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Recycling is one of the most important approach-
es to safeguard the environment since it aims to
reduce waste in landfills while conserving natural
resources. Using deep Learning networks, this group
of wastes may be automatically classified on the belts
of a waste sorting plant. However, a basic set of con-
nected layers may not be adequate to give satisfacto-
ry accuracy for such multi output classifier tasks. To
optimize the gradient flow and enable deeper train-
ing for network design with multi label classifier, this
study suggests a residual-based deep learning con-
volutional neural network. For network training, ten
classes have been explored. The Directed Acyclic
Graph (DAG) is a structure with hidden layers that
have inputs, outputs, and other layers. The DAG net-
work's residual-based architecture features shortcut
connections that bypass some levels of the network,
allowing gradients of network parameters to travel
freely among the network output layers for deeper
training. The methodology includes:

1) preparing the data and creating an augmented
image data store;

2) defining the main serially-connected branches
of the network architecture;

3) defining the residual interconnections that
bypass the main branch layers;

4) defining layers, and finally;

5) creating a residual-based deeper layer graph.

The concept is to split down the multiclass clas-
sification problem into minor binary states, where
every classifier performs as an expert by concen-
trating on discriminating between only two labels,
improving total accuracy. The results achieve
(2.861 %) training error and (9.76 %) a validation
error. The training results of this classifier are eval-
uated by finding the training error, validation error,
and showing the confusion matrix of validation data
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1. Introduction

Recycling is one of the majority significant ways of
environmental protection, to reduce waste in landfills
while also conserving natural resources. The term “recy-
cling” refers to the process of transforming materials or
substances present in trash throughout the manufactur-
ing method in order to get the material or substance for
reuse or other functions, including natural recycling, but
not energy recovery. The amount of rubbish produced in
the previous century increased dramatically. At the same
time, the idea of their reuse emerged, and one pointed out
that waste disposed of in landfills is not environmentally
friendly. Using computer vision algorithms, this group
of debris may be automatically chosen on the belts of a
waste sorting plant. The classification belt for sorting
plastic bottles and types of these recycled waste are shown
in Fig. 1.
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Fig. 1. Recycling plant: @ — belt of sorting;
b — ten types of plastic bottles

The exact characteristics of locales where genuine ob-
jects will be found should be reflected in digital photographs
of items that will be processed. Many real-world machine
learning issues require learning representations of data of




graph demonstration; hence there has been a strong push in
the representation learning community to adopt deep learn-
ing approaches for graph-structured data, either as input or
output of the model. Almost all of these strategies, however,
only consider the input or output graph space, not both. In
image segmentation, deep learning has greatly decreased the
requirement for manual feature selection. Network architec-
ture optimization and hyper parameter tuning, on the other
hand, are mostly manual and time-consuming [1]. In some
applications, a simple sequence of network layers is satis-
factory. In contrast, other applications necessitate networks
of complex graph configuration, where layers may have
outputs to multiple layers and inputs from hidden layers.
Such kinds of networks are usually named Directed Acyclic
Graph (DAG) networks. DAG networks not only merge the
feature classification and extraction stages of input estimates
into a single automated learning operation, but they also use
multi-scale features and automatically combine the scores
of several classifiers. The performance of such models can be
improved by fine-tuning them [2].

DAG-CNN sounds complex, but it’s not. A graph is made
up of vertices (or points) and edges (or lines) that show how
the vertices are connected. The boxes are sometimes called
vertices or the lines that connect the boxes in a graph are
called edges or arcs. A directed graph with no directed cycles
is referred to as a DAG in mathematics and computer science.
That is, it is made up of edges and vertices, which are also
known as arcs, that are directed from one vertex to the next
in such a way that following those directions will never result
in a closed-loop. If and only if the vertices of a directed graph
can be topologically ranked in a linear order that is consistent
across all edge directions, it is called a DAG. From biology
(evolution, family trees, epidemiology) to sociology (citation
networks) to computation, DAGs have a wide range of scien-
tific and computational applications (scheduling).An acyclic
graph has a rule about avoiding cycles and this is the directed
part of a dag, which means that the flow has a defined direc-
tion. Therefore, all together form a graph with the rule that
the flow goes in a specific direction, and that it contains no
cycles. Four types of the graph are shown in Fig. 2.
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Fig. 2. Several types of graph: a — simple graph; 6 — simple
digraph; ¢ — digraph with a highlighted cycle; d — simple dag

The data in a graph database is stored in the form of nodes
and connections. These nodes and connections are what we

call a graph. Several kinds of research reveal that the Direct-
ed Acyclic Graph (DAG) is a significant approach to expand
a robust automated and consistent diagnosis process for the
multi-class image classifications [3,4]. Thanks to recent
advances in the field of computer vision, particularly deep
learning, many fully connected and convolutional neural
networks have been trained to achieve state-of-the-art per-
formance on a wide variety of tasks, including speech recog-
nition, image classification, and natural language processing.
Most deep learning models for classification tasks, on the
other hand, use the softmax activation function to anticipate
and minimize cross-entropy loss [5]. This architecture has
been used with child maltreatment [6]. DAG-CNN elimi-
nates the need for hand-crafted features to be extracted [4].
Recycling is an important strategy for protecting the
environment since it tries to reduce waste in landfills while
conserving natural resources. This category of garbage could
be automatically classified on the belts of a waste sorting fac-
tory using deep learning networks. Therefore, it is very im-
portant to conduct research on this topic, and the results of
such research are necessary for environmental sustainability.

2. Literature review and problem statement

Deep convolutional Directed Acyclic Graph (DAG) is
discussed by several studies in different applications. In med-
ical applications, the paper [7] used DAG to classify leukemia
disease based on microscopic images. Different deep learning
algorithms have been examined including Directed Acy-
clic Graph (DAG) networks, MobileNet-v2, Inceptionv3,
VGG-16, VGG-19, AlexNet, residual networks ResNet-18,
Inception-ResNet-v2, GooglLeNet, Xception, DenseNet-201,
ResNet-50 and ResNet-101. The obtained accuracy was
100 % for all except for VGG-16 AlexNet. Although the
study compared different networks, the applications were
limited to a relatively small number of blood smears images.
In the same context, the study [3] addressed the application
of Melanoma skin lesions, where dermoscopic images were
acquired for nevi, seborrheic keratosis, and melanoma. The
study used ISIC 2018 public dataset and obtained an accura-
cy of (76.6 %). However, the architecture didn’t achieve high
accuracy to classify the skin lesion images.

Alzheimer’s disease in magnetic resonance imaging rep-
resentation was discussed by [8], where three public datasets
including MIRIAD, ADNI-2, and ADNI-1 were employed.
Although the morphological and statistical analysis was used
to identify the anatomical feature patches in the gray matter
imaging to extract the discriminative deep features of picture
representation using DAG, this system may only forecast the
individual’s risk of Alzheimer’s disease and the study didn’t
show quantitative accuracy for the presented classifier. 3D
medical image segmentation for 43 3D-brain magnetic res-
onance images was studied in [1]. The study achieved an
average Dice coefficient of 82 % but it was implemented with
the complicated architecture of more than 100 layers. The
paper [4] classified heartbeats of electrocardiogram (ECG)
signals. The dataset (MIT-BIH arrhythmia benchmarks)
was used to verify the proposed idea. However, they predict
output label was not clear and complex.

In another application, the images of time series crude oil
prices were classified into “sell” or “buy” by using DAG and
CNN structure [9], and in quality control systems of food
in [10]. Although their results of DAG performed better with



a sensitivity of 100 %, specificity of 99.19 %, and an accuracy
of 99.16 %, this work presented a very complex architecture.
The paper [2] applied the DAG network with facial age
estimation using publicly available Morph-11 and FG-NET
databases. However, this work is limited to classifying lim-
ited images. This limitation has been avoided by [10], where
the DAG has been applied on 1600 test images classification
with 94.43 % accuracy.

In most classification problems, basic layer sequences
might be sufficient to achieve acceptable accuracy. In
some other applications, networks with a more sophisti-
cated graph structure, in which layers can receive inputs
from many layers and outputs from multiple layers, are
required. Directed acyclic graph (DAG) networks are
the most common type of network. The primary network
layers of a DAG with a residual network are shortcut or
bypassed the residual connections. The advantage of such
residual links is to allow network parameters to gradient
and move further simply between the output layer and
the network earlier layers. This allows training deeper
networks with flexibility. Superior accuracy can obtain on
increasingly challenging tasks that may achieve therefore
greater network strength.

3. The aim and objectives of research

The aim of research is to develop a plastic recycling clas-
sifier by deep learning and directed acyclic graph residual
network to get accurate classification results.

To achieve this aim, the following objectives are accom-
plished:

— to train the developed DAG network so that it can clas-
sify 10 kinds of plastic bottles of non-uniform shape and size;

—to evaluate the training DAG network via confusion
matrix for the validation images;

— to compare the developed DAG classification network
with other residual networks U-net CNN.

4. Methods and materials

There are 40,000 images in the data set. Each image has
three color channels and is 64x64 pixels in size (RGB) [11].
Each item in this database should be presented throughout
numerous image collections, taking into consideration vari-
ous lighting circumstances, positioning relative to the image
recorder, and the degree of distortion. The images in the col-
lection were sorted into groups based on the type of material
used to build the unique objects.

The methodology includes the following steps:

1. Preparing the data by downloading the dataset, spec-
ifying images type, size, and creating an augmented image
data store. 80 % of the dataset is used as training images,
while the remaining 20 % are used for testing and validation.
Fig. 3 shows a sample of the dataset.

Throughout the training stage, the data-store arbitrarily
flips the trained images over the perpendicular and converts
them to four vertically and horizontally pixels. Augmenta-
tion of data allows preventing the network from over-fit and
memorizing the precise information of the trained images.

2. Defining the main serially-connected branches of the
network architecture, convolutional and ReLu layers, and
batch normalization. Fig. 4, a shows the serially-connected
convolutional layers.

3. Defining the residual interconnections that bypass the
main branch layers, as shown in Fig. 4, b.

4. Defining global average-pooling layers, softmax,
Fully-Connected, and classification units and, as shown
in Fig. 4, c.

5. Creating a residual-based deeper layer graph. The
concept is to split down the multiclass classification problem
into minor binary states, where every classifier works as a
professional by focusing on discriminating between only two
labels, improving total accuracy as shown in Fig. 4, d.

Therefore, the created network is a deep residual network
of 16 widths and 9 normal convolutional elements (3 for each
stage). As a result, 20 (2*9+2) is the overall network depth.
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Fig. 4.The developed deep network: a — serially-connected convolutional layers; b — bypassing the main branch layers;
¢ — defining softmax, fully-connected, and classification units;
d — network with residual-based deeper layer graph

5. Results of the developing recycling classifier

3. 1. Training the developed DAG network classifier

The MATLAB-based environment has been used to im-
plement the developed DAG network. The developed DAG
network has been trained for 85 epochs with a learning rate pro-
portional to the size of the mini-batch. The final DAG network

of the developed structure is shown in Fig. 5, while a picture for
the table describing the network parameters is shown in Fig. 6.
The training progress of the developed DAG network to
classify 10 kinds of bottles is shown in Fig. 7.
The training process has been stopped on the 29t Epoch
of 80 with 536 minutes elapsed time, where the accuracy
converges to 98 % and the loss to 0.05.
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Fig. 5. DAG network of the developed structure: @ — 1! stage; b — 2" stage; ¢ — 3™ stage
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Fig. 7. The training progress of the developed DAG network to classify 10 kinds of plastic bottles




5. 2. Results of the trained network evaluation

To evaluate the trained DAG network for the applied
dataset, accuracy is obtained. The confusion matrix for the
validation images is shown in Fig. 8.

Confusion Matrix for Validation Data

The values of Table 1 show that the performance param-
eters of the developed DAG classification network perform
better as compared with the U-net CNN network.

6. Discussion of the results of

developed DAG Network

The learning rate has been decreased
by a factor of 10 on every 55 epochs, while

the validation process occurred at each

epoch with the use of the corresponding

validation images. The input images have
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been reduced to 50 % in size to speed up
the training process, which has been per-
formed on a 1.7GHz CPU computer and
elapsed about 536 minutes. Therefore,
the designed trained DAG network was
able to classify 10 kinds of plastic bottles

C2 C3 C4 C5 Co6 C7T CB

Predicted Class

Fig. 8. The confusion matrix for the validation images

This figure shows the recall and precision of each label /class
based on a row-column summary. C1 to C5 represents the class-
es of the bottles in the images of the dataset. It is found that
the developed DAG classification network most commonly
perturbs C6 with C4 images.

5. 3. Results of the comparison with ResNet50 network

Global accuracy, mean accuracy, Intersection Over-
Union (IOU), mean BF-scores, and weighted IOU are used
to evaluate how well the model performs in segmentation
tasks. Global accuracy refers to the proportion of correctly
identified pixels in each class that are higher than the to-
tal number of pixels, whereas mean accuracy refers to the
average percentage of properly identified pixels in each
Label/class. The mean IOU, also identified as the Jaccard
similarity coefficient, is the averaged 10U of each class.
IOU is defined by:

10U =L.
Tp+Fp+Fn

The letters Fp, Fn, and Tp stand for false positives,
false negatives, and true positives respectively. To prevent
the larger class from overlapping the smaller class, the
weighted IOU specifies how many pixels of each class are
weighted in the inconsistent pixel label/class. The per-
formance parameters of the developed DAG classification
network as compared with the U-net CNN network are
shown in Table 1.

Table 1

Performance evaluation of the developed DAG
classification network

Network | Mean | Weighted | Global Mean | Training
name 10U 10U accuracy | accuracy time
U-net 0.5587 | 0.9397 0.9625 0.9048 | 542 min
DAG "~ 1069313| 09846 | 09898 | 0915 | 536 min

network

c9 Cl10o

of non-uniform shape and size as indicat-
ed in Fig. 7.

The evaluation of the training DAG
network has been performed by the con-
fusion matrix in Fig. 8, which shows the
recall and precision of each label/class based on a row-col-
umn summary. It is found that C1 to C5 represents the
classes of the bottles in the images of the dataset and the
developed DAG classification network most commonly per-
turbs C6 with C4 images.

The comparison of the performance evaluation of the
developed DAG classification network with a U-net CNN
network shows that the developed network is better to clas-
sify such type of dataset as indicated in Table 1.

The advantage of the developed DAG classification
network with residual layers allows network parameters to
gradient and move further simply between the output layer
and the network earlier layers. This allows training deeper
networks with flexibility.

Although the accuracy of the constructed DAG classifica-
tion network was satisfactory for building a computer-based
classifier, the disadvantage of the study was the longer
training time as compared with U-net CNN as indicated in
Table 1. In addition, the visual satisfaction was a time-con-
suming way. However, these issues may be taken into account
in future work, which could be with a fully automated system
incorporating all of the preceding phases.

7. Conclusions

1. The training of the developed DAG classification netn
work was able to classify ten types of bottles images from a
cover belt of non-uniform shape and size. The created net-
work was a deep residual network of 16 widths and 9 normal
convolutional elements (3 for each stage).

2. The training error was about 2.862 %, while the validar
tion error was 9.76 %. The confusion matrix evaluation of the
training process of the developed DAG network showed that
the developed DAG classification network most commonly
perturbs C6 with C4 images as they are very similar.

3. The comparison with the U-net CNN network [12]
showed that the performance parameters of the developed
DAG classification network perform better when evaluated



with the parameters; Global accuracy (0.9898), mean accura-  (0.69313), weighted IOU (0.9846), and (536 min) for the
cy (0.915), Intersection Over-Union (IOU) mean BF-scores  training time.

10.

11.
12.
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