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For balancing a wide range of flexible rotors by passive 
AB in practice, it is necessary to have a certain method, the 
efficiency of which is theoretically justified.

2. Analysis of scientific literature and  
the problem statement

The paper [4] studied a possibility of balancing a flexible 
rotor on rigid supports by one or two two-ball AB in any 
correction planes (cross sections), placed at a distance from 
the supports. A flexible rotor was modeled as a weighty solid 
homogeneous elastic shaft of a sustained round cross section. 
In this case they examined stability of the provisions of the 
balance of balls, when there are no shaft deflections in the 
correction planes. It was found that in the case of one AB, 
automatic balancing occurs at the speeds exceeding its un-
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1. Introduction

Rotors of many gas turbine engines, turbine units, cen-
trifugal machines etc. work at high speeds of rotation. As a 
consequence of this, they behave as flexible [1, 2]. The form 
and imbalance of a flexible rotor depends on the current 
speed of rotation, it changes due to temperature or wear 
of the rotor, etc. That is why such rotors are advisable to 
balance not only during their manufacture. They can be 
constantly rebalanced during operation by the passive auto-
matic balancers (AB) [3–15]. In the latter, corrective loads 
(CL) in the form of pendulums, balls or rollers under certain 
conditions come by themselves to the position in which they 
balance a rotor. Such sustained motions are called primary. 
There are also side sustained motions, with which automatic 
balancing does not occur while the devices increase vibra-
tions of a rotor.
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paired critical velocities and lower than the paired critical 
speeds of this rotor with an intermediate support at the AB 
cross section. In the case of two AB, automatic balancing 
occurs at the speeds exceeding its paired critical velocities 
and lower than the unpaired critical speeds of this rotor with 
intermediate supports at the AB cross section. It follows 
from the results that such a rotor is difficult to drive up to 
the working rotation speed because AB will increase deflec-
tions and vibrations of the rotor in the correction planes at 
the speeds of rotor rotation, at which the primary motion is 
not sustained. It should be noted that the applied model of a 
flexible rotor models the simplest rotors, yet it is difficult for 
analytical research.

Similar results were obtained by computational methods 
within the range of different flexible rotors on elastic sup-
ports [5, 6]. Thus, in the paper [5] a flexible rotor was mod-
eled as a weightless elastic shaft, on which N two-ball AB are 
fitted, and in several cross sections of which the point masses 
form imbalances. In the work [6], in contrast to the work [5], 
the point masses are replaced by static imbalanced disks.

In the paper [7], a flexible rotor was modeled as a stat-
ically imbalanced disk fitted on a weightless, absolutely 
flexible shaft. For a static balancing of the disk, one AB was 
fitted on the shaft at some distance from the disk. It was 
shown analytically that AB cannot completely balance the 
disk and eliminate deflections of the shaft. It was found that 
the precision of balancing increases with the AB approach-
ing the disk.

In the work [8], in contrast to the paper [7], the disk is 
dynamically imbalanced, and two AB are fitted on the shaft 
from different sides of the disk. It was shown analytically 
that AB cannot completely balance the disk and eliminate 
deflections of the shaft. But the precision of balancing in-
creases with the AB approaching the disk.

It should be noted that discrete models of a flexible rotor 
used in the papers [5–8] model any isotropic rotors. On the 
other hand, these models are subject to analytical analysis. 
A common drawback of the works [4–8] is also the use of 
two-ball AB in the models. In practice, all AB are multi-ball.

Described studies reveal that it is not expedient to use 
passive AB for elimination of deflections of a flexible rotor in 
non-supporting points. That is why the paper [9] suggested 
a new way of balancing a flexible double-support rotor by 
passive AB. According to the method, the supports are made 
elastic and AB are positioned as close as possible to the sup-
ports. The method is based on the fact that a rigid long rotor 
can be dynamically balanced by two AB at the super-res-
onance velocities of rotor rotation [10]. It is assumed that 
at such velocities passive AB will eliminate displacements 
(and vibrations) of the rotor in supports, not eliminating 
its deflections at non-supporting points. That is why it is 
important to examine the efficiency of the method and the 
peculiarities of such a balancing of a flexible rotor. 

As this method is applicable for a wide range of flexible 
rotors, then its efficiency is expedient to examine analyti-
cally. With this purpose, it is necessary to use a model of a 
flexible rotor and AB subject to analytical research. In the 
paper [11] a discrete multimass model of a flexible rotor on 
elastic supports is constructed. It is shown that the model 
is adequate enough in simulating flexible rotors and can 
be studied analytically. In the work [12] a possibility of 
research into dynamics of multiball AB is revealed. Taking 
into account the experience of these works, in the paper [13] 
they built a discrete multimass model of a flexible rotor on 

elastic supports with several AB with many CL. This model 
describes the dynamics of a rotor machine with AB in gen-
eral and is not directly suitable for the study of the process 
of automatic balancing. That is why it is expedient in the 
research to receive minimal number of differential equations 
from this model that describes exactly the process of auto-
matic balancing. The respective rules of transformation of 
differential equations of motion and the examples of their 
application are presented in the paper [14].

The study of working capacity of AB comes down to de-
termining the primary and side sustained motions, defining 
the conditions of their existence, and the research into sta-
bility. In this case AB is efficient at those angular velocities 
of rotor rotation, at which the primary motions exist and are 
stable, and the side motions are not stable or do not exist. 
The implementation of this approach for a ball AB [3] or AB 
with two connected CL [15] allow us to suggest that when 
the primary motions exist and are stable, then the side mo-
tions are unstable or do not exist. Therefore, the efficiency of 
the method will be studied in the research into conditions of 
existence and stability of the primary motions.

3. The purpose and objectives of the study

The aim of this work is to study the peculiarities of bal-
ancing of flexible double-support rotors by two AB, placed 
near supports of the rotor.

To achieve the set goal, the following problems are to be 
solved:

– to build a discrete N-mass model of a flexible rotor on 
two elastic supports with two AB near supports, to receive 
differential equations of the motion of the system;

– to find the primary motions of a rotor machine;
– to examine conditions of existence of the primary 

motions;
– to obtain a closed system of differential equations rel-

ative to a minimal number of generalized dynamic variables 
that describe the process of automatic balancing.

4. Methods of research into the peculiarities of balancing 
of flexible rotors by passive automatic balancers 

In theoretical studies, the elements of the theory of ro-
tor machines and the theory of passive automatic balancers 
are used.

Differential equations that describe the motion of a flexible 
rotor with two passive AB, placed near supports, are derived 
from the more general equations found in the paper [13]. Thus, 
a discrete multimass model of a flexible double-support rotor 
with two passive AB, placed near supports, with many CL, is 
used in the studies. 

The primary motions and the conditions of their ex-
istence are determined by the condition that AB replace 
displacements in the supports of the rotor.

Differential equations that describe the process of auto-
matic balancing are derived from the differential equations 
of motion of a rotor machine by the method described in 
[14]. In this case, a closed system of differential equations is 
received, compiled relative to the displacements of the rotor 
in supports and relative to the total imbalances, reduced to 
two correction planes (planes of supports). On the primary 
motions, these dynamic variables equal zero.
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5. Results of the study of peculiarities of balancing of 
flexible rotors by passive AB

5. 1. Description of a theoretical-mechanical model of 
a rotor and AB

We consider the following model of a flexible rotor with 
two AB (Fig. 1). The shaft of the rotor is assumed by abso-
lutely elastic weightless straight line. N of absolutely flat 
rigid disks Dj with the mass Mj, / j 1,N /=  is fitted on it. 
With the unstrained shaft, the centers of disks – points Oj, 
/ j 1,N /=  are on a straight line and the disks’ planes are per-
pendicular to this line.

The shaft is held by two elastic-viscous supports at the 
points О1 and О2. The supports are isotropic with linear 
characteristics. 

It is assumed that the shaft of a flexible rotor is a simple, 
linear, perfectly elastic body that obeys Hooke law, and: shaft 
deformations are low; a shaft rotates around a fixed axis, 
which passes through the supports, with constant angular 
rate ω; there is no shaft torsion; the points Оj, / j 1,N /=  move 
in transverse planes of unstrained shaft; deformations of the 
shaft and supports by the forces of weight can be neglected.

The motion of a flexible rotor is defined relative to 
the right system of fixed rectangular axes x, y, z: z axis is 
directed along the axis of rotation in the direction of the 
angular velocity vector ω, axes x and y are directed parallel 
to the main directions of viscous-elastic supports, the origin 
of coordinates is the point O3. Coefficients of rigidity and 
viscosity of the supports are k1, k2 and bo1, bo1, respectively.

The motion of a flexible rotor is completely determined 
by its rotation around the z axis and the deviation of the 
disks’ centres Оj(xj,yj), / j 1,N /=  from the axis of rotation.

In the plane of the j-th disk at the point G0,j (Fig. 2) at 
the distance r0,j from its longitudinal axis, there is a point 
mass m0,j, which forms static imbalance s0,j, / j 1,N /= . In the 
initial moment the vector s0,j forms the angle 

j0 ,φ / j 1,N / .=  
with the axis x. The angle of rotation of the j-th disk equals 

t,ω  and the angle of rotation of the point mass m0,j equals 

j0,j 0tφ = ω + φ , / j 1,N / .=
Disks – Dj, /j=1,2/ contain a pendulum or a ball or a 

roller AB (Fig. 2). In a pendulum AB number j (Fig. 2, a), 
nj of pendulums are fitted on the shaft, with the mass mj 
and physical length rj. In a ball or a roller AB number j 
(Fig. 2, b), there are nj of balls or cylindrical rollers of the 
mass mj. They roll without slipping along circular tracks 
and in this case the distance from the centre of the disk to 
the center of the ball or the roller equals rj. As is accepted 
in the theory of passive AB [4–6, 10, 12–15], we believe 
that CL move in the planes of the disks and do not impede 
movement of one another. The action of the force of weight 
is neglected.

The position of CL is defined by the angles i. j,φ  j/i 1,n / .=  
At the turning of the i-th pendulum around a shaft, it 
is exposed to the moment of forces of viscous resistance 

2
j j i. jb r ( ),ω − φ�  where bj is the coefficient of the moment of 

forces of viscous resistance (brought to the shoulder rj); 

i. j( )ω − φ�  is the speed of rotation of the pendulum around the 
shaft relative to the j-th disk; a dot above the values means a 
time derivative. During motion of the i-th ball or roller along 
the track, it is exposed to the action of the force of viscous 
resistance j j i. jb r ( ),ω − φ�  where bj is the coefficient of force of 
viscous resistance; j i. jr ( )ω − φ�  is the speed of motion of the 
centre of the ball or the roller relative to the j-th disk.

The motion of a rotor machine in the moving coordinate 
system Gxhz (axis z coincides with the axis z, and axes x, h 
rotate around the axis z with angular speed ω synchronously 
with the rotor) can be described by the following conjugated 
complex equations [13]:

2 T 2
j j zj j oj zj j zj zjLeft M D L K b D k D S 0,Σ τ Ξ τ τ= Ξ − + Ξ + Ξ + =

jLeft 0,=  /j=1,2/,

2 2
0,zLeft MD Z K S 0, Left 0,τ Ξ= + − ω = =  (1)

ij

i,2N j zij j j j zij j j

2i2 2
i,2N jzj zj

Left s b / (m )s m / (2 )

(D e D ) 0, Left 0,

+

ψ
+τ τ

= + κ + κ ×

× Ξ − Ξ = =�

�� �

j/i 1,n , j 1,2/,= =  (2)

where

j j 0 j j jM M m n m ,Σ = + + /j 1,2/,=

j j 0 jM M m ,Σ = + /j 3,N /=  is the mass of the correspond-
ing disk;

 

Fig.	1.	N-mass	model	of	a	flexible	double-support	rotor

b

Fig.	2.	Kinematics	of	planar	parallel	motion		
of	the	j-th	disk	with:	a	–	pendulum	AB;		

b	–	ball	or	roller	AB

 

 

a 
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D • • i •τ = + ω⋅�  is the differential operator; 
i t

zj j j(x iy )e− ωΞ = + , / j 1,N /=  are the generalized coordi-
nates that describe the motion of the centres of disks of a 
flexible rotor;

T T
1 3 4 N 2 3 4 NL (1 l ,1 l ,...,1 l ) , L (l , l ,..., l )= − − − =� � � � � �  are the vec-

tors, in which j j 1 2 1l (l l ) / (l l )= − −� , / j 3,N /=  are the dimen-
sionless parameters that set the positions of non-supporting 
disks relative to the supporting ones, where lj, / j 1,N /=  is the 
coordinate of the centre of masses of the j-th disk on the axis z;

z1 1 z2 2K K(Z L L )Ξ= − Ξ − Ξ  is the auxiliary matrix;
K is the matrix of rigidity, the elements of which are the 

coefficients of rigidity (kj,p), / j,p 3,N /=  (they are deter-
mined as the magnitude of static vertical force which is to be 
applied to the point Oj of the shaft so that as a result of it, a 
single displacement of the point Op occurs);

T
z3 z4 zNZ ( , ,..., )= Ξ Ξ Ξ  is the vector of the rotor’s displace-

ment in non-supporting points;
j i , j

n ii t
zj j j i 0

S m r e e ,φ− ω
=

= ∑  /j=1,2/ are the generalized coor-
dinates  (they describe total imbalances, which are formed 
by static imbalance and CL in the corresponding correc-
tion plane);

T
3 4 NLeft (Left , Left ,..., Left )=  is the vector of the left 

parts of equations that describe the motion of non-support-
ing disks;

3 4 NM diag(M , M ,..., M )Σ Σ Σ=  is the diagonal matrix;
T

0,z 0,z3 0,z4 0,zNS (S , S ,..., S )=  is the vector compiled from  
 

0, ji( t)
0,zj j jS m r e ,φ −ω=  / j 3,N /=  static imbalances of non-sup-

porting disks;
i , ji( t)

zij j js m r e ,φ −ω=  j/i 1,n , j 1,2 /= =  is the imbalance formed 
by the i-th CL in the j-th correction plane;

j

for pendulums;1,

for balls;7 / 5,

for cylindrical rollers,3 / 2,


κ = 


/j=1,2/ is the coefficient that characterizes kinetic en-
ergy of CL rotation motion; i,j j, / i 1,n , j 1,2 /ψ = =�  are the 
angles that set the position of CL in AB in a certain primary 
motion (from a family of primary motions if such motions 
create a family); i is the imaginary unit; a line over value 
means complex conjugation.

5. 2. Primary motions of a flexible rotor
A shaft of a flexible rotor is balanced on the primary 

motions and:
a) CL caught up with the rotor, that is why

2 2
zj zjD S S , / j 1,2/;τ = −ω =  (3)

b)  displacements of the centres of masses of supporting 
discs are absent, and deflections in the planes of non-sup-
porting disks are sustained

z1 z2 zj j0, const ,Ξ =Ξ = Ξ =  / j 3,N / .=

That is, at the points of intersection of a non-deformed 
shaft with the AB planes, the hinge supports are ostensibly 
formed that hold the shaft.

Thus, on the primary motions, the system (1) takes 
the form:

T 2
j j zjLeft L KZ S 0,= − − ω =  jLeft 0,=  /j=1,2/, 

2 2
0,zLeft (K M)Z S 0, Left 0.= − ω − ω = =  (4)

From the last equation of the system at 2det(K M) 0− ω ≠  
we find the vector Z:

2 2 1
0 0,zZ (K M) S ,−= ω − ω  (5)

the coordinates of which determine deflections of the shaft 
on the primary motions in the planes of non-support-
ing disks. These deflections are caused by imbalances in 
non-supporting points and depend on the angular velocity 
of rotation of the rotor.

Substituting (5) in the first two equations of the system 
(4), we obtain:

2 T 2 1
j zj j 0,zLeft [S L K(K M) S ] 0,−= −ω + − ω =  

jLeft 0,=  /j=1,2/. (6)

In square brackets we recorded total imbalances reduced 
to two correction planes

T 2 T 2 1
j zj j 0 zj j 0,zS S L KZ / S L K(K M) S ,−

Σ = + ω = + − ω  /j=1,2/.  (7)

Therefore, the total imbalance in the j-th /j=1,2/ correc-
tion plane:

– on the primary motions equals zero;
– is created by imbalances from AB and the corre-

sponding disk in the plane j and by imbalances of non-sup-
porting disks Dj, / j 3,N /=  reduced to this plane;

– depends on the rotor deflections in the non-supporting 
points and the angular velocity of rotation of the rotor (the 
effect of flexibility of a rotor).

It follows from the equalities (7) that the effect of flex-
ibility of a rotor is most evident at the speeds, which are 
solutions of the equation

2det(K M) 0.− ω =  (8)

The matrix 2K M− ω  is symmetric. Therefore, the equa-
tion (8) always has N–2 real positive solutions. These N–2 
velocities are the analogues of critical speeds of a flexible 
rotor on two hinge supports.

From (7) we find the conditions of existence of the pri-
mary motions:

T 2 1
0,zj j 0,z jmaxS L K(K M) S S ,−+ − ω ≤  /j=1,2/, (9)

where 0, ji( t)
0,zj j jS m r e ,φ −ω  /j=1,2/ are the static imbalances of 

supporting disks; S1max, S2max are the balancing capacities 
of AB.

By the condition (9), total imbalances reduced to two 
correction planes must be smaller than the balancing capac-
ities of the rcorresponding AB.

The equation (5) and the condition (8) show that in the 
vicinity of critical speeds of a flexible rotor on two hinge 
supports, the primary motions do not exist due to big deflec-
tions of a flexible shaft that theoretically grow to infinity.

5. 3. Peculiarities of the study of stability of the pri-
mary motions

If any primary motion occurs, then the deflections in the 
supports of a rotor and the total imbalances reduced to two 
correction planes equal zero:
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z1 z2 1 20, S 0, S 0.Σ ΣΞ =Ξ = = =  (10)

So it is natural to examine the stability of the primary 
motions (in particular, their families) by the dynamic vari-
ables z1 z2 1 2, , S , S .Σ ΣΞ Ξ

To obtain the equations that describe the process of 
balancing of a flexible rotor, let us proceed in the system 
of equations (1), (2) to the variables 1 2S , SΣ Σ . Taking into 
account (7), the system of equations (1), (2) takes the form

2 T
j j zj j z1 1 z2 2

2 2 T 2 1
oj zj j zj j j 0,z

Left M D L K(Z L L )

b D k D S L K(K M) S 0,

Σ τ

−
τ τ Σ

= Ξ − − Ξ − Ξ +

+ Ξ + Ξ + + ω − ω =

jLeft 0,=  /j 1,2/,=

 2 2
z1 1 z2 2 0,zLeft MD Z K(Z L L ) S 0, Left 0,τ= + −Ξ −Ξ −ω = =

 
(11)

j

2N j j j j j j

i2 2
j j j zj j zj

Left S b / (m ) S

n m / (2 ) (D p e D ) 0,

+ Σ Σ

ϑ
τ τ

= + κ ⋅ +

+ κ ⋅ Ξ − Ξ =

�� �

2N jLeft 0, /j 1,2/,+ = =
 

(12)

where 
j 1j jarccos(p /p ) / 2,ϑ =  

j jn n

1j i,j j 2 j i,j ji 1 i 1
p ( cos2 ) /n ,p ( sin 2 ) /n ,

= =
= ψ = ψ∑ ∑� �

2 2
j 1j 2 jp p p ,/ j 1,2 / .= + =

It is assumed that after reaching cruising speed of rota-
tion by a flexible rotor, at first shaft deflections occur rather 
quickly and then the deflected shaft behaves like a rigid one. 
In this case, the third equation in (11) takes the form

2 2
z1 1 z2 2 0,zLeft ( M K)Z K( L L ) S 0, Left 0.= ω − + Ξ + Ξ + ω = =

We find vector Z from it:

2 1 2 2 1
z1 1 z2 2 0,zZ ( M K) K( L L ) ( M K) S .− −= − ω − Ξ +Ξ −ω ω −  (13)

Taking (13) into consideration, the first two equations of 
(11) take the form:

2
j j zj j1 z1 j2 z2

2
joj zj j zj j

Left M D q q

b D k D S 0, Left 0,

Σ τ

τ τ Σ

= Ξ + Ξ + Ξ +

+ Ξ + Ξ + = =  /j=1,2/, (14)

where 

T 2 1
ij i jq L K[( M K) K E]L ,−= ω − +  /i,j=1,2/;

E is the identity matrix N of the 2nd order
The stability of the primary motions of N-mass model of 

a flexible rotor can be examined by the equations (12), (14).

5. 4. Example – a case of a three-mass model of a rotor
For a three-mass model of a flexible double-support rotor 

with two AB (Fig. 3), the following results are received:
– motion of the model is described by the equations (2), 

which will remain unchanged, and by the equations (1), 
which will take the form:

2
1 1 z1 3 33 z3 z1 3

2
z2 3 o1 z1 1 z1 z1

Left M D (1 l )k [ (1 l )

l ] b D k D S 0,

Σ τ

τ τ

= Ξ − − Ξ − Ξ − −

−Ξ + Ξ + Ξ + =

� �

�

2
2 2 z2 3 33 z3 z1 3 z2 3

2
o2 z2 2 z2 z2

Left M D l k [ (1 l ) l ]

b D k D S 0,
Σ τ

τ τ

= Ξ − Ξ − Ξ − − Ξ +

+ Ξ + Ξ + =

� � �

2 2
3 3 z3 33 z3 z1 3 z2 3 0,z3Left M D k [ (1 l ) l ] S 0,Σ τ= Ξ + Ξ − Ξ − − Ξ − ω =� �

jLeft 0,=  / j 1,3/;=   (15)

– total imbalances reduced to two correction planes:

2
1 z1 3 33 3 33 0,z3 2

2
z2 3 33 3 33 0,z3

S S (1 l )k / ( M k ) S , S

S l k / ( M k ) S ;

Σ Σ Σ

Σ

= − − ω − ⋅ =

= − ω − ⋅

�

�

– the speed at which the effect of flexibility of the rotor 
manifests itself most vividly

кр 33 3k / M ;Σω =

– the equations (14) take the form

2 2 2 2
1 1 z1 3 3 33 3 33 z1

2 2
3 3 3 33 3 33 z2

o1 z1 1 z1 1

Left M D (1 l ) M k / ( M k )

(1 l )l M k / ( M k )

b D k D S 0, Left 0,

Σ τ Σ Σ

Σ Σ

τ τ Σ

= Ξ + − ω ω − ⋅Ξ +

+ − ω ω − ⋅Ξ +

+ Ξ + Ξ + = =

� �

2 2 2
2 2 z2 3 3 3 33 3 33 z1

2 2 2 2
3 3 33 3 33 z2 o2 z2 2 z2 2

Left M D (1 l )l M k / ( M k )

l M k / ( M k ) b D k D S 0,

Σ τ Σ Σ

Σ Σ τ τ Σ

= Ξ + − ω ω − ⋅Ξ +

+ ω ω − ⋅Ξ + Ξ + Ξ + =

� �

�

2Left 0=  (16)

and the stability of the primary motions can be examined by 
the equations (12), (16).

Fig. 3. Three-mass model of a flexible double-support rotor 
with two AB, placed in the planes of supports

6. Discussion of the results of study of the peculiarities of 
balancing flexible rotors by passive AB

The built discrete N-mass model of a flexible rotor on two 
elastic supports with two AB near the supports and the ob-
tained differential equations of its motion make it possible to 
set the following peculiarities of balancing of the examined 
flexible rotor:

– on the primary motions, AB eliminate deflections  of the 
rotor and vibrations in elastic viscous supports, but do not elim-
inate shaft deflections in non-supporting points;

– on the primary motions, elastic viscous supports are con-
ditionally converted to hinge supports;

– shaft deflections and primary motions change with the 
change in angular velocity of rotation of the rotor;

– the primary motions exist at a certain distance of the 
speed of rotor rotation from the critical velocities of flexible 
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rotor rotation with hinge supports instead of elastic viscous 
supports;

– N-mass model allows simulating N–2 critical speeds of 
flexible rotor rotation;

– at the speeds of rotation of a rotor shaft close to any of 
these velocities, the conditions of existence of the primary mo-
tions are disrupted because shaft deflections theoretically grow 
to infinity and the balancing capacity of AB is not sufficient for 
compensating for the imbalances of the rotor;

– in practice, these deflections  are limited and, therefore, 
proper selection of the balancing capacity of AB (and balancing 
of a rotor before the beginning of operation) can ensure the ex-
istence of primary motions at all speeds of rotation of the rotor.

Therefore, the examined method of balancing of flexible 
rotors is applicable in a much wider range of speeds of rotation 
of the rotor than the existing methods. In fact one can achieve 
the working capacity of the method at super-resonance speeds 
of rotation of the rotor. But to limit the shaft deflections, it is 
expedient to eliminate working rotation frequency of a flexible 
rotor from the critical speeds of such a rotor with two hinge 
supports instead of elastic supports.

It should be noted that the method can be used only for 
the rotors, in which there is a place for adjusting AB near the 
supports. This limits the scope of application of the method.

For further substantiation of the studied way of balancing 
of flexible rotors, we plan, in the range of the constructed model 
of a rotor machine, to explore:

– stability of the primary motions;

– peculiarities of transition processes that occur at 
automatic balancing.

7. Conclusions

1. Constructed discrete N-mass model of a flexible ro-
tor on two elastic supports with two AB near supports is 
subject to analytical analysis and effective at the research 
into peculiarities of automatic balancing.

2. On the primary motions of a rotor machine:
– due to automatic balancers, two hinge supports are 

ostensibly formed in a flexible rotor instead of elastic vis-
cous supports;

– automatic balancers eliminate deflections in the 
supports (vibrations of supports), but do not eliminate 
shaft deflections  in non-supporting points;

– a shaft deflection and the primary motions change 
with the change in angular velocity of rotation of the 
rotor.

3. The primary motions exist at a certain distance of 
the speed of rotation of the rotor from the critical speeds 
of flexible rotor rotation with hinge supports instead of 
elastic viscous supports.

4. Stability (of families) of primary motions can be ex-
amined by a part of variables, including displacements of 
the rotor in the supports and total imbalances of a flexible 
rotor and AB reduced to two correction planes.
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