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1. Introduction

In oil and gas field development, there are a number of
factors that influence the production efficiency. These are
both geological characteristics and technical parameters of the
reservoir [1]. Much experience in using intensive field develop-
ment systems has been gained. This applies primarily to pattern
waterflooding [2], in which production and injection wells are
arranged in a certain way within the corresponding areas.

As it is known, the use of the hydraulic fracturing tech-
nology [3, 4] is reasonable in the design of low-permeability
(shale) sedimentary rocks and also due to the deterioration
of reservoir properties in near-wellbore regions in the course
of reservoir development. As a result, fractures extend the
area of influence of production wells and form associations
with high-permeability zones.

Based on numerical methods for quasiconformal map-
pings [4—6], the algorithm for solving nonlinear boundary
value problems of single-phase filtration in low-permeability
sedimentary rocks in the pattern waterflooding elements
considering the impact of hydraulic fractures was developed.
The algorithm allows predicting the properties of the reser-
voir system under various impacts and studying the features
of filtration in near-wellbore regions. The improvement
and development of numerical methods for quasiconformal
mappings for mathematical modeling of nonlinear displace-
ment processes in oil reservoirs considering the impact of
hydraulic fractures is an urgent issue. This would allow
determining the time points of the displacing fluid break-

through to production wells and complete waterflooding,
the coordinates of critical “suspension” points and their
quasipotential values, fluid interface position at different
time points, the overall filtration rate of production wells, oil
fraction dependence, the volume of the fluid displaced in the
reservoir within a certain time and, accordingly, the volume
of the remaining fluid and so on.

2. Literature review and problem statement

Many scientists around the world to investigate the
process of fluid filtering to wells in the presence of hydraulic
fractures. In particular, the analytical solution of the rele-
vant boundary value problem, where fractures are presented
in the form of a section of zero thickness and finite conduc-
tivity is given in [7]. Such a model does not reflect the actual
filtration properties of the displacement process, unlike the
case where the fracture is modeled in an ellipse form, as in
[8]. A more complex model is proposed in [9], which inves-
tigated deviations of fractures, depending on the pressure
generated by existing microfractures in shale sedimentary
rocks. The study of the impact of arrangement of several hy-
draulic fractures on one production well on the displacement
process is proposed in [10]. However, there is the problem of
finding a saturation field, which would allow predicting the
rate of waterflooding of production wells and identifying the
features of operation of a field under the projected arrange-
ment of wells and hydraulic fractures on them.




The results of the mathematical modeling [11] of fil-
tration processes in oil reservoirs with existing hydraulic
fractures using numerical methods allow predicting them in
general. However, they are insufficient for a proper search
of the fluid interface position at different time points, the
overall filtration rate of production wells, oil fraction, the
volume of the displaced fluid in the reservoir within a cer-
tain time, time points of the displacing fluid breakthrough
to production well and complete waterflooding, the location
of stagnant zones. This problem has been solved partially in
[12], which conducted systematic research of mutual impact
of fracture parameters and filtration-capacitive characteris-
tics of the environment.

The problems of optimization of the size, permeability
coefficient and arrangement of hydraulic fractures have been
examined in [13]. The problems of optimization of filtration
characteristics of the displacement process in the presence
of hydraulic fractures have been solved in [14]. However,
these publications did not analyze the locations of so-called
“stagnation” zones, depending on the set parameters and
arrangement of fractures.

Thus, there is a need to solve a wider range of problems.
In addition to the optimum arrangement of injection and
production wells, it is necessary to identify efficient arrange-
ment of hydraulic fractures in the vicinities. This would
satisfy certain criteria, including by selecting the parameters
of hydraulic fractures under constant parameters of the res-
ervoir to achieve the maximum time of water breakthrough
to production wells and amount of extracted oil, and the
minimum water flow rate.

3. Research goal and objectives

The goal of the research is mathematical modeling of
fluid displacement processes in oil reservoirs considering the
impact of hydraulic fractures, and development of numerical
methods for quasiconformal mappings for solving the rele-
vant boundary value problems of single-phase filtration.

To achieve the goal, the following tasks were set:

— to enhance the mathematical model of fluid displace-
ment from low-permeability (shale) sedimentary rocks in the
pattern waterflooding elements in the presence of hydraulic
fractures;

—to develop a methodology for solving boundary value
problems of filtration processes of displacement from low-
permeability (shale) sedimentary rocks considering the im-
pact of hydraulic fractures and related deformation process-
es in the near-wellbore region when the process under study
is described by specially modified Darcy’s law regarding the
critical value of the pressure gradient under quasistationary
filtration flow;

—to develop numerical algorithms for solving relevant
boundary value problems, to conduct numerical calculations
and analysis of the results on this basis.

4. The method of comprehensive analysis of modeling
of nonlinear processes of displacement in oil reservoirs
considering the impact of hydraulic fractures

Let us consider the process of single-phase isothermal
filtration in horizontal reservoir bed, generated by dou-

bly-symmetric rectilineal rows of injection and production
wells, riddled with finite-permeability hydraulic fractures
(Fig. 1) without overflows between the respective rows.

Considering the symmetrical arrangement of wells in the
reservoir, we have the opportunity to allocate the element
G, eG,, containing n« injection wells and one production
well with corresponding fractures and their symmetrical parts
(Fig. 2, where d=n.(r"+a) — the distance between the sepa-
rating lines of the symmetry elements, n, =3, r” — the radius
of wells, a — half the distance between the injection wells,
h — distance between rows).
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Fig. 1. The diagram of reservoir development with the allocated
symmetry element ((@) — injection well, (O) — production well)

When modeling this process, the law of motion and the flow
continuity equation, according to [4—6], is represented as:

V= _ kL) grad p, divpv=0,
u

under the corresponding conditions on the reservoir bound-
aries:
. dp
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Here

I=1(x,y)=[grad p(x,y)|= \[p; + P, — pressure gradient
value p;

p=p(p) Y, u — fluid density, velocity vector and vis-
cosity;
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— coefficient of abso-
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lute permeability of the soil, where
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K

the reservoir area that corresponds to the x-fracture,
k=12 3.., (k, =const). Hydraulic fractures are simulat-
ed by fragments of ellipses with semiaxes a_, b_ and the
corresponding angle of direction — a.; Lg, L — boundaries
of injection and production wells, respectively, ¥ — the
coefficient characterizing the dependence of permeability
of sedimentary rocks (in complicated geological conditions
of filtration, for which k,/u is a small size) on the pressure
gradient value and is determined by the following ratio:



1+F1-1,)at I>1,,

LI, )=
x(@1) {1, at 11,

where F — monotonically increasing function, Iy, — critical
value of the initial gradient.

Fig. 2. The symmetry element of the reservoir under pattern
waterflooding

To construct an approximate solution of the problem,

we introduce the velocity quasipotential in the form of the
Laybenson function [5]:

o(p)=o. +Ejzp(oc)d0c

and rewrite the equation (1) with the corresponding bound-
ary conditions:

div(x(f,lkr)grad (p): 0, V=" srad ¢,
p(9)
—o(p)=o. 9P| Z9P| _9p| _
ol =o(.)=9., anl, “an, "ol "
0. =0()=9
where

B(0)=p(p(9)), T=—— o7 + 0, 9.<¢,

kp(e)

L, ={z=x+iy:x=1"cos(6), y=1’ sin(6)+(2g—1)(a+r°),

3m/2<0<5m/2}={z: ,(x,y)=0,g=12)

L' ={z=x+iy: x:rocos(9)+h, y=d/2+1°sin(8),

n<0<3n/2={z:f (x,y)=0},

L.=A,A,={z: x=0, 21’ +a<y<2r’+3a},

L=AB,={z: 0<x<h, y=d},

L=AH, UH,DUDB, = {z:f(x,y) =0},

AH,={z: x=0,0<y<a}, HD={z: y=0, 0<x<h},

DB,={z: x=h, 0<y<d/2}.

Similarly to [4], by introducing the flow function v,
complex conjugate to @, the problem of constructing the
hydrodynamic grid, determining filtration rate and other
specific filtration parameters by the found (fixed at a given
time) saturation field is reduced to the quasiconformal map-

ping u):u)(z):(p(x,y)+i\u(x,y) of a simply connected re-
gion G, on the corresponding area of complex quasipotential
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where

V(x,y) = VI Y)+ V(X Y),
G,={0: 9,<0<¢’,Q,,<y<Q,, Q,=0},
L={0: 9, <0<¢,y=Q,,

Q,-Q.= q.D—U),dx-k v.dy — unknown total filtration

Ly

rate of injection wells;
Q= Z(Qg —ng): Q,. - total flow rate of production
g=1

wells. Inverse to (1) boundary value problem of quasicon-
formal mapping z=z(®)=x(¢,y)+iy(¢,y) of the region
G, on G, and, consequently, the equation for the real
x=x(¢,y) and imaginary y=y(¢,y) parts of the charac-
teristic flow function is written as:
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The problem of finding the saturation field (2), according
to [4], can be presented as follows:

2
%: _Lifﬁ, (6)
ot ok dsdop

S(X((P*y‘u)’Y((p*"V)vt) =S.,



s(x(0,¥), y(9,¥),0) = 5(x(¢, ), (9, ¥)),

0<y<Q, ¢.<9<¢, (7

where the equation (6) is actually spatially one-dimensional,
because the variable y appears as a parameter.

The difference analogue and the solution algorithm are
built as in [4]. At the initial stage, we find the parameter @, ,
then we consistently solve a series of intermediate problems,
corresponding to Fig. 3.
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Fig. 3. The region of complex quasipotential

The nodes (¢;,y;) of the grid area G, are determined
as follows:

0. +iAQ}, i=0,n, Af =(¢y, —¢.)/(nf+1),
0, = .
@y +(I-nf-DA@], i=nf+1n, Ag;=(¢ —@y )/ (n5+1),

vi=j-Ay,, (¢,y$)eGE,

where
g-1
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. 1=0
m, =2m] +g-1,
10

Ay, =(Q,-Q,)/m,,

g -
m,=Ym+g-1 g=1n, Q,=0,
1=
m,=0, n=nf+nj+1 m=2m] +n,—1, m;,nf,njeN.
=1
The equation (4) is approximated using the finite volume
method [15] as follows:
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Approximations of boundary conditions can be written as:
£ (0, ¥0,) =0, j= 10,10,

£ (X, ¥a,)=0,j=0,m,

Xip,, = 0, 2(g-D(a+r’)—a< Yimg, Vi, ,»

X =0, Vi SV, S2Ag-1)(a+r )+a,i=0n,,
f(Xi00¥10) = 06X, Vi )= 0, =00, j=0,m, g =2,n.. (9)

Here, as in [6], complex conjugation of harmonic func-
tions x;;=x(@;,¥;), ¥;;=y(@;,¥;) is provided by the con-
ditions of orthogonality of near-boundary normal vectors
relative to corresponding tangents along the boundary of the
region G,. Their difference analogues on the well boundaries
are as follows:

(A4 =3 =%y )Xo 3ot = Xg ) +

Ay, =3Y ;= Vo)) Yog — Vo) =0, j=1n,,m,,
(SXHJ X, 4)(“_1Yj )(X“vj+1 =Xy )+

+3Y+ Yooy =AY, ) Yoy ) =0, j=0m. (10)

Unknown approximate values of flow rate Q, and po-
tential ¢y in the flow divergence points in the process of
iterations are found by the formulas:

9y, =0 +(nf+ DAYy, Q,=m Ay,

AQ,Y5 +AQyYY
2vivs
siconformal similarity in small” of respective elementary

quadrangles of two regions:

where Ay, = ,and y¢ is obtained under “qua-

ny,my—1

g _ ﬁ((pi+1/2,j+1/2) Yi,j
Y1 - 2 ¥ 1 ’
i=0,j=1h, X(Ii+1/2,j+1/271kr) mg (n1 + )

n,i,—1

Y§ _ 2 pf(pm/z,_iﬂ/z) Yij g=1n.,
i=n,+1,j=in, X(Ii+1/2,j+1/2’lkr) m,n,

Y. = f)((Pi+1/2,j+1/2) ai.j +ai,j+1 (11)
N XLy oo L) bi,_i + bi+1,_i

where

2 2
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bi,j = \/(Xi,j+1_xi,j)2 +(Yi.j+1_Yi,j)2 .

The equation (7) is approximated by the “upwind” differ-
encing scheme [4] as follows:
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j=1lm, i=1,nf+1, 1=1, i=nf+2n, [=2 12)

where © — time step, s;;, §;; — saturation at the correspond-
ing time points, v,; — velocity. Boundary and initial condi-
tions for saturation in the grld area are as follows: So,j =S
s(X,;, ¥ 0)=5(x,;,y,;), j=0,m, i=1n.

By setting the step t, the parameters of partition nf, n§,
mg g=1,n.,, of the region G, and the accuracy ¢,, €, of the
algorithm, the initial approximations of coordinates of the
boundary nodes (so as to fulfill the condition (8)) and the
initial approximations of coordinates of internal nodes (x{?,
yf‘;)) according to the formulas (10), we find approximations
of values ¥¢. Then, refinement of coordinates of internal
nodes of the hydrodynamic grid by solving (7) with respect
toxjjand y;;is performed. After that, we correct the bound-
ary nodes with the surrounding boundary and near-bound-
ary nodes fixed using the orthogonality condition, and find
the approximation of values Qg ¢ . The conditions for
completion of the construction (finding unknown filtra-
tion parameters, including the velocity field) algorithm of
the hydrodynamic grid in this iterative phase are: stabiliza-
tion of the flow rate Q, (|Q(““) -Q{”|<¢,); stabilization of

the boundary nodes (max\/(x(“) XEDY (Y -y <e,)

and so on. In the event of non-compliance with at least one of
the conditions, the regions of violation of quasiconformality
on the hydrodynamic grid are observed. According to (10),
we find new distribution of saturation in the reservoir and
repeat the steps of the algorithm using the velocity field
and saturation field from the previous iteration step in time
(considering the boundary conditions).

5. Numerical calculations of the model problem

Numerical calculations are held at different values of the
characteristic parameters that define the geometry of the filtra-
tion region when two injection wells account for one production
well, provided that ¢.=0, ¢ =1, r"=0.1, a=0.8, h=3, d=27,
k=1, k, =10, 6=0.5, nxnyxmxmy=4x20x25x25, W, =2,
w,=1, 8(x,y)=0, s==1, 1=0.01. Fig.4 shows the hydrody-
namic grids of the symmetry elements in the initial time point,
and Fig. 5 — corresponding saturation distribution at the time
point t=t under the following hydraulic fracture parameters:
a;=by=0.1, bj=as=1, o, =1, o, =3m/2 (Case 1); a;=0.1, bi=1,
o, =5m/4 (Case 2); a;=0.18, bi=1, a.=3n/2 (Case 3).

Fig. 4. The hydrodynamic grids of the symmetry elements:
a —incase 1; b —incase 2; ¢ —incase 3

Fig. 6, 7 show the dependencies of the total filtration rate
Q.. (t) and oil withdrawal values Q" (t) on the time te [O,t*],
respectively, (t. =18.62, further calculation virtually doesn’t
make sense due to a sharp decline in oil withdrawal) for the
above cases.
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Fig. 5. Saturation distribution of the symmetry elements:
a —incase 1; b —incase 2; ¢ —incase 3
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Fig. 6. The graphs of dependence of the total flow rate on
the time in the corresponding symmetry elements

According to the calculations, the formulas (4) and (5),
the volume of oil in these elements of symmetry before the
displacement — V=7.106, and the volume of the oil pro-
duced and the residue thereof in the reservoir during the
process is V=3.965, \7(18 62)=3.141 (case 1), V=3.428,
V(18.62)=3.678 (case 2), V=3.789, V(18.62)=3.317 (case 3),
respectively.
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Fig. 7. The graphs of dependence of the oil withdrawal value
on the time in the corresponding symmetry elements

6. Discussion of the results of the study of
displacement processes in oil reservoirs in the pattern
waterflooding elements

In view of the study (computer experiments), we see
that the oil withdrawal volume in total filtration rate in
each case is reduced differently after reaching the time of
displacing reagent breakthrough to the production well.
This is due to a significant difference in phase viscosity
coefficients, relative phase permeability, parameters and
locations of hydraulic fractures. In case 1, there is rapid
waterflooding of the production well through one of the
fractures and there is a risk of so-called of oil stagnation
zones. In case 2, that risk decreases considerably, but the
time for complete oil displacement increases. In case 3,
we observe too slow course of the oil withdrawal process
(“proximity” of withdrawals, especially for cases 1 and 3,
is due to equal areas of hydraulic fractures). Also, the fact
is confirmed that the “transverse direction” (with respect
to injection wells) of hydraulic fractures accelerates the
time of the displacing reagent breakthrough to the pro-
duction well (although provides some growth of oil with-
drawal values at the initial stages), and their “longitudi-
nal” direction reduces the number of oil stagnation zones.

At the same time, we emphasize that oil stagnation zones
in these cases are close to the so-called stagnant zones (ar-
eas of reservoirs at the points of which the gradient value
is less than some critical value).

The mathematical modeling of low-permeability oil
field development allows predicting the rate of water-
flooding of production wells and identifying the features
of operation under the projected arrangement of wells
and hydraulic fractures on them. In these conditions, the
problem of optimizing the oil withdrawal process, depend-
ing on the given parameters of hydraulic fractures on the
production well and determining the location of stagnant
zones is solved.

7. Conclusions

The mathematical model of fluid displacement from
the low-permeability oil fields in the pattern waterflood-
ing elements in the presence of hydraulic fractures, par-
ticularly considering the coefficient that characterizes the
dependence of permeability of sedimentary rocks on the
pressure gradient value is improved.

Numerical methods for quasiconformal mappings are
extended to solve nonlinear boundary value problems of
single-phase filtration in low-permeability (shale) sedi-
mentary rocks in the presence of hydraulic fractures. At
the same time, the impact of related deformation processes
in the near-wellbore region is considered. That is, under
quasiconformal filtration flow, the process under study is
described by specially modified Darcy’s law regarding the
critical value of the pressure gradient.

Numerical algorithms for the calculation of filtration
characteristics: saturation field, velocity quasipotential,
time of the displacing fluid breakthrough to the produc-
tion well and its complete waterflooding are developed.
The algorithm also allows determining the coordinates of
the critical “suspension” points and their quasipotential
values, fluid interface position at different time points,
the overall filtration rate of the production well, the
dependence of oil fraction in it. For an effective analysis
of the research, calculations of the volume of the fluid
displaced in the reservoir within a certain time and the
volume of the remaining fluid at an arbitrary time are
performed.
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