----- ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ +-----

Розглянуті можливості побудови двокаскадних ТЕП підвищеної надійності при використанні одних і тих же варіантів сполучень параметрів первинних матеріалів в каскадах однакової ефективності при послідовному електричному з'єднанні каскадів. Наведені дані розрахунків основних параметрів і показників надійності двокаскадного ТЕП при використанні різних варіантів сполучень параметрів (1–5) в каскадах для перепадів температури ΔT від $\Delta T = 60 K$ до $\Delta T = 90 K$ і режимів від Q_{0max} до λ_{min}

Ключові слова: надійність, термоелектричні охолоджувачі,каскади, матеріали, ефективність, температура

D--

Рассмотрены возможности построения двухкаскадных ТЭУ повышенной надежности при использовании одних и тех же вариантов сочетаний параметров исходных материалов в каскадах одинаковой эффективности при последовательном электрическом соединении каскадов. Приведены данные расчетов основных параметров и показателей надежности двухкаскадного ТЭУ при использовании различных вариантов сочетаний параметров (1–5) в каскадах для перепадов температуры ΔT от $\Delta T = 60$ K до $\Delta T = 90$ K и режимов от Q_{0max} до λ_{min}

Ключевые слова: надежность, термоэлектрические охладители, каскады, материалы, эффективность, температура

-

1. Введение

Анализ мирового рынка термоэлектрических модулей [1] демонстрирует непрерывный рост и расширение области использования от специальных приложений до медицины, компьютерной техники, автомобилестроения, холодильного оборудования, кондиционирования и т. п. [2, 3]. Наряду с несомненными преимуществами: высокой надежностью, отсутствием движущихся частей, малыми инерционностью и массогабаритными параметрами, термоэлектрические охлаждающие устройства обладают более низкой холодопроизводительностью по сравнению с компрессионными системами [4], что и определяет область их рационального использования.

2. Анализ литературных данных и постановка проблемы

Создание термоэлектрических материалов для термоэлектрических устройств (ТЭУ) потребовало

УДК 621.362.192

DOI: 10.15587/1729-4061.2015.42474

ВЫБОР СОЧЕТАНИЙ ПАРАМЕТРОВ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ ДЛЯ РАЗРАБОТКИ ОХЛАДИТЕЛЕЙ ПОВЫШЕННОЙ НАДЕЖНОСТИ

В. П. Зайков

Старший научный сотрудник, кандидат технических наук, начальник сектора Научно-исследовательский институт "ШТОРМ" ул. Терешковой, 27, г. Одесса, Украина, 65076

В. И. Мещеряков

Доктор технических наук, профессор, заведующий кафедрой* E-mail: gradan@ua.fm

> Ю. И. Журавлев Аспирант*

E-mail: zhuravlov.y@ya.ru *Кафедра информатики

Одесский государственный экологический университет ул. Львовская, 15, г. Одесса, Украина, 65016

концептуальных исследований [5], формирования и анализа микроструктур твердых расплавов полупроводниковых материалов, в том числе и методами горячей экструзии [6,7], что позволило получить полупроводниковые материалы с повышенной эффективностью [8-10]. Перспективными представляется разработки [11], где показано, что можно в несколько раз повысить термоэлектрическую добротность объемного термоэлектрического материала за счет туннелирования электронов от частицы к частице через вакуумные зазоры, прилегающие к физическому контакту, что сохраняет электропроводность, но снижает теплопроводность материала. Новым быстроразвивающимся направлением является разработка материалов и термоэлектрических охлаждающих устройств на тонких пленках [12, 13], что позволяет встраивать термоэлектрические модули непосредственно в процессорные элементы. На качество термоэлектрических устройств оказывают влияние также технология изготовления и сборки термоэлектрических модулей [14, 15].

Вместе с тем, существенного прорыва в повышении эффективности термоэлектрических материалов до на-

стоящего времени достичь не удалось, а объемные охладители имеют лучшие характеристики по сравнению с тонкопленочными термоэлектрическими устройствами [13].

Важнейшей интеграционной характеристикой термоэлектрических охладителей является надежность [16], а повышение показателей надежности ТЭУ в первую очередь связано с повышением качества исходных материалов, а именно, их эффективности [17]. Усредненная эффективность термоэлектрических материалов в модуле в настоящее время не превышает $\bar{Z}_{M}=2,4-2,5\cdot10^{-3}$ 1/К для условий серийного производства. В этом случае представляет интерес рассмотреть и оценить возможность выбора варианта сочетаний параметров исходных материалов, обеспечивающего повышение показателей надежности ТЭУ при заданной эффективности исходных термоэлектрических материалов.

3. Цель и задачи исследования

Целью работы является повышение показателей надежности двухкаскадного ТЭУ путем использования различных сочетаний параметров исходных материалов термоэлементов.

При традиционном подходе к построению каскадных ТЭУ (КТЭУ) в каждом каскаде используется один и тот же исходный материал с одинаковой эффективностью при T=300 K [18] и одинаковыми усредненными параметрами, такими как: коэффициент термоЭДС е и электропроводностью σ с учетом температурной зависимости.

В то же время представляет интерес рассмотреть несколько вариантов построения КТЭУ.

Вариант 1 – использование в каждом каскаде исходных материалов с одинаковыми параметрами (\bar{e} и $\bar{\sigma}$) для всех возможных вариантов сочетания.

Вариант 2 – использование в каждом каскаде исходных материалов с различными параметрами, а именно, коэффициентом термоЭДС е и электропроводностью о в различных сочетаниях.

Таким образом, с целью повышения показателей надежности, рассмотрена возможность использования одних и тех же исходных материалов в каскадах двухкаскадного ТЭУ, отличающихся коэффициентом термоЭДС е и электропроводностью $\bar{\sigma}$ для перепадов температуры от ΔT =60 K до ΔT =90 K и различных режимов работы, чему и посвящена настоящая статья.

Для достижения этой цели необходимо определить основные параметры и показатели надежности для следующих режимов:

1. Q_{0max} – максимальной холодопроизводительности;

$$2.\left(\frac{Q_0}{I}\right)_{max}$$
 – максимальной холодопроизводитель-

ности при заданном токе;

$$3. \left(\frac{Q_0}{I^2}\right)_{max}$$
 – максимального холодильного ко

эффициента;

4. λ_{min} – минимальной интенсивности отказов.

4. Разработка КТЭУ повышенной надежности

Для построения КТЭУ повышенной надежности воспользуемся различными вариантами сочетаний усредненных параметров исходных материалов, приведенных в табл. 1 при T=300 K; \bar{Z}_{M} =2,4·10⁻³ 1/K; l/=10; Δ T=0.

Таблица 1

Варианты сочетаний усредненных параметров исходных термоэлектрических материалов

Вари- анты со- чета- ний	Коэффи- циент тер- моЭДС е, <u>мкВ</u> град	Элек- тропро- води- мость - - -, <u>См</u> - - - - - - -	Коэффициент теплопрово- дности æ̂·10 ³ , <mark>Вт</mark> см К	Величина термоэлек- трической мощности охлаждения Ŷ, Вт
1	250	50	14,3	0,310
2	210	800	14,7	0,320
3	200	900	15,0	0,325
4	180	1200	16,0	0,350
5	165	1500	17.0	0.370

4. 1. Определение основных параметров и показателей надежности при построении КТЭУ

Для определения основных параметров и показателей надежности двухкаскадных ТЭУ воспользуемся моделью взаимосвязи показателей надежности и основных значимых параметров [19].

Относительную величину интенсивности отказов λ_{s} /

 $\lambda_{\Sigma} / \lambda_0$ можно представить в виде:

$$\frac{\lambda_{\Sigma}}{\lambda_{0}} = \frac{n_{1}B_{1}^{2}(\Theta_{1}+C_{1})(B_{1}+\frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1})^{2}}{(1+\frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1})^{2}}K_{T_{1}} + \frac{n_{2}B_{2}^{2}(\Theta_{2}+C_{2})(B_{2}+\frac{\Delta T_{\max 2}}{T_{1}}\Theta_{2})^{2}}{(1+\frac{\Delta T_{\max 2}}{T_{1}}\Theta_{2})^{2}}K_{T_{2}},$$
 (1)

где $\lambda_0 = 3 \cdot 10^{-8} \frac{1}{4}_{vac}$ – номинальная интенсивность отказов, 1/час; $B_1 = \frac{I}{I_{max1}}$ – относительный рабочий ток первого каскада, отн. ед.; $I_{max1} = \frac{e_1 T_0}{R_1}$ – максимальный рабочий ток первого каскада, A; $e_1, R_1 = \frac{1}{\sigma_1 s}$ – коэффициент термоЭДС первого каскада, B/K и электрическое сопротивление, Ом ветви термоэлемента первого каскада; σ_1 – электропроводность ветви тер моэлемента первого каскада, См/см; $\frac{1}{s}$ – отношение высоты к площади поперечного сечения ветви термоэлемента, см⁻¹; T_0 – температура теплопоглощающего спая первого каскада, K; $\Theta_1 = \frac{\Delta T_1}{\Delta T_{max1}}$ – относительный перепад температуры первого каскада, отн. ед.; $\Delta T_1 = T_1 - T_0$ – рабочий перепад температуры первого каскада, К; T_1 – промежуточная температура, К; I – величина рабочего тока, А; $\Delta T_{max1} = 0.5 \bar{Z}_1 T_0^2$ – максимальный перепад температуры первого каскада, К; \bar{Z}_1 – усредненная термоэлектрическая эффективность

материала первого каскада, 1/K;
$$C_1 = \frac{Q_0}{n_1 I_{max1}^2 R_1} = \frac{Q_0}{n_1 \gamma_1}$$

относительная тепловая нагрузка первого каскада, отн. ед.; Q_0 – величина тепловой нагрузки, Вт; n_1,n_2 – количество термоэлементов первого и второго каска-

дов, шт.; $B_2 = I_{I_{max2}} -$ относительный рабочий ток второго каскада, отн. ед.; $I_{max2} = \frac{e_2 T_1}{R_2} -$ максимальный рабочий ток второго каскада, A; $e_2, R_2 = \frac{1}{\sigma_2 s} -$ коэффи-

циент термоЭДС, В/К и электрическое сопротивление, Омветви термоэлемента второго каскада; σ_2 – элекя тропроводность ветви термоэлемента второго каскада, См/см; $\Delta T_2 = T - T_1$ – рабочий перепад температуры второго каскада, К; Т – температура тепловыделяющего спая второго каскада, К; $\Delta T_{max2} = 0.5 \bar{Z_2} T_1^2$ –

максимальный перепад температуры во втором каскаде, К; \bar{Z}_2 – усредненная термоэлектрическая эффективность материала второго каскада, 1/К; K_{T1}, K_{T2} -коэффициентзначимостисучетом влияния пониженных температур соответственно первого и второго каска-

дов, отн. ед. [20];
$$C_2 = \frac{Q_0 + W_1}{n_2 I_{max2}^2 R_2} = \frac{Q_0 + W_1}{n_2 \gamma_2} - \frac{Q_0 + W_1}{n_2 \gamma_2}$$

относительная тепловая нагрузка второго каскада, отн. ед.;

 мощность потребления первого каскада, Вт:

$$\begin{split} W_{1} &= 2n_{1}I_{max1}^{2}R_{1}B_{1}(B_{1} + \frac{\Delta T_{max1}}{T_{0}}\Theta_{1}) = \\ &= 2n_{1}\gamma_{1}B_{1}(B_{1} + \frac{\Delta T_{max1}}{T_{0}}\Theta_{1}); \end{split} \tag{2}$$

 – мощность потребления второго каскада, Вт:

$$\begin{split} W_{2} &= 2n_{2}I_{max2}^{2}R_{2}B_{2}(B_{2} + \frac{\Delta T_{max2}}{T_{01}}\Theta_{2}) = \\ &= 2n_{2}\gamma_{2}B_{2}(B_{2} + \frac{\Delta T_{max2}}{T_{01}}\Theta_{2}). \end{split} \tag{3}$$

Холодопроизводительность Q₀ КТЭУ определяется первым каскадом и может быть представлена в виде:

$$Q_0 = n_1 I_{max1}^2 R_1 (2B_1 - B_1^2 - \Theta_1) =$$

= $n_1 \gamma_1 (2B_1 - B_1^2 - \Theta_1).$

(4)

Отношение количества термоэлементов в смежных каскадах n_2 можно представить в виде: n_1

$$\frac{n_2}{n_1} = \frac{I_{\max 1}^2 R_1}{I_{\max 2}^2 R_2} \frac{2B_1 (1 + \frac{\Delta T_{\max 1}}{T_0} \Theta_1) + B_1^2 - \Theta_1}{2B_2 - B_2^2 - \Theta_2} = \frac{\gamma_1}{\gamma_2} \frac{2B_1 (1 + \frac{\Delta T_{\max 1}}{T_0} \Theta_1) + B_1^2 - \Theta_1}{2B_2 - B_2^2 - \Theta_2}.$$
(5)

Вероятность безотказной работы Р КТЭУ можно представить в виде:

$$P = \exp[-\sum_{i=1}^{N} \lambda_i t], \tag{6}$$

где t=10⁴час – назначенный ресурс, N – количество каскадов.

4. 2. Расчет режима Q₀max (B₁=1,0)

Результаты расчетов основных значимых параметров и показателей надежности двухкаскадного ТЭУ при следующих исходных данных: Т=300 К; Δ T=60 К, 70 К, 80 К, 90 К; λ_0 =3 10⁻⁸ 1/сек; t=10⁴ час; Q₀=2,0 Вт; $\binom{1}{s}_1 = \binom{1}{s}_2^{=10}$ приведены в табл. 2.

Таблица 2

Основные значимые параметры и показатели надежности двухкаскадного ТЭУ для режима $Q_{0\text{max}}$

Вариант очетания	I, A	В ₂ , отн. ед.	γ ₁ , Βτ	γ ₂ , Βτ	n ₁ +n ₂	n_2/n_1	п ₁ , шт.	п ₂ , шт.	Е, отн. ед.	$\frac{\lambda_{\Sigma}}{\lambda_{0}}$	Р
T ₁ =267 K; Δ T=60 K; Θ_1 =0,42; Θ_2 =0,39											
1	3,77	0,98	0,204	0,246	81,6	3,80	17,0	64,6	0,0476	78,45	0,9767
2	4,55	0,95	0,204	0,256	79,2	3,66	16,9	62,2	0,0498	71,9	0,9787
3	4,80	0,96	0,209	0,260	77,7	3,71	16,5	61,2	0,0490	70,5	0,9791
4	5,50	0,93	0,219	0,275	73,4	3,68	15,7	57,7	0,0513	61,0	0,9819
5	6,40	0,94	0,226	0,288	70,2	3,62	15,2	55,0	0,0507	60,2	0,9821
$T_1=262 \text{ K}: \Delta T=70 \text{ K}: \Theta = 0.55: \Theta_2 = 0.47$											
1	3.75	0.99	0.187	0.241	119.0	4.00	23.8	95.2	0.0326	117.0	0.9655
2	4.40	0.95	0.186	0.246	117.1	3.91	23.9	93.2	0.0345	103.3	0.9695
3	4.70	0.94	0.190	0.253	113.9	3.89	23.3	90.6	0.0345	99.3	0.9707
4	5,30	0,91	0,196	0,265	109,2	3,83	22,6	86,6	0,0365	86,4	0,9744
5	6,10	0,92	0,208	0,278	103,9	3,88	21,3	82,6	0,0361	84,0	0,9751
			05017	Δ Τ	00.1/		70.0	0.55			
		T ₁ =	=256 K	; $\Delta I =$	80 K; ($\Theta_1=0,$	$70; \Theta_2$	=0,57			
1	3,60	0,96	0,165	0,230	217,8	4,39	40,4	177,4	0,020	197,5	0,9425
2	4,34	0,95	0,168	0,233	215,2	4,43	39,6	175,6	0,020	189,7	0,9447
3	4,56	0,93	0,170	0,239	210,7	4,39	39,1	171,6	0,020	174,4	0,9490
4	5,20	0,92	0,178	0,249	201,9	4,41	37,3	164,6	0,020	163,8	0,9521
5	5,90	0,918	0,185	0,262	195,6	4,36	35,9	156,5	0,020	154,9	0,9546
		T ₁ =	250 K;	$\Delta T=9$	90 K; e	€,=0,8	$39; \Theta_2$	=0,68			
1	3,50	0,95	0,148	0,219	773,0	5,29	122,9	650,1	0,0056	691,5	0,8126
2	4,20	0,96	0,150	0,280	766,1	5,32	121,2	644,9	0,0056	699,0	0,8108
3	4,40	0,935	0,153	0,228	743,6	5,31	118,0	625,6	0,0058	627,9	0,8283
4	5,00	0,90	0,159	0,240	708,5	5,24	113,5	595,0	0,00604	544,4	0,8493
5	5,60	0,88	0,167	0,250	683,2	5,12	111,4	571,5	0,0062	500,0	0,8607

Для определения термоэлектрической мощности охлаждения каждого каскада γ_1 и γ_2 можно воспользоваться соотношением:

$$\gamma_{i} = e_{i}^{2} \sigma_{i} T_{i-1}^{2} \frac{s}{l} = I_{maxi}^{2} R_{i}.$$
(7)

С ростом перепада температуры ΔT величина термоэлектрической мощности охлаждения первого γ_1 и второго γ_2 каскадов уменьшается и для различных вариантов сочетаний параметров исходных материалов (1–5) при T = 300 K, $\bar{Z} = 2,4 \cdot 10^{-3} \frac{1}{K}$, $\frac{1}{s} = 10$ (рис. 1) и не зависят от режима работы.

При заданном перепаде температуры ΔT :

– величина термоэлектрической мощности охлаждения γ_i в каскадах увеличивается от варианта (1) до (5) – рис. 1;

– величина относительного рабочего тока в первом каскаде B_1 остается постоянной, а величина относительного рабочего тока во втором каскаде B_2 уменьшается (рис. 2) для всех вариантов сочетаний параметров исходного материала (1–5);

– промежуточная температура T_1 уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1–5) и режима работы (рис. 3);

– величина относительного перепада температуры в каскадах Θ_1 и Θ_2 увеличивается и не зависит от варианта сочетаний параметров (1–5) (рис. 4) и режима работы. При постоянном перепаде температуры ΔT величины Θ_1 и Θ_2 остаются постоянными и не зависят от варианта сочетания (1–5) (рис. 4);

– величина отношения количества термоэлементов

в смежных каскадах $\binom{n_2}{n_1}$ увеличивается и практи-

чески не зависит от варианта сочетаний параметров исходных материалов (1–5), а зависит от токового режима работы (рис. 5);

 – холодильный коэффициент Е уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1–5) для всех режимов работы (рис. 6). При заданном перепаде температуры ΔТ холодильный коэффициент Е увеличивается от

режима работы Q_{0max} до $\left(rac{Q_0}{I^2}
ight)$ (рис. 6) и не зависит от

варианта сочетания параметров исходного материала (1-5);

– суммарное количество термоэлементов в каскадах n_1+n_2 увеличивается (рис. 7). При заданном перепаде температуры ΔT суммарное количество термоэлементов n_1+n_2 уменьшается от варианта (1) до (5) (рис. 7);

– суммарная интенсивность отказов λ_{Σ} увеличивается для любого режима и для различных вариантов сочетаний параметров исходного материала (1–5) (рис. 8). При заданном перепаде температуры ΔT суммарная интенсивность отказов λ_{Σ} уменьшается от варианта (1) до (5) (рис. 8) для различных режимов работы;

– вероятность безотказной работы Р уменьшается для любого режима и для различных вариантов сочетаний параметров исходного материала (1–5) (рис. 9). При заданном перепаде температуры ΔT вероятность безотказной работы Р увеличивается от варианта (1) до (5) (рис. 9).

Рис. 1. Зависимость термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов

(1–5) при Т=300 К;
$$\bar{Z}_{M}$$
=2,4–2,5 10⁻³ 1/К; $\frac{1}{S}$ =10 для режимов Q_{0max}; $(\frac{Q_{0}}{I})_{max}$; $(\frac{Q_{0}}{I^{2}})_{max}$; λ_{min}

Рис. 2. Зависимость относительного рабочего тока первого и второго каскада В₁ и В₂ двухкаскадного ТЭУ от общего перепада температуры ∆Т для различных вариантов сочетания параметров исходных материалов

Таким образом, при построении двухкаскадного ТЭУ повышенной надежности в режиме Q_{0max} необходимо использовать исходные материалы с повышенной электропроводностью – вариант сочетания (5) по сравнению с традиционным вариантом (3) при одной и той же эффективности. Это позволяет при заданном перепаде температуры ΔT и величине тепловой нагрузки Q_0 :

- уменьшить суммарное количество термоэлементов n_1+n_2 в среднем на 7 %;

– увеличить холодильный коэффициент Е в среднем на 4 %;

– уменьшить суммарную величину интенсивности отказов λ_{Σ} в среднем на 15 % и тем самым увеличить вероятность безотказной работы Р.

При этом величина рабочего тока I увеличивается в среднем на 30 %.

Рис. 3. Зависимость промежуточной температуры Т₁ двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при Т=300 К; Z_M=2,4-2,5 10⁻³ 1/К;

1/ =10 для всех режимов работы

Рис. 5. Зависимость отношения количества термоэлементов в смежных каскадах $n_1 n_1$

двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных т=300 К· 7_м=2 4−2.5 10⁻³ 1/К: мат

гериалов (1-5) при 1=300 К;
$$Z_{M}=2,4-2,5$$
 10° 1/
Q₀=2,0 Вт для режимов
1 – Q_{0max}; 2 – $\left(\frac{Q_{0}}{I}\right)_{max}$; 3 – $\left(\frac{Q_{0}}{I^{2}}\right)_{max}$; 4 – λ_{min}

Рис. 6. Зависимость холодильного коэффициента Е двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при Т=300 К; \bar{Z}_{M} =2,4-2,5 10⁻³ 1/К;

Рис. 7. Зависимость суммарного количества термоэлементов в каскадах (n₁+n₂) двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при Т=300 К; Ż_м=2,4-2,5·10⁻³ 1/К; Q₀=2,0 Вт,

Рис. 8. Зависимость суммарной интенсивности отказов $\lambda_{\Sigma}\cdot 10^8, \frac{1}{4}_{\rm YaC}$ двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при Т=300 К; \bar{Z}_{M} =2,4-2,5.10⁻³ 1/К; Q₀=2,0 Вт, $\frac{l}{s}$ =10 для режимов 1 – Q_{0max}; 2 – $\left(\frac{Q_{0}}{I}\right)_{max}$; 3 – $\left(\frac{Q_{0}}{I^{2}}\right)_{max}$; 4 – λ_{min}

Рис. 9. Зависимость вероятности безотказной работы Р двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных

материалов (1-5) при Т=300 К; \bar{Z}_{M} =2,4-2,5.10⁻³ 1/К; $egin{aligned} \mathsf{Q}_0=& \mathsf{2,0} \; \mathsf{Bt}, \; {\displaystyle 1 \ S}=& \mathsf{10} \; \mathsf{для} \; \mathsf{режимов} \; \mathsf{1}-\mathsf{Q}_{0\mathsf{max}}; \; \mathsf{2}-({\displaystyle \frac{Q_0}{I}})_{\mathsf{max}}; \\ & \mathsf{3}-({\displaystyle \frac{Q_0}{I^2}})_{\mathsf{max}}; \; \mathsf{4}-\lambda_{\mathsf{min}} \end{aligned}$

4. 3. Расчет режима
$$(\frac{Q_0}{I})_{max}$$
 (B = $\sqrt{\Theta}$)

Результаты расчетов основных значимых параметров и показателей надежности двухкаскадного ТЭУ при следующих исходных данных: Т=300 К; Δ T=60 К, 70 K, 80 K, 90 K; λ_0 =3 10⁻⁸ 1/cek; t=10⁴ час; Q₀=2,0 Bt; $\binom{1}{s}_{1} = \binom{1}{s}_{2} = 10$ приведены в табл. 3. С ростом перепада температуры Δ Т:

- величина термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 уменьшается и не зависит от режима работы для различных вариантов сочетаний исходных материалов (1-5) (рис. 1). При заданном перепаде температуры величина термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 увеличивается от варианта (1) до (5) (рис. 1);

 величина относительного рабочего тока в первом каскаде В₁ и величина относительного рабочего тока во втором каскаде В2 увеличивается для всех вариантов сочетаний параметров (1-5) (рис. 10). При заданном перепаде температуры ΔT величина относительного рабочего тока первого каскада B₁ остается постоянной и не зависит от варианта сочетания, а величина относительного рабочего тока второго каскада B₂ уменьшается от варианта (1) до (5) (рис. 10);

– промежуточная температура T₁ уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1-5) и режима работы (рис. 3);

- величина относительного перепада температуры в каскадах Θ_1 и Θ_2 увеличивается и не зависит от варианта сочетания параметров (1-5) (рис. 4). При заданном перепаде температуры ΔT величины Θ_1 и Θ_2 остаются постоянными и не зависят от варианта сочетания (1-5) (рис. 4);

 величина отношения количества термоэлементов в смежных каскадах $\begin{pmatrix} n_2 \\ n_1 \end{pmatrix}$ увеличивается и практи

чески не зависит от варианта сочетания параметров исходных материалов (1-5) (рис. 5, п. 2), а зависит от токового режима работы; Таблица 3

 холодильный коэффициент Е уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1-5) для всех режимов работы (рис. 6, п. 2). При заданном перепаде температуры ΔТ холодильный коэффициент Е увеличивается от режима Q_{0max}

до $\left(\frac{Q_0}{I^2}\right)_{max}$ и практически не зависит от

варианта сочетания параметров исходного материала (1-5) (рис. 6, п. 2);

- суммарное количество термоэлементов (n₁+n₂) увеличивается (рис. 11). При заданном перепаде температуры ΔT суммарное количество термоэлементов (n₁+n₂) уменьшается от варианта (1) до (5) (рис. 11);

– суммарная интенсивность отказов λ_{r} увеличивается для любого режима рабо-

ты, в том числе и для $\left(\frac{Q_0}{I}\right)_{max}$ и для раз-

личных вариантов сочетаний параметров исходного материала (1-5) (рис. 8, п. 2). При заданном перепаде температуры ΔТ суммарная интенсивность отказов λ_{Σ} уменьшается от варианта (1) до (5) (рис. 8, п. 2);

- вероятность безотказной работы Р уменьшается для любого режима рабо-

Основные значимые параметры и показатели надежности

двухкаскадного ТЭУ для режима $\left(rac{lpha_0}{I} ight)_{ m max}$												
Ва- риант соче- тания	I, A	В ₂ отн. ед.	γ ₁ , Βτ	γ _{2,} Βτ	n ₁ +n ₂	n_2/n_1	п ₁ , шт.	п ₂ , шт.	Е, отн. ед.	$\frac{\lambda_{\Sigma}}{\lambda_{0}}$	Р	
$T_1=267 \text{ K } \Delta T=60 \text{ K}; \Theta_1=0,42; \Theta_2=0,39$												
1	2,45	0,65	0,64	0,204	0,246	75,0	2,49	21,5	53,5	0,116	12,7	
2	2,90	0,65	0,62	0,204	0,256	74,6	2,47	21,5	53,1	0,120	11,7	
3	3,15	0,65	0,62	0,209	0,260	73,2	2,50	20,9	52,3	0,120	11,4	
4	3,60	0,65	0,61	0,219	0,275	69,9	2,51	19,9	50,0	0,120	10,5	
5	4,17	0,65	0,61	0,226	0,288	66,4	2,44	19,3	47,1	0,120	10,1	
$T_1=262 \text{ K} \Delta T=70 \text{ K}; \Theta_1=0,55; \Theta_2=0,47$												
1	2,80	0,74	0,73	0,187	0,241	107,7	2,85	28,0	79,7	0,064	32,2	
2	3,27	0,74	0,70	0,186	0,246	109,1	2,88	28,1	81,0	0,0657	29,3	
3	3,50	0,74	0,70	0,190	0,253	106,7	2,88	27,5	79,2	0,0655	28,6	
4	3,90	0,74	0,67	0,196	0,265	105,4	2,95	26,7	78,7	0,0675	25,3	
5	4,50	0,74	0,68	0,208	0,278	97,1	2,87	25,1	72,0	0,0670	24,6	
			T ₁ =25	56 K Δ΄	T=80 K	$; \Theta_1 = 0$,70; Θ	₂ =0,57				
1	3,0	0,84	0,80	0,165	0,230	201,8	3,56	44,3	157,5	0,030	90,8	
2	3,6	0,84	0,80	0,168	0,233	199,3	3,60	43,4	155,9	0,030	89,8	
3	3,8	0,84	0,77	0,170	0,239	199,9	3,66	42,9	157,0	0,030	81,2	
4	4,4	0,84	0,77	0,178	0,249	192,0	3,68	41,0	151,0	0,030	77,9	
5	5,0	0,84	0,77	0,185	0,262	182,5	3,63	39,4	143,1	0,030	74,3	
	T_1 =250 K ΔT=90 K; $Θ_1$ =0,89; $Θ_2$ =0,68											
1	3,30	0,94	0,90	0,148	0,219	744,0	4,88	126,5	617,5	0,0065	536,6	
2	4,00	0,94	0,905	0,150	0,220	737,8	4,91	124,8	613,0	0,00647	540,8	
3	4,20	0,94	0,88	0,153	0,228	722,3	4,94	121,5	600,7	0,00667	487,9	
4	4,75	0,94	0,85	0,159	0,240	704,3	4,98	117,8	586,5	0,00688	431,4	
5	5,30	0,94	0,83	0,162	0,250	662,4	4.77	114,8	547,6	0,0070	396,6	

ты и для различных вариантов сочетаний параметров исходного материала исходного материала (1-5) (рис. 9, п. 2). При заданном перепаде температуры ΔT вероятность безотказной работы Р увеличивается от варианта (1) до (5) (рис. 9, п. 2).

Рис. 10. Зависимость относительного рабочего тока в каскадахВ₁ и В₂ двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при Т=300 К;

Рис. 11. Зависимость суммарного количества термоэлементов (n1+n2) двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1-5) при

T=300 K;
$$\bar{Z}_{M}$$
=2,4-2,5·10⁻³ 1/K; Q₀=2,0 Вт, $\frac{1}{S}$ =10 в режиме ($\frac{Q_{0}}{I}$)_{тах}

Таким образом, при построении двухкаскадно-

го ТЭУ повышенной надежности в режиме (
$${{
m Q}_0\over {
m I}})_{
m max}$$

можно использовать в каскадах исходные материалы, отличающиеся повышенной электропроводностью (варианты сочетаний параметров (5) по сравнению с традиционным (3) при одной и той же термоэлектрической эффективности). Это позволяет при заданном перепаде температур ΔT и холодопроизводительности Q₀:

- уменьшить суммарное количество термоэлементов $(n_1 + n_2)$ в среднем на 7 %;

- увеличить холодильный коэффициент Е в среднем на 2 %;

– уменьшить интенсивность отказов λ_{Σ} в среднем на 13 % и тем самым увеличить вероятность безотказной работы Р;

 при этом величина рабочего тока І увеличивается в среднем на 30 %.

4. 4. Расчет режима
$$(\frac{Q_0}{I^2})_{max}$$

Результаты расчетов основных параметров и показателей надежности двухкаскадного ТЭУ при следующих исходных данных: T=300 K; Δ T=60 K, 70 K, 80 K, 90 K; λ_0 =3·10⁻⁸ 1/cek; t=10⁴ час; Q_0 =2,0 Bt; $\binom{1}{s}_{1} = \binom{1}{s}_{2} = 10$ приведены в табл. 4. С ростом перепада температуры ΔT :

- величина термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 уменьшается и не зависит от режима работы для различных вариантов сочетаний параметров исходных материалов (1-5) (рис. 1). При заданном перепаде температуры ΔT величина термоэлектрической мощности охлаждения в каскадах ү1 и γ_2 увеличивается от варианта (1) до (5) (рис. 1);

– величина относительного рабочего тока в первом и во втором каскадах В, и В, увеличивается для всех вариантов сочетаний параметров (1–5) (рис. 12).;

При заданном перепаде температуры ΔT величина относительного рабочего тока первого каскада В, остается постоянной и не зависит от варианта сочетания, а величина B_2 уменьшается от варианта (1) до (5) (рис. 12):

– промежуточная температура Т, уменьшается и практически не зависит от варианта сочетаний параметров исходных материалов (1-5) и режима работы (рис. 3);

- величина относительного перепада температуры в каскадах Θ_1 и Θ_2 увеличивается и не зависит от варианта сочетания параметров (1-5) (рис. 4). При заданном перепаде температуры ΔT величины Θ_1 и Θ_2 остаются постоянными и не зависят от варианта сочетания (1-5) (рис. 4);

– величина отношения, количества термоэлементов в смежных каскадах $\binom{n_2}{n_1}$ увеличивается и практи-

чески не зависит от варианта сочетания параметров исходных материалов (1-5) (рис. 5, п. 3), а зависит от токового режима работы;

 холодильный коэффициент Е уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1-5) для всех режимов работы (рис. 6, п. 3). При заданном перепаде температуры ΔT

Рис. 12. Зависимость относительного рабочего тока в каскадах В1 и В2 двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания

параметров исходных материалов (1-5) при Т=300 К; \bar{Z}_{M} =2,4–2,5·10⁻³ 1/К; Q₀=2,0 Вт, $\frac{1}{S}$ =10 в режиме ($\frac{Q_{0}}{I^{2}}$)_{тах}

Таблица 4

Основные значимые параметры и показатели надежности

двухкаскадного ТЭУ для режима $(rac{ extsf{Q}_0}{ extsf{I}^2})_{ extsf{max}}$											
Ва- риант сочета- ния	I, A	В ₂ , отн. ед.	γ ₁ , Βτ	γ _{2,} Βτ	n ₁ +n ₂	n ₂ /n ₁	п ₁ , шт.	п ₂ , шт.	Е, отн. ед.	$\frac{\lambda_{\Sigma}}{\lambda_{0}}$	Р
T ₁ =267 K; ΔT=60 K; Θ_1 =0,42; Θ_2 =0,39											
1	1,58	0,42	0,41	0,204	0,246	128,5	2,18	40,4	88,1	0,15	3,28
2	1,90	0,42	0,40	0,204	0,256	129,2	2,20	40,4	88,8	0,15	3,11
3	2,00	0,42	0,40	0,209	0,260	126,8	2,23	39,3	87,5	0,15	3,05
4	2,30	0,42	0,39	0,219	0,275	123,4	2,30	37,4	86,0	0,15	2,81
5	2,70	0,42	0,39	0,226	0,288	115,3	2,18	36,3	79,0	0,15	2,71
			T ₁ =2	262 K; Z	∆T=70	К; Ө ₁ =0	,55; Θ	2=0,47			
1	2,06	0,55	0,54	0,187	0,241	149,0	2,45	43,2	105,8	0,080	12,7
2	2,43	0,55	0,52	0,186	0,246	152,9	2,52	43,4	109,5	0,081	11,9
3	2,60	0,55	0,52	0,190	0,253	149,3	2,52	42,4	106,9	0,081	11,6
4	2,93	0,55	0,50	0,196	0,265	150,4	2,65	41,2	109,2	0,081	10,6
5	3,37	0,55	0,51	0,208	0,278	135,8	2,51	38,7	97,1	0,081	10,3
			T ₁ =2	256 K; Z	$\Delta T=80$	$\overline{\mathrm{K}; \Theta_1 = 0}$	70; Θ	2=0,57			
1	2,50	0,70	0,67	0,165	0,231	239,6	3,15	57,7	181,9	0,034	52,8
2	3,00	0,70	0,67	0,168	0,233	237,8	3,20	56,6	181,2	0,034	52,0
3	3,20	0,70	0,65	0,170	0,239	239,5	3,28	56,0	183,5	0,0343	48,8
4	3,65	0,70	0,64	0,178	0,349	233,9	3,37	53,5	180.4	0,0344	45,7
5	4,20	0,70	0,64	0,185	0,262	219,4	3,26	51,5	167,9	0,0344	43,9
			T ₁ =2	50 K; Z	T=90	$\overline{\mathrm{K}; \Theta_1 = 0}$,89; Θ	2=0,68			
1	3,10	0,89	0,847	0,148	0,219	770,9	4,59	138,0	632,9	0,00700	439,5
2	3,80	0,89	0,855	0,150	0,220	762,7	4,60	136,2	626,5	0,00696	446,7
3	4,00	0,89	0,830	0,154	0,228	752,2	4,67	132,7	619,5	0,00714	404,7
4	4,50	0,89	0,800	0,159	0,240	741,4	4,77	128,5	612,9	0,00730	359,8
5	5,00	0,89	0,790	0,162	0,250	691,2	4,48	126,1	565,1	0,00736	339,2

Рис. 13. Зависимость суммарного количества термоэлементов (n1+n2) двухкаскадного ТЭУ от общего перепада температуры $\Delta T\,$ для различных вариантов сочетания параметров исходных материалов (1-5) при T=300K; $\bar{Z}_{\rm M}$ = 2,4-2,5 10⁻³ 1/K; Q₀ = 2,0 Bt, $\frac{l}{\rm S}$ =10 в режиме ($\frac{Q_0}{\rm I^2}$)_{max}

- холодильный коэффициент Е увеличивается от

режима Q_{0max} до $(\frac{Q_0}{l^2})_{max}$ и практически не зависит от

варианта сочетаний параметров исходного материала (1-5) (рис. 6 п. 3);

- суммарное количество термоэлементов (n₁+n₂) увеличивается (рис. 13) для различных вариантов сочетаний параметров исходного материала (1-5). При заданном перепаде температуры ΔT суммарное количество термоэлементов (n₁+n₂) уменьшается от варианта (1) до (5) (рис. 13);

 суммарная интенсивность отказов λ_{Σ} увеличивается для любого режи-

ма работы, в том числе и для $(\frac{Q_0}{r^2})_{max}$ и

различных сочетаний параметров исходного материала (1-5) (рис. 8, п. 3). При заданном перепаде температуры ΔТ суммарная интенсивность отказов λ_{Σ} уменьшается от варианта (1) до (5) (рис. 8, п. 3);

- вероятность безотказной работы Р уменьшается для любого режима работы и для различных вариантов сочетаний параметров исходного материала (1-5) (рис. 9, п. 3). При заданном перепаде температуры ΔT вероятность безотказной работы Р увеличивается от варианта (1) до (5) (рис. 9, п. 3).

Таким образом, при построении двухкаскадного ТЭУ повышенной на-

дежности в режиме $(\frac{Q_0}{I^2})_{max}$ можно

использовать одни и те же исходные материалы с повышенной электропроводностью (вариант (5) по сравнению с (3) при одной и той же термоэлектрической эффективности, что позволяет при заданном перепаде температуры ΔТ и холодопроизводительности Q₀:

- уменьшить суммарное количество термоэлементов (n₁+n₂) на 5,9 %;

– уменьшить интенсивность отказов λ_{Σ} в среднем на 12,1 %;

увеличить вероятность безотказной работы Р.

При этом холодильный коэффициент Е практически не изменяется, увеличивается отношение количество термоэлементов в смежных каскадах в среднем на 2,2 %, относительный рабочий ток В, практически не изменяется, а В₂ уменьшается на 2,7 %, увеличивается величина рабочего тока I на 30 %.

4. 5. Расчет режима минимальной интенсивности отказов λ_{min}

Результаты расчетов основных параметров и показателей надежности двухкаскадного ТЭУ при следующих основных данных: Т=300 К; Δ T=60 К, следующих основных данных. Т 500 К, $\Delta 1$ 60 К, 70 К, 80 К, 90 К; λ_0 =3·10⁻⁸ 1/сек; t=10⁴ час; Q_0 =2,0 Вт; $\binom{l}{s}_1 = \binom{l}{s}_2$ =10 приведены в табл. 5. С ростом перепада температуры ΔT :

- величина термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 уменьшается и не зависит от режима работы для различных вариантов сочетаний параметров исходных материалов (1-5) (рис. 1). При заданном перепаде температуры ΔT величина термоэлектрической мощности охлаждения в каскадах γ_1 и γ_2 увеличивается от варианта (1) до варианта (5) (рис. 1).

Основные значимые параметры и показатели надежности двухкаскадного ТЭУ для режима λ_{\min}

Ва- риант соче- тания	I, A	В ₂ , отн. ед.	γ ₁ , Βτ	γ ₂ , Βτ	n ₁ +n ₂	n_2 / n_1	п ₁ , шт.	п ₂ , шт.	Е, отн. ед.	$\frac{\lambda_{\Sigma}}{\lambda_{0}}$	Р
$T_1=267$ К; $\Delta T=60$ К; $\Theta_1=0,42; \Theta_2=0,39$											
1	1,28	0,34	0,33	0,204	0,246	226,8	2,32	68,3	158,5	0,125	2.31
2	1,53	0,34	0,32	0,204	0,256	229,5	2,37	68,1	161,4	0,125	2,25
3	1,65	0,34	0,32	0,209	0,260	221,1	2,34	66,2	154,9	0,125	2,20
4	1,87	0,34	0,32	0,219	0,275	220,9	2,49	63,3	157,6	0,122	2,05
5	2,18	0,34	0,32	0,226	0,288	200,7	2,28	61,2	139.5	0,123	1,99
$T_1=262$ K; $\Delta T=70$ K; $\Theta_1=0.55; \Theta_2=0.47$											
1	1,73	0,46	0,45	0,187	0,241	224,4	2,37	66,6	157,8	0,072	9,23
2	2,00	0,46	0,44	0,186	0,246	235,1	2,51	67,0	168,1	0,071	8,77
3	2,17	0,46	0,44	0,190	0,253	231,2	2,54	65,4	165,8	0,071	8,53
4	2,46	0,46	0,42	0,196	0,265	236,9	2,73	63,5	173,4	0,070	7,98
5	2,83	0,46	0,43	0,208	0,278	210,7	2,53	59,7	151,0	0,070	7,64
			T ₁ =25	6 K; Δ	Г=80 К	$; \Theta_1 = 0$,70; Θ	2=0,57			
1	2,20	0,62	0,59	0,165	0,231	314,3	3,04	77,9	236,4	0,032	41,9
2	2,70	0,62	0,59	0,168	0,233	313,7	3,10	76,5	237,2	0,032	41,1
3	2,80	0,62	0,57	0,170	0,239	312,0	3,26	75,6	326,4	0,032	38,6
4	3,20	0,62	0,57	0,178	0,249	308,3	3,27	72,2	236,1	0,032	36,9
5	3,70	0,62	0,57	0,185	0,262	294,7	3,24	69,47	225,1	0,032	35,7
	$T_1=250 \text{ K}; \Delta T=90 \text{ K}; \Theta_1=0,89; \Theta_2=0,68$										
1	2,90	0,82	0,78	0,148	0,219	923,0	4,30	174,2	748,8	0,0068	382,1
2	3,46	0,82	0,78	0,150	0,220	910,6	4,30	171,8	738,8	0,0069	386,5
3	3,60	0,82	0,77	0,153	0,218	903,2	4,40	167,4	736,4	0,0068	356,8
4	4,10	0,82	0,74	0,159	0,240	898,0	4,54	162,1	735,9	0,0070	321,0
5	4.60	0.82	0.73	0.162	0.250	830.0	4.25	158.1	671.9	0.0070	300.4

– величина относительного рабочего тока в каскадах B_1 и B_2 увеличивается для всех вариантов сочетаний исходного материала (1–5) (рис. 14). При заданном перепаде температуры ΔT величина относительного рабочего тока первого каскада B_1 остается постоянной и не зависит от варианта сочетания параметров, а величина B_2 уменьшается от варианта (1) до (5) (рис. 14);

 $\bar{Z}_{M}\!\!=\!\!2,4\!-\!2,5\!\cdot\!10^{-3}$ 1/K; Q_0\!\!=\!\!2,0 Вт, $\frac{l}{S}\!\!=\!\!10$ в режиме λ_{\min}

– промежуточная температура T_1 уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1–5) для всех режимов (рис. 3);

Таблица 5

– величина относительного перепада температуры в каскадах Θ_1 и Θ_2 увеличивается и не зависит от варианта сочетания параметров (1–5) (рис. 4). При заданном перепаде температуры ΔT величины Θ_1 и Θ_2 остаются постоянными и не зависят от варианта сочетания (1–5) (рис. 4); – величина отношения количества термо-

элементов в смежных касдах $\binom{n_2}{n_1}$ увеличи-

вается и практи-чески не зависит от варианта сочетания параметров исходных материалов (1–5), а зависит от токового режима работы (рис. 5п. 4);

– холодильный коэффициент Е уменьшается и практически не зависит от варианта сочетания параметров исходных материалов (1–5) для всех режимов работы (рис. 6, п. 4). При заданном перепаде температуры ΔT холодильный коэффициент Е увеличивается

от режима
$$\operatorname{Q}_{_{0 \mathrm{max}}}$$
 до $(rac{\operatorname{Q}_{_0}}{\operatorname{I}^2})_{_{\mathrm{max}}}$ и практиче-

ски не зависит от варианта сочетания параметров исходного материала (1–5) (рис. 6 п. 4);

– суммарное количество термоэлементов (n_1+n_2) увеличивается (рис. 15) для различных вариантов сочетания параметров исходного материала (1–5). При заданном перепаде температуры ΔT суммарное количество термоэлементов (n_1+n_2) уменьшается от варианта (1) до (5) (рис. 15);

Рис. 15. Зависимость суммарного количества термоэлементов (n_1+n_2) двухкаскадного ТЭУ от общего перепада температуры ΔT для различных вариантов сочетания параметров исходных материалов (1–5) при

– суммарная интенсивность отказов λ_{Σ} увеличивается для любого режима работы, в том числе для различных сочетаний параметров исходного материала (1–5) (рис. 8, п. 4). При заданном перепаде температуры

суммарная интенсивность отказов λ_{Σ} уменьшается от варианта (1) до (5) (рис. 8, п. 4);

 вероятность безотказной работы Р уменьшается для любого режима работы и для различных вариантов сочетаний параметров исходного материала (1–5) (рис. 9, п. 4). При заданном перепаде температуры ΔТ вероятность безотказной работы Р увеличивается от варианта (1) до (5) (рис. 9, п. 4).

5. Обсуждение результатов сравнительного анализа

Таким образом, при построении двухкаскадного ТЭУ повышенной надежности в режиме λ_{min} можно использовать одни и те же исходные материалы с повышенной электропроводностью (вариант (5) по сравнению с (3)) при одной и той же термоэлектрической эффективности, что позволяет при заданном перепаде температуры ΔT и холодопроизводительности Q₀:

– уменьшить суммарное количество термоэлементов $(n_1 + n_2)$ в среднем на 5,2 %;

– уменьшить интенсивность отказов λ_{Σ} в среднем на 11,2 %, при этом увеличить вероятность безотказной работы P.

При этом:

– холодильный коэффициент Е практически не изменяется;

- увеличивается отношение количества термоэле

ментов в смежных каскадах
$$\binom{n_2}{n_1}$$
 в среднем на 3 %;

– относительный рабочий ток ${\rm B_1}$ и ${\rm B_2}$ практически не изменяется;

- увеличивается рабочий ток I в среднем на 31 %.

6. Выводы

Сравнительный анализ результатов расчетов показателей надежности двухкаскадных ТЭУ, собранных

– для режима Q_{0max} в среднем на 15 %;

$$-$$
для режима $\left(\frac{Q_0}{I}\right)_{max}$ в среднем на 13 %;
- для режима $\left(\frac{Q_0}{I^2}\right)_{max}$ в среднем на 12 %;

– для режима λ_{\min} в среднем на 11 % при одной и той же эффективности исходных материалов и в зависимости от перепада температуры ΔT .

Использование сочетаний (1, 2) по сравнению с (3) является нерациональным, так как при этом увеличивается интенсивность отказов λ и уменьшается вероятность безотказной работы ТЭУ.

С ростом термоэлектрической мощности охлаждения γ_1 и γ_2 в каскадах увеличивается холодопроизводительность Q_0 , либо уменьшается количество термоэлементов n_1 и n_2 , что приводит к уменьшению интенсивности отказов λ и увеличению вероятности безотказной работы Р.

Данные расчетов позволяют выбрать вариант сочетания параметров исходного материала с повышенной электропроводностью для обеспечения повышения показателей надежности ТЭУ, т. е. уменьшения интенсивности отказов λ и увеличения вероятности безотказной работы Р.

Литература

- Рынок термоэлектрических модулей. Аналитический обзор [Электронный ресурс] / М.: РосБизнесКонсалтинг, 2009. 92 с. Режим доступа: http://marketing.rbc.ru
- DiSalvo, F. J. Thermoelectric Cooling and Power Generation [Text] / F. J. DiSalvo // Science. 1999. Vol. 285, Issue 5428. P. 703–706. doi: 10.1126/science.285.5428.703
- Bell, L. E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems [Text] / L. E. Bell // Science. – 2008. – Vol. 321, Issue 5895. – P. 1457–1461. doi: 10.1126/science.1158899
- Zebarjadi, M. Perspectives on thermoelectrics: from fundamentals to device applications [Text] / M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen // Energy & Environmental Science. – 2012. – Vol. 5, Issue 1. – P. 5147–5162. doi: 10.1039/c1ee02497c
- Sootsman, J. R. New and Old Concepts in Thermoelectric Materials [Text] / J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis // Angewandte Chemie International Edition. – 2009. – Vol. 48, Issue 46. – P. 8616–8639. doi: 10.1002/anie.200900598
- 6. Шевелев, А. В. Наноструктурированные термоэлектрические материалы. [Текст] / А. В. Шевелев. М.: Научно-образован тельный центр по нанотехнологиям МГУ им. М.В. Ломоносова, 2010. 58 с.
- Кожемякин, Г. Н. Наноструктурированные теллуриды висмута и сурьмы для термоэлектрического теплового насоса [Текст] / Г. Н. Кожемякин, С. Я. Скипидаров, Ю. М. Крутов, А. Н. Паращенко, О. Н. Иванов, О. Н. Соклакова // Термоэлектричество. – 2014. – № 1. – С. 37–47.
- Brown, S. R. Yb 14 MnSb 11: New High Efficiency Thermoelectric Material for Power Generation [Text] / S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder // Chemistry of Materials. – 2006. – Vol. 18, Issue 7. – P. 1873–1877. doi: 10.1021/cm060261t
- Wereszczak, A. A. Thermoelectric Mechanical Reliability [Text] / A. A. Wereszczak, H. Wang // Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. – Arlington, 2011. – P. 18.
- Iversen, B. B. Why are clathrates good candidates for thermoelectric materials [Text] / B. B. Iversen, A. E.Palmqvist, D. E. Cox, G. S. Nolas, G. D. Stucky, N. P. Blake, H. Metiu // Journal of Solid State Chemistry. 2000. Vol. 149, Issue 2. P. 455–458. doi: 10.1006/jssc.1999.8534
- 11. Нестеров, С. Б. Оценка возможности увеличения термоэлектрической добротности наноструктурированных полупроводниковых материалов для холодильной техники [Текст] / С. Б. Нестеров, А. И. Холопкин // Холодильная техника. 2014. № 5. С. 40–43.
- Singh, R. Experimental Characterization of Thin Film Thermoelectric Materials and Film Deposition VIA Molecular Beam Epitaxy [Text] / R. Singh. – University of California, 2008. – 54 p.
- Громов, Г. Объемные или тонкопленочные термоэлектрические модули [Текст] / Г. Громов // Компоненты и технологии. 2014. – № 9. – С. 38–43.

- 14. Riffat, S. R. Improving the coefficient of performance of thermoelectric cooling systems [Text] / S. B. Riffat, M. Xiaoli // Internation journal of energy research. 2004. Vol. 28, Issue 9. P. 78–85. doi: 10.1002/er.991
- Jurgensmeyer, A. L. High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Techniques [Text] / A. L. Jurgensmeyer. – Colorado State University, 2011. – 54 p.
- Лау, П. С. Оценка надежности термоэлектрических холодильников [Текст] / П. С. Лау, Нэйджи М. Дж. // Термическое оборудование. Технология. – 2004. – Вып. 1. – С. 43–46.
- Зайков, В. П. Влияние термоэлектрической эффективности исходных материалов на показатели надежности термоэлектрических охлаждающих устройств. Часть 1: Однокаскадные ТЭУ [Текст] / В. П. Зайков, В. И. Мещеряков, А. А. Гнатовская, Ю. И. Журавлев // Технология и конструирование в электронной аппаратуре. 2015. № 1. С. 44–48.
- Зайков, В. П. Охлаждаемые возможности термоэлектрических устройств в широком диапазоне изменения температур [Текст] / В. П. Зайков, Л. А. Киншова, В. И. Ефремов // Тепловые режимы и охлаждение РЭА. – 2005. – Вып. 1. – С. 53–59.
- Зайков, В. П. Влияние тепловой нагрузки на показатели надежности двухкаскадных термоэлектрических охлаждающих устройств [Текст] / В. П. Зайков, В. И. Мещеряков, А. А. Гнатовская // Восточно-Европейский журнал передовых технологий. – 2011. – Т. 4, № 9 (52). – С. 34–38. – Режим доступа: http://journals.uran.ua/eejet/article/view/1477/1375
- Зайков, В. П. Прогнозирование показателей надежности термоэлектрических охлаждающих устройств. Кн.1 Однокаскадные устройства [Текст] / В. П. Зайков, Л. А. Киншова, В. Ф. Моисеев. – Одесса: Политехпериодика, 2009. – 108 с.

Створена комп'ютерна модель, яка дає можливість досліджувати роботу печі для обробки матеріалу заданого фракційного складу.

D-

-

Досліджено роботу апарату з різними граничними умовами. Визначено траєкторію частинок в робочій зоні і час їхнього перебування в апараті, а також гідродинамічну структуру потоку. Отримані результати можуть бути використані для моделювання ефективності реакційних процесів, оптимізації конструкції печі та режимів її роботи

Ключові слова: чисельне моделювання, циклонна піч-декарбонізатор, розподіл частинок, потік газ-частинки, час перебування частинок

Создана компьютерная модель, которая дает возможность исследовать работу печи для обработки материала заданного фракционного состава.

Исследована работа аппарата с различными граничными условиями. Определена траектория частиц в рабочей зоне и время их пребывания в аппарате, а также гидродинамическая структура потока. Полученные результаты могут быть использованы для моделирования эффективности реакционных процессов, оптимизации конструкции печи и режимов ее работы

Ключевые слова: численное моделирование, циклоническая печь-декарбонизатор, распределение частиц, поток газ-частицы, время пребывания частиц

D-

-0

1. Introduction

At this time one of the most promising directions of lime production is modernizing production using cyclone furnace УДК 66.041: 666.90 DOI: 10.15587/1729-4061.2015.44168

DEVELOPMENT OF A NUMERICAL MODEL FOR GAS-SOLID FLOW IN THE INDUSTRIAL CYCLONE-CALCINER FURNACE

R. Havryliv

Candidate of technical science, Associate Professor* E-mail: havrilivroman@gmail.com

V. Maystruk

Candidate of technical science, Associate Professor** E-mail: vmaistruk@gmail.com

V. Biliak*

E-mail: zumaleto 1993@gmail.com *Department of Chemical Engineering Institute of Chemistry and Chemical Technology*** **Department of Electronic Engineering Institute of Engineering Mechanics and Transport*** ***National University "Lviv Polytechnic" st. S. Bandera, 12, Lviv, Ukraine, 79000

for annealing finely dispersed limestone. This technology can significantly increase the production of a product, improve quality, reduce emissions of flue gases into the environment [1, 2].