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1. Introduction

In oil and gas field development, there are a number of 
factors that influence the production efficiency. These are 
both geological characteristics and technical parameters of the 
reservoir [1]. Much experience in using intensive field develop-
ment systems has been gained. This applies primarily to pattern 
waterflooding [2], in which production and injection wells are 
arranged in a certain way within the corresponding areas.

As it is known, the use of the hydraulic fracturing tech-
nology [3, 4] is reasonable in the design of low-permeability 
(shale) sedimentary rocks and also due to the deterioration 
of reservoir properties in near-wellbore regions in the course 
of reservoir development. As a result, fractures extend the 
area of influence of production wells and form associations 
with high-permeability zones.

Based on numerical methods for quasiconformal map-
pings [4–6], the algorithm for solving nonlinear boundary 
value problems of single-phase filtration in low-permeability 
sedimentary rocks in the pattern waterflooding elements 
considering the impact of hydraulic fractures was developed. 
The algorithm allows predicting the properties of the reser-
voir system under various impacts and studying the features 
of filtration in near-wellbore regions. The improvement 
and development of numerical methods for quasiconformal 
mappings for mathematical modeling of nonlinear displace-
ment processes in oil reservoirs considering the impact of 
hydraulic fractures is an urgent issue. This would allow 
determining the time points of the displacing fluid break-

through to production wells and complete waterflooding, 
the coordinates of critical “suspension” points and their 
quasipotential values, fluid interface position at different 
time points, the overall filtration rate of production wells, oil 
fraction dependence, the volume of the fluid displaced in the 
reservoir within a certain time and, accordingly, the volume 
of the remaining fluid and so on.

2. Literature review and problem statement 

Many scientists around the world to investigate the 
process of fluid filtering to wells in the presence of hydraulic 
fractures. In particular, the analytical solution of the rele-
vant boundary value problem, where fractures are presented 
in the form of a section of zero thickness and finite conduc-
tivity is given in [7]. Such a model does not reflect the actual 
filtration properties of the displacement process, unlike the 
case where the fracture is modeled in an ellipse form, as in 
[8]. A more complex model is proposed in [9], which inves-
tigated deviations of fractures, depending on the pressure 
generated by existing microfractures in shale sedimentary 
rocks. The study of the impact of arrangement of several hy-
draulic fractures on one production well on the displacement 
process is proposed in [10]. However, there is the problem of 
finding a saturation field, which would allow predicting the 
rate of waterflooding of production wells and identifying the 
features of operation of a field under the projected arrange-
ment of wells and hydraulic fractures on them.
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The results of the mathematical modeling [11] of fil-
tration processes in oil reservoirs with existing hydraulic 
fractures using numerical methods allow predicting them in 
general. However, they are insufficient for a proper search 
of the fluid interface position at different time points, the 
overall filtration rate of production wells, oil fraction, the 
volume of the displaced fluid in the reservoir within a cer-
tain time, time points of the displacing fluid breakthrough 
to production well and complete waterflooding, the location 
of stagnant zones. This problem has been solved partially in 
[12], which conducted systematic research of mutual impact 
of fracture parameters and filtration-capacitive characteris-
tics of the environment.

The problems of optimization of the size, permeability 
coefficient and arrangement of hydraulic fractures have been 
examined in [13]. The problems of optimization of filtration 
characteristics of the displacement process in the presence 
of hydraulic fractures have been solved in [14]. However, 
these publications did not analyze the locations of so-called 
“stagnation” zones, depending on the set parameters and 
arrangement of fractures.

Thus, there is a need to solve a wider range of problems. 
In addition to the optimum arrangement of injection and 
production wells, it is necessary to identify efficient arrange-
ment of hydraulic fractures in the vicinities. This would 
satisfy certain criteria, including by selecting the parameters 
of hydraulic fractures under constant parameters of the res-
ervoir to achieve the maximum time of water breakthrough 
to production wells and amount of extracted oil, and the 
minimum water flow rate.

3. Research goal and objectives 

The goal of the research is mathematical modeling of 
fluid displacement processes in oil reservoirs considering the 
impact of hydraulic fractures, and development of numerical 
methods for quasiconformal mappings for solving the rele-
vant boundary value problems of single-phase filtration.

To achieve the goal, the following tasks were set:
– to enhance the mathematical model of fluid displace-

ment from low-permeability (shale) sedimentary rocks in the 
pattern waterflooding elements in the presence of hydraulic 
fractures;

– to develop a methodology for solving boundary value  
problems of filtration processes of displacement from low- 
permeability (shale) sedimentary rocks considering the im-
pact of hydraulic fractures and related deformation process-
es in the near-wellbore region when the process under study 
is described by specially modified Darcy’s law regarding the 
critical value of the pressure gradient under quasistationary 
filtration flow;

– to develop numerical algorithms for solving relevant 
boundary value problems, to conduct numerical calculations 
and analysis of the results on this basis.

4. The method of comprehensive analysis of modeling 
of nonlinear processes of displacement in oil reservoirs 

considering the impact of hydraulic fractures 

Let us consider the process of single-phase isothermal 
filtration in horizontal reservoir bed, generated by dou-

bly-symmetric rectilineal rows of injection and production 
wells, riddled with finite-permeability hydraulic fractures 
(Fig. 1) without overflows between the respective rows.

Considering the symmetrical arrangement of wells in the 
reservoir, we have the opportunity to allocate the element 

∈ �z zG G ,  containing n* injection wells and one production 
well with corresponding fractures and their symmetrical parts 
(Fig. 2, where = +0

*d n (r a)  – the distance between the sepa-
rating lines of the symmetry elements, =*n 3, 0r  – the radius 
of wells, a – half the distance between the injection wells,  
h – distance between rows).

Fig. 1. The diagram of reservoir development with the allocated 
symmetry element (( ) – injection well, ( ) – production well)

When modeling this process, the law of motion and the flow 
continuity equation, according to [4–6], is represented as:

χ
υ = −

µ
� krk (I,I )

grad p,
 

ρυ =
�

div 0,
 

under the corresponding conditions on the reservoir bound-
aries:

g
*L

p = p ,  =*
*

L
p p ,  

∂ ∂ ∂
= = =

∂ ∂ ∂�
� *L L L

p p p
0

n n n
 ( ∗>*p p ).

Here 

= = =I I(x,y) | grad p(x,y) | +2 2
x yp p  – pressure gradient 
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�
, µ  – fluid density, velocity vector and vis-
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2
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2

1 d
G (x,y) : x h cos y sin

a 2

1 d
x h sin y cos 1

b 2

the reservoir area that corresponds to the κ-fracture, 
κ = 1, 2, 3..., ( κ =k const). Hydraulic fractures are simulat-
ed by fragments of ellipses with semiaxes κa , κb  and the 
corresponding angle of direction – κα ; Lg, L – boundaries 
of injection and production wells, respectively, χ  – the 
coefficient characterizing the dependence of permeability 
of sedimentary rocks (in complicated geological conditions 
of filtration, for which µ0k  is a small size) on the pressure 
gradient value and is determined by the following ratio: 
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+ − >
χ =  ≤

kr kr
kr

kr

1 F(I I ), at I I ,
(I,I )

1,  at I I ,

where F – monotonically increasing function, Ikr – critical 
value of the initial gradient. 

Fig. 2. The symmetry element of the reservoir under pattern 
waterflooding 

To construct an approximate solution of the problem, 
we introduce the velocity quasipotential in the form of the 
Laybenson function [5]: 

( )
∗

ϕ = ϕ + ρ α α
µ ∫

p

*
p

k
(p) d  

and rewrite the equation (1) with the corresponding bound-
ary conditions:

( )χ ϕ =�
krdiv (I,I )grad 0,  

χ
υ = ϕ

ρ ϕ

��
�

kr(I,I )
grad ,

( )

ϕ ϕ = ϕ
g

* *L
= (p ) ,
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= = =
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ϕ = ϕ = ϕ*
* *

L
(p ) ,

where 

ρ ϕ = ρ ϕ�( ) (p( )),  µ
= ϕ + ϕ

ρ ϕ
�

�
2 2
x yI ,

k ( )
 ϕ < ϕ*

* ,  

= = +gL {z x iy : ( )= θ0x r cos , ( ) ( )( )= θ + − +0 0y r sin 2g 1 a r , 

π ≤ θ ≤ π = =g3 / 2 5 / 2} {z :  f (x,y) 0, = g 1,2},

= = +*L {z x iy : ( )= θ +0x r cos h, = + θ0y d 2 r sin( ),

π ≤ θ ≤ π =3 / 2} { z : =*f (x,y) 0},

}= = = + ≤ ≤ +0 0
* 2 3L A A {z :  x 0,  2r a y 2r 3a ,  

= = ≤ ≤ =
�

4 2L A B {z :  0 x h,  y d},  

= ∪ ∪ =� 1 0 0 0L A H H D DB {z : =�f (x,y) 0},  

= = ≤ ≤1 0A H {z :  x 0,  0 y a}, = = ≤ ≤0H D {z :  y 0,  0 x h},  

= = ≤ ≤0DB {z :  x h,  0 y d / 2}.

Similarly to [4], by introducing the flow function ψ,  
complex conjugate to ϕ, the problem of constructing the 
hydrodynamic grid, determining filtration rate and other 
specific filtration parameters by the found (fixed at a given 
time) saturation field is reduced to the quasiconformal map-
ping ( ) ( ) ( )ω = ω = ϕ + ψz x,y i x,y  of a simply connected re-
gion Gz on the corresponding area of complex quasipotential

−

ω
= =

= ∪∪ ∪
* *n n 1

g g
g 1 g 1

G G L :

χ χ∂ϕ ∂ψ ∂ϕ ∂ψ
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= ω ϕ < ϕ < ϕ ψ =
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Q Q dx dy  – unknown total filtration  
 
rate of injection wells;

( )−
=

= − =∑
*

*

n

g g 1 n
g 1

Q Q Q Q  – total flow rate of production  
 
wells. Inverse to (1) boundary value problem of quasicon-
formal mapping ( ) ( ) ( )= ω = ϕ ψ + ϕ ψz z x , iy ,  of the region 

ωG  on Gz, and, consequently, the equation for the real 
( )= ϕ ψx x ,  and imaginary ( )= ϕ ψy y ,  parts of the charac-

teristic flow function is written as:

χ ∂ ∂
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�
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�
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−
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g 1* H , 	 (3)

ω∂

    χ ∂ ∂ + υ =    ρ ϕ ∂ψ ∂ψ   
 

� � �
�

l

2 2

kr

G

(I,I ) y x
cos( ,n) 0,  

( )J
 	 (4)

where l=1, 2, 3...,

   χ∂ ∂ ∂ ρ ϕ ∂
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The problem of finding the saturation field (2), according 
to [4], can be presented as follows:

∂ υ ∂ ∂
= −

∂ ∂ ∂ϕσ
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ϕ ψ ϕ ψ = ϕ ψ ϕ ψ�s(x( , ),y( , ),0) s(x( , ),y( , )),

≤ ψ ≤0 Q,  ϕ ≤ ϕ ≤ ϕ*
* , 	 (7)

where the equation (6) is actually spatially one-dimensional, 
because the variable ψ  appears as a parameter.

The difference analogue and the solution algorithm are 
built as in [4]. At the initial stage, we find the parameter ϕ

1H , 
then we consistently solve a series of intermediate problems, 
corresponding to Fig. 3.

Fig. 3. The region of complex quasipotential

The nodes ϕ ψi j( , )  of the grid area ωG  are determined 
as follows:

ϕ + ∆ϕ = ∆ϕ = ϕ −ϕ +ϕ = 
ϕ + − − ∆ϕ = + ∆ϕ = ϕ −ϕ +
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=
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*n

l *
l 1

m m n 1,  ∈g g
l 1 2m ,n ,n N.  

The equation (4) is approximated using the finite volume 
method [15] as follows:
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where

= ϕ ψi,j i jx x( , ),  = ϕ ψi,j i jy y( , ),  ( )± ±ϕ = ϕ + ϕi,j 1 2 i,j 1 i,j 2,  

( )± ±ϕ = ϕ + ϕi 1 2,j i 1,j i,j 2,  ( )± ±= +� � �
i,j 1 2 i,j 1 i,jI I I 2,  
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Approximations of boundary conditions can be written as:

= = � �g 0,j 0,j 1 2f (x ,y ) 0, j m ,m ,

= =*
n,j n,jf (x ,y ) 0, j 0,m,
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Here, as in [6], complex conjugation of harmonic func-
tions = ϕ ψi,j i jx x( , ), = ϕ ψi,j i jy y( , )  is provided by the con-
ditions of orthogonality of near-boundary normal vectors 
relative to corresponding tangents along the boundary of the 
region zG . Their difference analogues on the well boundaries 
are as follows:
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Unknown approximate values of flow rate gQ  and po-
tential ϕ

gH  in the flow divergence points in the process of 
iterations are found by the formulas:
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( )
−

+ +

= = + +

ρ ϕ γ
γ =

+χ∑
�

�

�
�

1 2

1

n ,m 1
i 1 2,j 1 2 i,jg

1
i 0,j m g 1i 1 2,j 1 2 kr

( )
,

m n 1(I ,I )

−
+ +

= + = + +

ρ ϕ γ
γ =

χ∑
�

�

�
�

2

2 1

n,m 1
i 1 2,j 1 2 i,jg

2
i n 1,j m g 2i 1 2,j 1 2 kr

( )
,

m n(I ,I )
 = *g 1,n ,

+ + +

++ +

ρ ϕ +
γ =

+χ

�
�

i 1 2,j 1 2 i,j i,j 1
i,j

i,j i 1,ji 1 2,j 1 2 kr

( ) a a
,

b b(I ,I )
	 (11)

where

( ) ( )+ += − + −
2 2

i,j i 1,j i,j i 1,j i,ja x x y y ,

( ) ( )+ += − + −
2 2

i,j i,j 1 i,j i,j 1 i,jb x x y y .

The equation (7) is approximated by the “upwind” differ-
encing scheme [4] as follows:
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= = + = = + =g g
1 1j 1,m,  i 1,n 1,  l 1,  i n 2,n,  l 2,  	 (12)

where τ  – time step, i,js ,  
�

i,js  – saturation at the correspond-
ing time points, υi,j  – velocity. Boundary and initial condi-
tions for saturation in the grid area are as follows: =0,j *s s , 

=i,j i,js(x ,y ,0) �
i,j i,js(x ,y ),  =j 0,m,  =i 1,n.

By setting the step τ,  the parameters of partition g
1n , g

2n , 
mg = *g 1,n , of the region ωG  and the accuracy ε1, ε2  of the 
algorithm, the initial approximations of coordinates of the 
boundary nodes (so as to fulfill the condition (8)) and the 
initial approximations of coordinates of internal nodes ( (0)

i,jx ,
(0)
i,jy ) according to the formulas (10), we find approximations 

of values γ g
l . Then, refinement of coordinates of internal 

nodes of the hydrodynamic grid by solving (7) with respect 
to xi,j and yi,j is performed. After that, we correct the bound-
ary nodes with the surrounding boundary and near-bound-
ary nodes fixed using the orthogonality condition, and find 
the approximation of values Qg, ϕ

gH . The conditions for 
completion of the construction (finding unknown filtra-
tion parameters, including the velocity field) algorithm of  
the hydrodynamic grid in this iterative phase are: stabiliza-
tion of the flow rate gQ  ( κ+ κ− < ε( 1) ( )

g g 1Q Q ); stabilization of  
 
the boundary nodes ( κ κ− κ κ−− + − < ε( ) ( 1) 2 ( ) ( 1) 2

i,j i,j i,j i,j 2i,j
max (x x ) (y y ) )  

and so on. In the event of non-compliance with at least one of 
the conditions, the regions of violation of quasiconformality 
on the hydrodynamic grid are observed. According to (10), 
we find new distribution of saturation in the reservoir and 
repeat the steps of the algorithm using the velocity field 
and saturation field from the previous iteration step in time 
(considering the boundary conditions).

5. Numerical calculations of the model problem

Numerical calculations are held at different values of the 
characteristic parameters that define the geometry of the filtra-
tion region when two injection wells account for one production 
well, provided that ϕ =* 0, ϕ =* 1, =0r 0.1, a=0.8, h=3, d=27, 
k*=1, λ =k 10, σ = 0.5, n1×n2×m1×m2=4×20×25×25, µ =1 2, 
µ =2 1, =�s(x,y) 0, s*=1, τ = 0.01. Fig. 4 shows the hydrody-
namic grids of the symmetry elements in the initial time point, 
and Fig. 5 – corresponding saturation distribution at the time 
point = �t t  under the following hydraulic fracture parameters: 
a1=b2=0.1, b1=a2=1, α = π α = π1 2,   3 2 (Case 1); a1=0.1, b1=1, 
α = π1,2 5 4 (Case 2); a1=0.18, b1=1, α = π3 2  (Case 3).

              а                                 b                               c

Fig. 4. The hydrodynamic grids of the symmetry elements: 	
а – in case 1; b – in case 2; c – in case 3

Fig. 6, 7 show the dependencies of the total filtration rate 
( )

*nQ t  and oil withdrawal values ( )*Q t  on the time ∈  *t 0,t ,  
respectively, ( =*t 18.62, further calculation virtually doesn’t 
make sense due to a sharp decline in oil withdrawal) for the 
above cases.

а

b

c

Fig. 5. Saturation distribution of the symmetry elements: 	
а – in case 1; b – in case 2; c – in case 3

Fig. 6. The graphs of dependence of the total flow rate on 
the time in the corresponding symmetry elements

According to the calculations, the formulas (4) and (5), 
the volume of oil in these elements of symmetry before the 
displacement – V=7.106, and the volume of the oil pro-
duced and the residue thereof in the reservoir during the 
process is 

�
V=3.965, 

�
V(18.62)=3.141 (case 1), 

�
V=3.428, �

V(18.62)=3.678 (case 2), 
�
V=3.789, 

�
V(18.62)=3.317 (case 3), 

respectively.

 

 

 

 

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/8 ( 82 ) 2016

54

References

1.	 Kanevskaya, R. D. Mathematical modeling of development of oil and gas fields with the use of hydraulic fracturing [Text] / 

R. D. Kanevskaya. – Moscow: OOO “Core-business centers”, 1999. – 212 p. 

2.	 Fazlyev, R. T. Pattern flooding oil fields [Text] / R. T. Fazlyev. – Мoscow: Izhevsk, IKI, SIC RHD, 2008. – 256 p. 

3.	 Taleghani, А. D. Analysis of hydraulic fracture propagation in fractured reservoirs: an improved model for the interaction between 

induced and natural fractures [Text]: PhD Dissertation / А. D. Taleghani. – University of Texas at Austin, 2009. – 216 p. 

4.	 Bomba, А. Ya. Modeling of filtration processes in the oil and gas seams numerical methods quasiconformal mappings [Text]: 

monograph / А. Ya. Bomba, A. M. Sinchuk, S. V. Yaroschak. – Rivne: LLC «Assol», 2016. – 238 p.

5.	 Bomba, A. Ya. Mathematic modelling of thermodynamic effects in well bore zone of gas formation under hydraulic fracturing 

conditions [Text] / A. Ya. Bomba, M. A. Myslyuk, S. V. Yaroschak // Journal of Hydrocarbon Power Engineering. – 2015. – 

Vol. 2, Issue 1. – P. 1–5. 

6.	 Bomba, А. Ya. Method of complex analysis of modeling of the displacement of oil based coolant effect of hydraulic fracturing 

[Text] / А. Ya. Bomba, A. M. Sinchuk, S. V. Yaroschak // International scientific journal “System Research and Information 

Technologies”. – 2015. – Vol. 1. – P. 130–140. 

Fig. 7. The graphs of dependence of the oil withdrawal value 
on the time in the corresponding symmetry elements 

6. Discussion of the results of the study of  
displacement processes in oil reservoirs in the pattern 

waterflooding elements

In view of the study (computer experiments), we see 
that the oil withdrawal volume in total filtration rate in 
each case is reduced differently after reaching the time of 
displacing reagent breakthrough to the production well. 
This is due to a significant difference in phase viscosity 
coefficients, relative phase permeability, parameters and 
locations of hydraulic fractures. In case 1, there is rapid 
waterflooding of the production well through one of the 
fractures and there is a risk of so-called of oil stagnation 
zones. In case 2, that risk decreases considerably, but the 
time for complete oil displacement increases. In case 3, 
we observe too slow course of the oil withdrawal process 
(“proximity” of withdrawals, especially for cases 1 and 3, 
is due to equal areas of hydraulic fractures). Also, the fact 
is confirmed that the “transverse direction” (with respect 
to injection wells) of hydraulic fractures accelerates the 
time of the displacing reagent breakthrough to the pro-
duction well (although provides some growth of oil with-
drawal values at the initial stages), and their “longitudi-
nal” direction reduces the number of oil stagnation zones. 

At the same time, we emphasize that oil stagnation zones 
in these cases are close to the so-called stagnant zones (ar-
eas of reservoirs at the points of which the gradient value 
is less than some critical value).

The mathematical modeling of low-permeability oil 
field development allows predicting the rate of water-
flooding of production wells and identifying the features 
of operation under the projected arrangement of wells 
and hydraulic fractures on them. In these conditions, the 
problem of optimizing the oil withdrawal process, depend-
ing on the given parameters of hydraulic fractures on the 
production well and determining the location of stagnant 
zones is solved.

7. Conclusions

The mathematical model of fluid displacement from 
the low-permeability oil fields in the pattern waterflood-
ing elements in the presence of hydraulic fractures, par-
ticularly considering the coefficient that characterizes the 
dependence of permeability of sedimentary rocks on the 
pressure gradient value is improved.

Numerical methods for quasiconformal mappings are 
extended to solve nonlinear boundary value problems of 
single-phase filtration in low-permeability (shale) sedi-
mentary rocks in the presence of hydraulic fractures. At 
the same time, the impact of related deformation processes 
in the near-wellbore region is considered. That is, under 
quasiconformal filtration flow, the process under study is 
described by specially modified Darcy’s law regarding the 
critical value of the pressure gradient.

Numerical algorithms for the calculation of filtration 
characteristics: saturation field, velocity quasipotential, 
time of the displacing fluid breakthrough to the produc-
tion well and its complete waterflooding are developed. 
The algorithm also allows determining the coordinates of 
the critical “suspension” points and their quasipotential 
values, fluid interface position at different time points, 
the overall filtration rate of the production well, the 
dependence of oil fraction in it. For an effective analysis 
of the research, calculations of the volume of the fluid 
displaced in the reservoir within a certain time and the 
volume of the remaining fluid at an arbitrary time are 
performed.

 



Energy-saving technologies and equipment

55

7.	 Astafjev, V. I. Modeling of fluid filtration in the presence of hydraulic fracture formation [Text] / V. I. Astafjev // Bulletin of 

the Samara State tehnical University. Ser. Sci. Science. – 2007. – Vol. 2, Issue 15. – P. 128–132.

8.	 Wang, H. Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with 

cohesive zone method [Text] / H. Wang // Journal of Petroleum Science and Engineering. – 2015. – Vol. 135. – P. 127–140. 

doi: 10.1016/j.petrol.2015.08.010 

9.	 Wang, X. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method 

[Text] / X. Wang, F. Shia, H. Liu, H. Wu // Journal of Petroleum Science and Engineering. – 2016. – Vol. 33. – P. 56–69.  

doi: 10.1016/j.jngse.2016.05.001 

10.	 Abdollahipour, A. Simulating the propagation of hydraulic fractures from a circular wellbore using the displacement 

discontinuity method [Text] / A. Abdollahipour, M. F. Marji, A. Ya. Bafghi, J. Gholamnejad // International Journal of Rock 

Mechanics and Mining Sciences. – 2015. – Vol. 80. – P. 281–291. doi: 10.1016/j.ijrmms.2015.10.004 

11.	 Miehe, Ch. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media [Text] / 

Ch. Miehe, S. Mauthe // Computer methods in applied mechanics and engineering. – 2016. – Vol. 304. – P. 619–655.

12.	 Salimzadeh, S. A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation [Text] / S. Salimzadeh, 

N. Khalili // Computers and Geotechnics. – 2015. – Vol. 69. – P. 82–92. doi: 10.1016/j.compgeo.2015.05.001 

13.	 Jahandideh, A. Optimization of hydraulic fracturing design under spatially variable shale fracability [Text] / A. Jahandideh, 

B. Jafarpour // Journal of Petroleum Science and Engineering. – 2016. – Vol. 138. – P. 174–188. doi: 10.1016/ 

j.petrol.2015.11.032 

14.	 Zhang, Sh. Determination of in situ stresses and elastic parameters from hydraulic fracturing tests by geomechanics modeling 

and soft computing [Text] / Sh. Zhang, Sh. Yin // Journal of Petroleum Science and Engineering. – 2014. – Vol. 124. – 

P. 484–492. doi: 10.1016/j.petrol.2014.09.002 

15.	 Samarskiy, А. А. The theory of difference schemes [Text] / А. А. Samarskiy. – Moscow: Nauka, 1983. – 616 p.




