in what follows we will work with the explicit 
difference scheme corresponding to the problem.

5. 2. Computational algorithm to solve finite-diffe
rence problems and numerical results

Here, we present a sequential algorithm based on the 
stable explicit difference scheme (18)–(25). The algorithm 
for solving the problem (10) is shown in Algorithm 1. Here, 

to get a convergence value of ψ, we use the «while» cycle and 
quite small ε, in our case ε = 10–7.

Algorithm 1. Sequential algorithm for solving the equa-
tion (10):

1:  get the input parameters n1, n2, ε, L, T, m0...
2:  �initialize ψ0, ω0, θ0 with initial values and boundary 

conditions
3:  while (t<T) do
4:    for i←1 to n1 do
5:      for j←1 to n2 do
6:        calculate ω1

7:      end for
8:    end for
9:    while k0<m0 do
10:     k0 = k0+1
11:     for i←1 to n1 do
12:       for j←1 to n2 do
13:         calculate ψ1

14:       end for
15:     end for
16:     swap (ψ0,ψ1)
17:     ψ1–ψ0< ε break;
18:   end while
19:   �Set the boundary condition for ω1 by the Ohm’s 

formulas
20:   for i←1 to n1 do
21:     for j←1 to n2 do
22:       calculate θ1

23:     end for
24:   end for
25:   swap (ω0, ω1)
26:   swap (θ0, θ1)
27:   t←t+∆t
28:  end while

Numerical results. Here, we present numerical simulations. 
Algorithm 1 is used to numerically solve the test prob-
lem (10)–(16) for the Navier-Stokes equations of a viscous 
incompressible fluid in variables, stream function, vortex of 
velocity in the Boussinesq approximation.

Fig. 2–4 present the results of numerical calculations of 
the isolines of stream function and temperature.

 
Fig. 2. Isolines of stream functions. The size of 	

the cavity 1.0×1.0, at the inner boundaries θ = 0.5, 	
Pr = 5.39, Gr = 100
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Fig. 3. Isotherms. The size of the cavity 1.0×1.0, at the inner 

boundaries θ = 1.0, Pr = 5.39, Gr = 100

 
Fig. 4. Isotherms. The size of the cavity 1.0×1.0, temperature 
of the right sides of the boundaries θ = 0.5, left side θ = –0.5, 

Pr = 5.39, Gr = 100

Temperature distributions and stream functions are pre-
sented as numerical results. The results are obtained for 
different sizes of the cavity, temperature regimes at the 
boundary, and values that determine the flow of dimensionless 
parameters, which are the Grashof Gr and Prantl Pr numbers. 

5. 3. Parallel approach to parallelize the sequential 
algorithm for numerical simulation of the Navier-Stokes 
equation in doubly connected domains

From the results of the calculations in the sequential 
algorithm, we see that the calculation of the temperature θ 
takes the longest time, that is, 60 % of the total calculation 
time since the calculation is performed on 4 separate subdo-
mains. 15 % of the time is spent calculating the stream func-
tion ψ and calculating ψ using just two cycles. The rest of the 
computation time is spent on calculating the vortex velocity 
ω and initializing the initial conditions.

An explicit scheme for solving this problem allows using 
the parallelism of multi-core processors. When organizing pa
rallel computing, we use the above data. That is, we calculate 
the temperature and psi in parallel. For parallel computing, we 
use MPI and OpenMP technologies. We use OpenMP tech-
nology for parallel calculation of vorticity and stream function, 
because this technology is very convenient for calculating  

cycles, and for calculating temperature we use MPI techno
logy, that is, we use the MPI+OpenMP approach (Fig. 5).

 

Preprocessing 
Allocate CPU memory 

Compute initial condition 
 

Compute vorticity  

Compute stream function  

Compute temperature 
 

Retrieve results 

Time iteration 

OpenMP part ω1  

MPI part θ1  
Divide into 4 subdomains 
and calculate separately 

 

Get final results 

OpenMP part ψ1 

Fig. 5. MPI+OpenMP approach

Geometric decomposition of the grid region is chosen 
as the main approach to parallelization. In this case, we use 
two-dimensional decomposition (Fig. 6). After the stage of 
decomposition, when the data is divided into blocks to build 
a parallel algorithm, we proceed to the stage of establishing 
connections between blocks, calculations in which will be 
performed in parallel, planning communications.

 

  

  

Fig. 6. Geometric data decomposition

Due to the used template of the explicit difference 
scheme, to calculate the next approximation at the border 
nodes of each subdomain, it is necessary to know the values 
of the grid function from the adjacent bordering processor 
element. For this purpose, fictitious cells are created at each 
computational node to store data from a neighboring com-
putational node, and transfers of these boundary values are 
organized, which are necessary to ensure the homogeneity of 
calculations by explicit formulas.

Computational experiments. All calculations and tests 
were carried out on a personal computer core i9, 9th gene
ration RAM 32GB and NVIDIA Geforce RTX 2080 Ti. 
The performance of a parallel algorithm is determined by 
calculating its speedup. In strong scaling, speedup is defined 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/4 ( 116 ) 2022

44

as the ratio of the execution time of the sequential algorithm 
for a particular problem to the execution time of the paral-
lel algorithm:

S
T
T

s

p

= ,

where S is the speedup, Ts is the computational time for 
running the program using one processor, Tp is the computa-
tional time running the same program with p processors. The 
efficiency is defined as the ratio of speedup to the number  
of processors.

Efficiency measures the fraction of time for which a pro-
cessor is usefully used:

E
S
p

T
pT

s

p

= = ,

where p is the number of processors. The test results are pre-
sented in Fig. 7, 8.
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Next, we study the weak scalability of the solver. The 
mesh size per core is set to 500×500. We increase the number 
of nodes and measure the execution time for 100 iterations. 
The test results are presented in Fig. 9.

We observe in Fig. 9 that the execution time increases 
with the number of cores. This increase of time is due to 
a larger amount of information exchanged as we increase the 
total mesh size.
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Fig. 9. Weak scaling of the solver (MPI+OpenMP 
implementation)

6. Discussion of the results of the study on the numerical 
solution of the Navier-Stokes equations in two-connected 

domains and parallelization

Formulation of a finite difference scheme. We have con-
structed a finite difference scheme for the Boussinesq appro
ximation (the initial boundary difference problem (10)–(16) 
for the numerical solution of the nonlinear system of the 
Navier-Stokes equations in two-connected domains.

The problem is solved using two methods. The first 
method is based on the construction of a difference problem 
in variables of the stream function and the vortex velocity 
using the pressure uniqueness condition. This condition 
allows us to determine the coefficient used in (18). The 
solutions for the stream function and the vortex velocity 
are found as the sum of two simple problems. The developed 
algorithm converges uniformly at a certain number of itera
tions, and using the developed numerical algorithm, more 
accurate results are obtained.

The second approach to solving the stated problem is by 
the fictitious domain method with a continuation by lower 
coefficients (26)–(31). The solution of the problem is found 
with accuracy. This method is simple to implement and does 
not require satisfaction of the pressure uniqueness condition.

Numerical solution. We present the calculation algorithm, 
the algorithm is based on an explicit finite difference scheme 
and used ε = 10–7 to achieve high computational accuracy.

The above-described algorithm 1 numerically solved the 
tasks. The calculations used a uniform grid with dimensions 
100×100, 500×500, 1,000×1,000, 2,000×2,000. The numerical 
experiment was carried out on a personal computer config-
ured with 10th generation RAM 32 GB Intel i7 core proces-
sors, 2.40 GHz series. To visualize the obtained results, the 
Tecplot program was used, the results obtained are presented 
in Fig. 2–4. Fig. 2 shows the isolines of the stream functions, 
and Fig. 3, 4 show isotherms with different parameters at  
the boundaries.

Parallelization. To deal with parallelization we use OpenMP  
and MPI technologies. OpenMP is used to calculate vorti
city and stream functions because they are calculated by just 
two-cycle, to calculate temperature function we use MPI 
technology. By comparing the calculation time of serial and 
parallel algorithms we can see that parallel algorithm gives 
quite high results.

On this topic, there are several methods for the numerical 
solution of boundary value problems in complex geometric  
areas, one of them is the fictitious domain method. The rest of 
the methods are based on curvilinear meshes, and when con-
structing curvilinear meshes, different requirements are im-
posed on the difference equations, which makes the construction  
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of curvilinear meshes a complex mathematical problem. 
When solving the problem by the fictitious domain method, 
there is no need to build a curvilinear grid. This makes it easier  
to solve the problem, since the original equation remains un-
changed. One disadvantage of this work can be noted that an 
explicit scheme is used to solve the problem, it is necessary to 
take into account the Courant-Friedrichs-Lewy (CFL) con-
dition, which affects the computational time. In the future, 
the authors plan to use other methods that do not require the 
fulfillment of the CFL condition.

Further research will be aimed at creating parallel algo-
rithms and speeding up computations associated with solving 
nonlinear problems of multiphase filtering by finite element 
methods using the hardware-software architecture of parallel 
computing Compute Unified Device Architecture (CUDA).

7. Conclusions

1. An explicit finite difference scheme is constructed for 
the numerical solution of Navier-Stokes equations in irre
gular domains with a continuation by the lowest coefficient. 
This difference scheme for the numerical solution of the for-
mulated problem is Courant-Friedrichs-Lewy (CFL) stable. 

To illustrate the efficiency and stability of the constructed 
scheme, calculations were carried out on uniform grids with 
different dimensions.

2. Using the fictitious domain method, a computational 
algorithm is developed to solve auxiliary finite-difference 
problems. Note that this method does not require satisfaction 
of the pressure uniqueness condition and in this algorithm, 
we implement the Jacobi method because this method sim-
plifies parallelization.

3. A parallel algorithm for the numerical solution of the 
Navier-Stokes equations in irregular domains using OpenMP 
and MPI technologies is developed. OpenMP technology is 
used to calculate the vorticity and stream functions, MPI 
technology is used to calculate the temperature function. 
The results of computational experiments show that the use 
of parallel algorithms using MPI+OpenMP for this kind of 
tasks gives a good acceleration. 
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