Розглянуті питання створення ЗD-моделей металорізального верстата фрезерно-сведлильно-розточного типу за допомогою сучасної САПР КОМПАС з повним використанням її функціональних можливостей і максимальним використанням прикладних бібліотек. Дослідження жорсткості шпиндельного вузла верстата реалізовано в модулі АРМ FEM, інтегрованого в КОМПАС за допомогою метода кінцевих елементів

Ключові слова: верстат, 3D-модель, шпиндель, жорсткість, черв'як, поворотний стіл, беззазорна передача

Рассмотрены вопросы создания 3D-моделей металлорежущего станка фрезерно-сверлильно-расточного типа с помощью современной САПР КОМПАС с полным использованием ее функциональных возможностей и максимальным применением прикладных библиотек. Исследование жесткости шпиндельного узла реализовано в модуле APM FEM, интегрированного в КОМПАС, с помощью метода конечных элементов

Ключевые слова: станок, 3D-модель, шпиндель, жесткость, червяк, поворотный стол, беззазорная передача

1. Введение

В современном станкостроении увеличивается доля многофункциональных металлорежущих станочных комплексов, реализующих производство разнообразных конструкций со сложными формообразующими движениями. Все шире используется дополнительная модульная оснастка. расширяющая технологические возможности - различные типы инструментальных магазинов, накладные поворотные столы, шпиндельные головки со встроенными узлами точного позиционирования. Дальнейшее развитие станкоинструментальной отрасли зависит от эффективности процессов создания программно управляемых станочных комплексов с помощью систем автоматизированного проектирования, что предполагает проведения цикла конструкторских и исследовательских работ по совершенствованию создаваемых конструкций.

2. Цель и задачи исследования

Целью работы является совершенствование процесса проектирования специализированного станка с ЧПУ с использованием интегрированных САПР на базе 3D-моделирования и поиска оптимальных вариантов конструкции по критерию прочности и жесткости.

Для достижения данной цели в работе рассматриваются следующие задачи:

УДК 621. 952. 5

ТРЕХМЕРНОЕ МОДЕЛИРОВАНИЕ МНОГО-ОПЕРАЦИОННОГО СТАНКА МОДЕЛИ СВМ1Ф4 В СРЕДЕ КОМПАС 3D

О. С. Кроль

Кандидат технических наук, доцент* E-mail: snu@edu.ua

И. А. Сухорутченко*

E-mail: snu@edu.ua

*Кафедра процессов обработки материалов, станков и инструментов Восточноукраинский национальный университет им. В. Даля

кв. Молодежный, 20-а, г. Луганск, Украина, 91034

- 1. Разработать 3D-модель специализированного станка фрезерно-сверлильно-расточного типа с использованием специализированных библиотек расчета и проектирования системы КОМПАС 3D.
- 2. Дать оценку работоспособности формообразующего шпиндельного узла станка с помощью метода конечных элементов, реализованного в модуле APM FEM, интегрированного в среде КОМПАС 3D.
- 3. Предложить конструкцию поворотного стола станка, обеспечивающего компенсацию кинематической погрешности обработки (при позиционировании заготовки) за счет применения беззазорной червячной передачи.

3. Литературный обзор

Внедрение дорогостоящего программного обеспечения CAD/CAE/PDM систем автоматизированного проектирования для средних и малых предприятий машиностроительного профиля, занимающихся и проектированием и исследованием различных конструкций, не представляется возможным. Внедрение «легких» недорогих САПР, которые характеризуются ограниченными функциональными возможностями, приводит к проблемам интеграции и совместимости с другими системами. Встраивание в системы CAD [1–3] отдельные модули исследовательского типа (САЕ — Сотрите Aided Engineering) зачастую тоже не удовлетворяет проектировщика упрощенным решением задач моделирования конструкций.

В связи с вышеизложенным, возникает проблема выбора таких систем автоматизации проектной деятельности, которые, с одной стороны, были бы доступны по цене малым и средним машиностроительным предприятиям, а с другой обеспечивали эффективное решение конструкторских задач.

Перспективным инструментарием для станкостроительной отрасли является интегрированная САПР КОМПАС 3D [4].

Такая проблема возникает перед станкостроителями при решении задачи проектирования сложных и ответственных шпиндельных узлов. Шпиндельный узел (ШУ) является одним из основных элементов многооперационного металлорежущего станка, в значительной мере определяющий точность и производительность процесса обработки. Постоянный поиск новых решений для достижения высоких технико-экономических показателей приводит к частой смене моделей многооперационных станков. Поэтому создатели новой техники должны использовать все достижения в области анализа тенденций развития, 3D-моделирования и оптимизации конструкций проектируемых станков.

Эффективность процесса создания металлорежущих станка зависит от уровня качества формообразующих узлов [5]. Шпиндельный узел (ШУ) являющийся исполнительным органом несущей системы многооперационного станка, оказывает решающее влияние на жесткость, виброустойчивость и производительность станка в целом [6]. Оценка точности шпиндельного узла осуществляется с учетом той части, которую вносит ШУ в суммарную погрешность обработки [7]. Эти исследования показали, что в формировании показателей точности взаимного расположения поверхностей и точности формы влияние шпиндельного узла составляет соответственно 50...80 % и 60...90 % в общем распределении точности станка.

Известны работы [8], посвященные рассмотрению формообразующих узлов станков как сложных механических систем с помощью комплекса моделей, включающих:

- упругодеформационную, определяющую нагрузки, деформации и жесткости ШУ;
- динамическую, определяющую собственные частоты и передаточные функции системы;
- вибрационную, определяющую амплитудный спектр скоростей и перемещений.

Но все эти модели рассматривали ШУ в 2D-формате и не предоставляли полного представления о полях напряжений и перемещений в пространстве 3D и не предполагали использование метода МКЭ.

С другой стороны, работа [9] используют технологии и инструментарию 3D-моделированию без рассмотрения процедур принятия оптимальных решений.

4. Создание 3D-модели многооперационного станка фрезерно-сверлильно-расточного типа и исследованию шпиндельного узла и поворотного стола

В качестве объекта проектирования рассматривается специализированный многооперационный станок с ЧПУ второго типоразмера фрезерно-сверлильно-расточного типа на базе модели СВМ1Ф4. На

станке может выполняться обработка вертикальных, горизонтальных и наклонных плоскостей, фасонных поверхностей, отверстий, пазов различными технологическими методами: фрезерованием, сверлением, зенкерованием и развертыванием

В конструкции рассматриваемого станка с ЧПУ (рис. 1) имеются такие специфические узлы, как гидравлический блок для точного позиционирования шпинделя и специальная шпиндельная бабка, реализующая главное формообразующее движение. В приводе главного движения используется регулируемый привод на базе двигателя постоянного тока и тиристорным преобразователем напряжения

Для автоматизированного манипулирования заготовками и режущими инструментами различных размеров и форм в данном станке используется дополнительная модульная оснастка и. в частности поворотный стол, которые позволяют реализовать выполнение большого числа различных технологических операций без переустановки обрабатываемых деталей.

Для анализа работоспособности конструкции и выбора оптимального варианта проекта специализированного многооперационного станка с ЧПУ модели СВМ1Ф4, оснащенного автоматической сменой инструмента и поворотным столом, создана 3D-модель станка в САПР КОМПАС-3D (рис. 1).

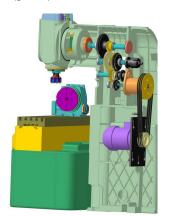


Рис.1. 3D-модель станка CBM1Ф4

Кинематические цепочки, реализующие выполнение комплекса технологических операций представлено на рис. 2.

Обеспечение определенного уровня точности и виброустойчивости станков связано с анализом и определением их жесткости и податливости. Оценка рационального баланса податливости станка является актуальной задачей и может выступать как критерий оптимизации при определении статической жесткости базовых деталей и конструкции в целом. Решающим образом на жесткость оказывают формообразующие шпиндельные узлы. Так деформации подвижных шпиндельных бабок фрезерных и многооперационных станков могут составлять до 70 % общей.

Для оценки жесткости шпиндельной бабки станка СВМ1Ф4 разработана 3D-модель этого формообразующего узла (рис. 3). Конструкция шпиндельной бабки представлена в разрезе (рис. 3, a), а ее рендеринг в модуле Artisan Rendering на рис. 3, δ .

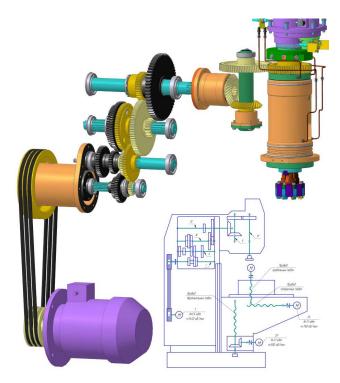


Рис. 2. Кинематические цепочки станка

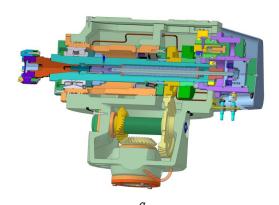


Рис. 3. Шпиндельная бабка станка СВМ1Ф4: *a* — разрез шпиндельной бабки; *б* — рендеринг в модуле Artisan Rendering

В нижней опоре шпинделя установлен высокоточный радиально-упорный двухрядный конический роликовый подшипник, который воспринимает радиальные и двухсторонние осевые нагрузки и характеризуется допустимой радиальной нагрузкой в 1,7 раза выше, чем у соответствующего однорядного подшипника. Кроме этого, он обеспечивают повышенную жесткость опоры.

В верхней опоре установлен радиально-упорный конический подшипник, который допускает раздельный монтаж колец и его конструкция обеспечивает предварительный натяг пружинного типа (рис. 3). В процессе построения сложных 3D-сборок было выполнено построение 3D-моделей деталей и узлов, входящих в шпиндельную головку

Комплексный инженерный анализ напряженно-деформированного состояния шпинделя станка осуществим с помощью модуля APM FEM [10–12], оснащенного генератором конечно-элементной сетки, входящим в САЕ – библиотеку, которая реализует решения инженерных задач методом конечных элементов (МКЭ). В процессе проектирования осуществляется крепление в верхней и нижней опорах и задаются прикладываемые нагрузки; определяются совпадающие грани (для КЭ-анализа сборки); осуществляется генерация КЭ-сетки методом МТ Frontal (с использованием многоядерности процессора); выполняется расчет и просмотр результатов в виде карт напряжений и перемещений.

В рамках модуля APM FEM осуществлены все вышеперечисленные действия и получены:

- поля эквивалентных напряжений по Мизесу (четвертая теория прочности), представленных на рис. 4, a;
- поля перемещений (рис. 4, δ) на множестве сечений шпинделя.

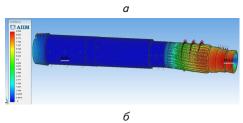


Рис. 4. Результаты расчета напряженно-деформированного состояния шпинделя: a — поля напряжений; б — поля перемещений

Эффективность конструкции станка, оптимальность принимаемых решений определяется критериями жесткости и виброустойчивости, На уровень оптимальности такой конструкции наибольшее влияние оказывают размеры консольной l_1 и межопорной частей l_2 .

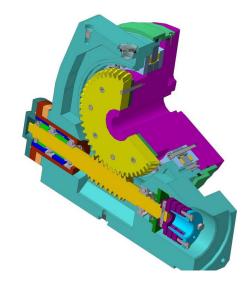
Значение относительной длины пролета $\lambda = \frac{1}{l_1}$ $(\lambda_{\min} \ge 2.5)$ является ограничением, а конструктору

необходимо принять оптимальное решение. Для конструкции шпиндельного узла станка СВМ1 вычислено оптимальное соотношением $\lambda_{\rm opt}$ =3,12 [11]. В большинстве случаев конструктор использует компромиссное решение, поэтому важно наряду с точным значением оптимума, сформировать диапазон значений, для которого общая податливость будет превышена незначительно. Исследования показали, что рациональный диапазон значений соотношений между линейными характеристиками составляет интервал 2,6 \leq λ <d3,9.

Для оценки изменения величины смещения шпинделя при увеличении межопорного расстояния, используется модуль APM Shaft системы автоматизированного проектирования APM WinMachine [11].

На базе полученных эпюр можно сделать вывод об увеличении степени деформации с ростом межопорного расстояния *l*. При увеличении λ на 20 % (с 3,2 до 4) величина перемещения шпинделя на консоли возрастает приблизительно на 8 % (с 0,0052 до 0,0056 мм).

Вместе с тем, необходимо отметить, что с уменьшением длины консольной части значение оптимальное соотношением $\lambda_{\rm opt}$ возрастает. В этих случаях оптимальной стратегией будет увеличение межопорного расстояния, которое может быть ограничено из конструктивных соображений.


В условиях производства все большего количества типоразмеров станков и постоянной смены конфигурации обрабатываемых деталей перспективным является проектирование и производство линейки поворотных столов, оснащенных гидромеханическими приводами [13].

Стол поворотный управляемый (рис. 1) выполнен в виде самостоятельного узла, устанавливаемого на столе станка в двух положениях с вертикальной и горизонтальной осью, в зависимости от расположения обрабатываемой поверхности. В САПР КОМПАС построена 3D-модель поворотного стола состоящая из более чем 300 деталей (рис. 5).

Стол состоит из корпуса, в котором находится червячная пара, передающая движение от высокомоментного двигателя на исполнительный орган — планшайбу (рис. 5, *a*). Управление столом поворотным осуществляется посредством УЧПУ через круговой индуктосин ПУ-И-18A. Поворот планшайбы на заданный угол контроли-

руется оптическим датчиком, установленным на вертикальной оси поворотного стола. Крепление деталей к столу поворотному производится по Т-образным пазам. Изменение рабочей скорости планшайбы стола поворотного производится плавно в пределах от 0,1 до 3,5 мин⁻¹, ускоренное перемещение составляет 6,5 мин⁻¹. В случае расположения стола поворотного с горизонтальной осью для поддержания консольно-расположенной детали используется задняя бабка.

Для повышения точности базирования червячного колеса (рис. 5, б) в приводе поворотного стола недостаточно использовать только одну риконическую посадочную поверхность. Необходимо также предусмотреть также базирование по торцу. Для обеспечения синхронизации червяка и колеса необходимо реализовать конструкцию беззазорной червячной передачи. В данной статье предложен один из вариантов решения этой проблемы.



Рис. 5. Поворотный стол: a — разрез конструкции; δ — червячная передача

Обнуление боковых зазоров в червячном зацеплении возможно путем смещения червяка в направлении, параллельном оси червячного колеса, рис. 6.

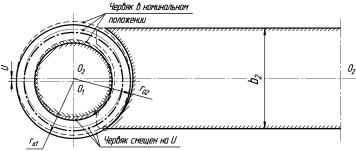


Рис. 6. Конструкция передачи с обнулением боковых зазоров

Расчеты для червячных передач с различными параметрами зацепления показали, что для образования беззазорного зацепления достаточно предусмотреть возможность смещения червяка параллельно оси ко-

леса на величину, равную 2...3 % от его делительного диаметра.

Естественно, что червяк должен находиться в смещенном положении при действии внешних нагрузок. При определенном направлении окружной силы на червяке червяк будет стремиться вернуться в несмещенное положение (пунктирное изображение на рис. 6). Это приведет к появлению зазоров в зацеплении, что нарушит точность синхронизации вращения червяка и колеса. Противодействовать такому смещению могут пружины сжатия, установленные в скользящих опорах вала червяка (рис. 7). Усилия пружин рассчитываются из условия равновесия системы сил.

Для более полного описания напряженно-деформированного состояния проектируемой червячной передачи использован конечный элементный метод в среде APM FEM — модуля конечно-элементного анализа, разработанного в Научно-техническом центре AПМ (автоматизированное проектирование машин). С помощью этого модуля осуществляется расчет напряженно-деформированного состояния объектов произвольной геометрической формы при произвольном нагружении и закреплении.

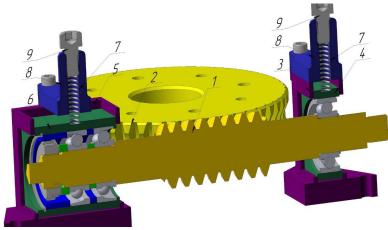


Рис. 7. Скользящие опоры червяка: 1— червяк; 2— червячное колесо; 3 и 5— корпус скользящей опоры; 4 и 6— подшипники в скользящих опорах червяка; 7 и 8— корпус пружины; 9— винт, регулирующий натяг пружины

В процессе исследования червячной передачи в APM FEM [13] построена конечно-элементная сетка (риг. 8, δ), с числом конечных элементов 11515, и количеством узлов для стержневых элементов более, чем 3000 (риг. 8, a).

В системе APM FEM каждый конечный стержневой элемент включает два узла, которые имеют 6 степеней свободы. Взаимодействие конечных элементов друг с другом реализовано через их узлы, с учетом которого сформирована матрица жесткости, решение которой сводится к решению системы алгебраических уравнений. Совместным решением системы уравнений являются величины смещений (риг. 8, в) и величины напряжений. Расчет стержневых элементов ведется с учетом всех концентраторов напряжений. Это позволяет более точно определять величины действующих напряжений.

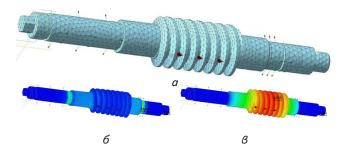


Рис. 8. Результаты расчета напряженно-деформированного состояния червячной передачи: a — конечно-элементная сетка; δ — поля напряжений; δ — поля перемещений

5. Апробация результатов исследования

Полученные 3D-модели обрабатывающего центра и его основных узлов представлены на международном конкурсе «Будущие Ассы 3D-моделирования» (Россия, Москва, октябрь 2012 г.), проводимым группой компаний АСКОН и стали серебряными призерами этого конкурса.

Подана заявка на декларационный патент Украины «Беззазорная червячная передача».

6. Выводы

В данной работе в качестве базовой системы автоматизированного проектирования выбрана известная, динамично развивающая система КОМПАС, усиленная модулем АРМ FEM для целей комплексного исследования напряженно-деформированного состояния конструкций многооперационного станка.

Авторами разработана процедура 3D — моделирования шпиндельного узла специализированного многооперационного станка с вертикальной шпиндельной головкой. Построены 3D-модели отдельных деталей и сборки шпиндельного узла в САПР КОМПАС-3D и выполнен комплексный анализ напряженно-деформированного состояния шпинделя методом конечных элементов.

Разработана 3D-модель поворотного стола станка и предложено принципиально новое решение по внедрению беззазорной червячной передачи, обеспечивающей повышенную точность в процессе длительной эксплуатации.

Широкий спектр описанных выше возможностей, предоставляемых интегрированной САПР КОМПАС 3D и встроенным в систему модулем APM FEM, позволяет существенно улучшить качество проектирования металлорежущих станков и сократить сроки их проектирования.

Литература

 Fahlbusch, K. Dynamic Modeling for Three Dimensional Computer Aided Design [Text] / K. Fahlbusch, T. Roser. – Hewlett Packard Journal, 1995. – 421 p.

- 2. Stark, J. Managing CAD/CAM. Manufacturing and Engineering Series [Text] / J. Stark. McGraw Hill, 2007. 573 p.
- 3. Grower, M. CAD/CAM. Computer Aided Design and Manufacturing [Text] / M. Grower. Pearson Education, 2006. 512 p.
- 4. Ганин, Н. В. Трехмерное проектирование в КОМПАС-3D [Текст] / Н. В. Ганин. М.: ДМК, 2012. 776 с.
- 5. Хомяков, В. С. Моделирование и экспериментальное исследование динамики характеристик шпиндельного узла [Текст] / В. С. Хомяков, Н. А. Кочинев, Ф. С. Сабиров // Известия Тульского Государственного университета. Технические науки. − 2011. − Вып. 3. − С. 251−258.
- 6. Пуш, А. В. Шпиндельные узлы. Качество и надежность [Текст] / А. В. Пуш. М.: Машиностроение, 1992. 288 с.
- 7. Проников, А. С. Проектирование металлорежущих станков и станочных систем: Справочник-учебник. В 3-х т. Т. 2. Ч. 1. Расчет и конструирование узлов и элементов станков [Текст] / А. С. Проников, Е. И. Борисов, В. В. Бушуев и др. М.: Машиностроение, 1995. 371 с.
- 8. Бальмонт, В. Б. Расчеты высокоскоростных шпиндельных узлов [Текст] / В. Б. Бальмонт. М.: ВНИИТЭМР, 1987. 52 с.
- 9. Γ анин, Н. В. Проектирование и вычисление прочности в системе КОМПАС-3D v. 13 [Текст] / Н. В. Γ анин. М.: ДМК, 2011. 521 с.
- 10. Замрий, А. А. Практический учебный курс CAD/CAE APM WinMachine. Учебно-методическое пособие [Текст] / А. А. Замрий. М: Изд-во АПМ, 2007. 144 с.
- 11. Krol, O. 3D-modeling and optimization spindle's node machining centre SVM1F4 [Text] / O. Krol, I. Sukhorutchenko // Comission of Motorization and Power Industry of Agriculture. 2013. Vol.13. P. 114–126.
- 12. Krol, O. Modeling of construction spindle's node machining centre SVM1F4 [Text] / O. Krol, V. Osipov // Comission of Motorization and Power Industry of Agriculture. 2013. Vol. 13. P. 108–114.
- 13. Krol, O. 3D-modeling rotary table of machining centre SVM1F4 [Text] / O. Krol, I. Sukhorutchenko // Comission of Motorization and Power Industry of Agriculture. 2014. Vol. 14. P. 132–144.

.

В роботі представлені результати проведених теоретичних і експериментальних досліджень, на основі яких розроблено математичну модель і запропоновано вдосконалений метод розрахунку динамічної несучої спроможності гідродинамічних упорних підшипників ковзання. Дана модель та метод розрахунку відрізняються від відомих урахуванням дії усіх експлуатаційних факторів

Ключові слова: динамічна несуча спроможність, метод розрахунку, упорний підшипник ковзання, експлуатаційні фактори

В работе представлены результаты проведенных теоретических и экспериментальных исследований, на основе которых разработана математическая модель и предложен усовершенствованный метод расчета динамической несущей способности гидродинамических упорных подшипников скольжения. Данная модель и метод отличаются от известных учетом совместного воздействия всех эксплуатационных факторов

Ключевые слова: динамическая несущая способность, метод расчета, упорный подшипник скольжения, эксплуатационные факторы УДК 621.822.2

ОБОБЩЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ ДИНАМИЧЕСКОЙ НЕСУЩЕЙ СПОСОБНОСТИ ГИДРОДИНАМИЧЕСКИХ УПОРНЫХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

И. Н. Сидорика
Старший преподаватель
Кафедра автоматики
Национальный университет кораблестроения
пр. Героев Сталинграда, 9,
г. Николаев, Украина, 54011
E-mail: igor.sidorika@yandex.ua

1. Введение

В таких технических системах как судовые валопроводы дизель-редукторных установок (ДРУ), многоступенчатые центробежные питательные турбонасосы

и другие для фиксации валов используются упорные подшипники скольжения (УПС) гидродинамического типа, которые работают в режиме жидкостного трения. Упорные подшипники этих устройств, как правило, выполняются с самоустанавливающимися подушками.