u] =,

Hocaidxceno npouec mpancnopmyeanns eanma-
aHCi6 Y MepescesomMy npedcmasaeHti 3 Memoro Yyoo-
CKOHANEHHA ICHYIOUUX MemOo0i6 GU3HAMEHHA ONMU-
MAIbHUX XaAPaAKmepucmux mpaHcnopmuux mepedxric.
Bcmanosaeno enaus noxasnuxie cmpyxmypu mepe-
oHci, Hanpamy pyxy i nponyckroi 30amuocmi mpamn-
CNOPMHUX KOMYHIKAUIY HA 6U3HAYEHHSA PaKmMuuHOi
WinbHOCMI PYXY HA MPAHCNOPMHIL Mepexci 8 cma-
muunomy cmawni. Buznaueno mexaniam nepemeo-
PEHHA Mepedcesux Mooenell npouecy 6aAHMANCHUX
nepeeezenv y mampuuni mooesi, AKi 3a0ar0MvCa Y
euznsn0i opienmoeanux epagis i donyckaromo nepe-
Be3eHHS BAHMAICY Uepe3 NPOMINCHI MPAHCHOPMHI
8y3au

Kmouosi cnoea: mpancnopmua mepedxca, max-
CUMANIbHULL MPAHCNOPMHUL NOMIK, HAUKOPOMULL
WAAXU, MAMPULHA MOOETb

= yu

Hccneoosan npoyecc mpancnopmupoexu 2py3oe
8 cemesom npeodcmasyieHuu C Uesvio YcoepuleH-
CMEosanUs CYuecmeyowux memooog onpeoese-
HUSL ONMUMATIGHBIX XAPAKMEPUCMUK MPAHCNOPNL-
HbIX cemeil. Ycmanoeaeno 6ausHue noxazameJeil
cmpyKkmypol cemu, HANPAIeHUs 0BUNCEHUSL U NPO-
NYCKHOU CNOCOOHOCMU MPAHCROPMHBIX KOMMYHU-
Kauuili Ha onpedenenue (axmuueckol nAOMHOCMU
06UICEHUS HA MPAHCNOPMHOU CeMU 8 CMAMULECKOM
cocmosinuu. Onpedenen mexanusm npeodpazoeanus
cemeevix Mooesell npouecca zpy3oevix Nepeeo3ox
8 Mampuunvie MOOeU, KOMopbvle 3a0alOmcs 6 sude
opueHMuUpPoBanHvx epadoe u 0ONYCcKarom nepeso3Ku
2py3a uepe3 npomenNcymounvle mpancnopmhole y3Jiot

Kmiouegvie canosa: mpancnopmuas cemo, mak-
CUMANbHBLIL MPAHCNOPMHLIL NOMOK, Kpamuaiiwue
nymu, Mampuvnas mooesw
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1. Introduction

A strategic objective of scientific-technical policy in
the field of transportation system of the state is achiev-
ing the world level in terms of technical parameters and
services quality that are implemented in transport. In
this connection, the top priority for the transport sector
is to expand scientific research into creation of progres-
sive technologies for the rational organization of cargo
transportations, formation and functioning of efficient
transportation system, development of fundamentally
new management systems using modern information tech-
nologies [1, 2].

At present, Ukraine is beneficially different from other
countries by the fact that a significant number of its cities are
located along traditional transportation and communication
routes of the Eurasian continent. The issue of the develop-
ment of international transport corridors by Ukraine will ac-
celerate not only achieving the strategic goals of integration
into the European Community, but also solving such tasks as
additional investments into development of the transporta-

tion infrastructure of the state, as well as increasing volumes
of products for export [1].

Transport in Ukraine is a powerful communication
system, which includes all its types (water, road, railway,
pipeline, air). The main production funds of transport con-
stitute about 20 % of the production funds of the country
[1]. Creating united international transport-logistic sys-
tem, geographical position of the transportation space of
Ukraine, as well as existence of many international trans-
port corridors require the following [1, 2]: separate analysis
of transport hubs management; provision of coordination
and interaction of all kinds of transport; implementation of
modern achievements in scientific and technical progress in
the transportation operation.

Designing efficient delivery of cargos with the align-
ment of all the links of the transportation process neces-
sitated a large number of theoretical and experimental
studies on various issues of development of transport sys-
tems [1, 2].

Relevance of the research is determined by the need to
improve efficiency of the transportation of goods in interna-




tional traffic through the development and implementation
of models, methods and software for the rational organiza-
tion of international freight traffic.

2. Literature review and problem statement

Many scientific papers in the field of transportation
systems, logistics and operations studies address the solu-
tion of problems to increase efficiency of cargo transpor-
tation in international traffic. The main characteristics
of the transport networks include: maximum flow in the
transportation network and the shortest distances in the
transport network. To solve the problem of optimization of
the transportation network, it is necessary to reduce a net-
work representation of the transport problem to the matrix
form, for which there is practical mathematical apparatus.
An analysis of the literature data that we conducted re-
vealed the following.

The existing methods for solving the problem of max-
imum flow in the transport network are convenient to use
only for a flat network [3]. A new presented algorithm for
the maximum flow allows the optimization of solution to the
problem, but it does not take into account the peculiarities of
transport networks [4]. To solve the problem, it is necessary
to extend the method for solving the problems on the optimi-
zation of transport networks with and without restrictions of
the throughput capacity.

The algorithms of mathematical programming for de-
signing a transport network are developed, which allow
finding the optimal ways [5]. But such algorithms do not
take into account the large number of intermediate points in
the transportation network. The proposed characteristics of
transport in the multiplex system enable the optimization,
but do not allow the calculation of the shortest distances in
the case of a large number of intermediate points [6].

The transportation problem in the matrix and network
forms is presented by definition in equivalents [7]. However,
sometimes it is more convenient to solve a network problem
in matrix form [8]. But we need to improve these methods
to solve complex network transportation problems using
directed graphs in the Excel environment.

In general, the problem of effective control over the
international freight transportation process is in the fact
that the existing methods do not fully take into account
specific features of their fulfillment and, consequently, there
is no a unified approach to determining the methods for the
determination of optimal characteristics of transportation
networks.

3. The aim and tasks of the study

The aim of the study is to improve the methods for
determining the optimal characteristics of transportation
networks.

To achieve the set aim, the following tasks were solved:

— improvement of the methods for solving the problems
on maximum flow in a transport network;

— improvement of the methods for finding the shortest
distances in a transport network;

— improvement of the methods for reducing the net-
work representation of the transport problem to the ma-
trix form.

4. Improvement of the methods for solving the problems
on maximum flow and the shortest distances in a
transportation network

4. 1. Solving the problems on maximum flow

The problem of maximum flow can be formulated as fol-
lows: two nodes are connected by a transportation network
(TN). Each TN arc is assigned with a number that denotes
its throughput capacity in units of transportation vehicles
(TV) in a time unit. It is necessary to find the maximum
flow that can pass the network from one node, called source,
to another, called runoff. In practice, this problem appears
when it is necessary to as quickly as possible for the maxi-
mum number of vehicles to pass between any nodes of TN,
such as in case of natural disaster, seasonal fluctuations in
demand for the transportation of passengers (cargos), etc. A
throughput capacity may be full or specially selected for the
given transportation only.

The easiest way to solve this problem is under condition
that the network is flat, that is, when any two of its vertices
can be connected by arc or link, without crossing other links
at that [3, 4].

The problem of maximum flow is conveniently solved by
the method of trees [5]. The solution can be extended for the
problem with multiple sources and runoffs. This will solve
the problems on the optimization of transport networks with
and without restrictions in throughput capacity.

For this purpose, it is sufficient to build a fake source
and connect it by links with the nodes of dispatch. The
throughput capacity of these links will be the magnitude of
possible dispatch of TV from each node. Similar actions can
be performed at the nodes of arrival.

4. 2. Solving the shortest path problem

Since the numbers assigned to the TN links may indicate
distance, cost or time, it is equally easy to find the smallest
distance, cost or time from one vertex to all others. Solving
the transport problem in TN without limitations of through-
put capacity, when production is concentrated in one point
while consumption — in all others, we find the shortest path
[5]. Potentials in this case determine length of the path
from the vertex with the potential equal to zero. There were
proposed several algorithms for solving the problems on the
shortest path. For the solution of the problem, it is not neces-
sary to choose the least total of the potential of the original
vertex and evaluate all cost links, and the potentials are
assigned to the vertices of network that are considered suc-
cessively. With such a network, one can create a tree of de-
cisions. A condition of optimality may be violated at certain
links that do not belong to the tree. Repeated considerations
of these vertices eliminate these violations, the tree is cor-
rected, as well as the potentials of the vertices. Despite the
need for repeated considerations of the network, solving this
problem is easier using computational technology. This al-
gorithm is the easiest way to compile albums of the shortest
paths by criteria of distance (in the first place), cost or time.

While solving the problem of finding the shortest path,
in addition to the value of the shortest distance from the
selected vertex to all others, we receive the shortest route,
namely, a list of nodes that it passes through. In this case,
one can use the effect of imposition of flows on the networks.
Possessing a matrix of correspondences of freight traffic
from each vertex to all others, we build a tree of the shortest
paths. Returning from each point of unloading by the short-



est route, we summarize flows on the arcs of the network.
Passing from a vertex to another vertex, we obtain density
of traffic in the network without limitation of throughput ca-
pacity. This technique may be used to determine the actual
density of traffic in the network in the static state.

When the network has a throughput capacity limitation,
imposing flows on the network is a bit complicated. In this
case, it is necessary to subtract each elementary flow from
the existing throughput capacity of the arc, on which it is
imposed. Once a throughput capacity of the arc is filled, it is
removed from the network. New trees of the shortest paths
are built and the imposition is assigned to another tree, etc.,
The plan built in this way is not optimal, but if there are no
many arcs with the limitations of throughput capacity, then
the potentials of the vertices one can correct manually.

4. 3. Improvement of the methods for reducing net-
work representation of the transport problem to the
matrix form

The transport problem in the matrix and network forms
of representation are equivalent by definition. However,
sometimes it is more convenient to solve the network prob-
lem in the matrix form. There are two main ways to reduce a
network problem to the matrix form [6, 7].

We propose to solve the network transport problems in
the Excel environment. A directed graph is called a network,
where the following are determined:

— node-source that has only the output arcs (denoted by
letter s from “source”);

— node-runoff that has only the input arcs (denoted by
letter t, from “terminal” — final destination);

— all other nodes — intermediate (transit), interconnect-
ed by arcs, which include the input and output arcs.

Directed arcs in the network are marked with arrows,
non-directed arc is replaced with two arrows facing each
other. Arc with arrow and a certain value of the appropriate
parameter specifies universal concept — flow that moves
from the initial node of the arc to the final node. The objects
of flows in practical problems are the cargos, gas, passengers,
vehicles, communication signals, fluids, etc.

Most of the optimizing problems in networks are the
problems on flows in the networks (network flow problems)
[7,8]. For the network optimization problems, a fundamental
principle is the principle of maintaining the flow at any node,
particularly, the total of flows Fex(x) at the node output is
equal to the total of flows at its input Fent(x) + potential
p(x) of node (+ proposal/—demand), for example:

—node-source s: Fex(s =0+p(s)=P, where P is the mag-
nitude of total flow along the network; potential p(s)=+P;

— node-runoff t: Fex(t)=P+p(t)=0 because potential
p(O=-P;

— intermediate node x: Fex(x)=Fent(x)*p(x).

A flow in each node of the network is function that satis-
fies linear equations and inequalities, where each arc (x;, x;)
of the network is in line with one or more positive numbers.
For example, magnitude d(x;, x;) in the problem on maxi-
mum flow is the throughput capacity of the arc (maximum
amount of product that can be delivered with node x; to node
xj along this arc per unit of time); in the transport problem,
this is the distance or the cost of transportation. Hence the
magnitude of flow along arc (x;, xj) does not exceed through-
put capacity of this arc d(x;, x;) if it is set.

The purpose of the study is the reduction of network
representation of the transport problem to the matrix form

that will allow us in future to solve the problems of cargo
transportation optimization. Fig. 1 displays TN without li-
mitation for the throughput capacity, Fig.2 presents TN
with limitations for the throughput capacity.
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Fig. 1. Example of TN without limitation in the throughput
capacity

Fig. 1, 2 display networks with 7 vertices and 11 links.
Next to the corresponding vertex in parentheses is the num-
ber with a plus sign that indicates the volume of production
while the volume of consumption is, respectively, denoted by
the number with a minus sign. The cost of cargo transporta-
tion is written down in each arc, where the denominator of
fraction demonstrates throughput capacity of separate links
in the network. Fig. 1, 2 presents distributions of cargo flows
and potentials.

0(+7)

Fig. 2. Example of TN with limitation in the throughput
capacity

Production volume is equal to the throughput capacity
of the arc, that is

a =d. )]

i ij

For the arcs whose throughput capacity is unlimited, in
particular for arcs 3—-7 and 7-3, it will correspond to the
known big number.

The volume of consumption for producing vertices of the
network is determined by formula:

b= d; —a(x). )

i
For the vertices that consume cargo — by formula:

by =2 d;+b(x). 3)
j#
For transit vertices, by formula:

b,=Yd,. (4)

j#i



4. 4. Improvement of the methods of searching for the
shortest distances in the transportation network

Often, when solving practical problems, there is a need
to show the links between certain objects. Directed and
non-directed graphs, which are referred to in the scientific
literature as networks, are a natural model for the implemen-
tation of such links [7, 8].

Let us consider the problem of searching for the best route
in terms of the smallest distance. This problem is naturally
modeled using networks, that is, we have connected network
G, in which positive weight of each edge is equal to its length.
Length of the path in such a network is equal to the sum of
lengths of the edges that form this path. In the terms of net-
works, the problem is reduced to finding the shortest path
between two set vertices of graph G [7, 8].

The problems on the shortest paths belong to fundamen-
tal problems of combinatorial optimization, because many of
them can be reduced to finding the shortest path in a net-
work. There are different types of problems on the shortest
path: (1) between two given vertices, (2) between a given
vertex and all others, (3) between each pair of vertices in the
network, (4) between two given vertices to the paths that
pass through one or more of the specified vertices; (5) the
first, second, third, etc. shortest path in a network. Of all the
described types, the most interesting for solving the network
transport problems are the first three. In this case, the first
two of them are realized using the Dijkstra’s algorithm vari-
eties [4], and the third one by using the Floyd algorithm [5].

Let us assume there is directed graph G=(V, E) whose all
arcs have positive marks (arcs costs). It is possible to repre-
sent graph G in the form of map of route flights from one city
to another, where each vertex corresponds to a city, and arc
v—w to the shuttle route from city v to city w (Fig. 3). The
mark of arc v—w is the flight time from city v to city w. In
this case, one can assume that in this case the model matches
a non-directed graph because the marks of arcs v—w and
w—v may coincide. But the flight time is mostly different in
opposite directions between two cities. In addition, assump-
tion about coincidence of the marks of arcs v»w and w—v
does not affect essentially the solution of the set problem. In
this case, the solution of the problem on finding the shortest
path will be minimum time of flights between different cities.

10 100

Fig. 3. Directed graph with marked arcs

Method of graphs. Our initial data for this method
are the known specified directed graph G(V, E), shown
in Fig. 3. In this case, the whole set of its vertices V is
divided into two subsets. The first subset includes the
cities of departures (m of cities), and the second subset
includes the cities of airplanes landing (n of cities).

To resolve this problem, existing algorithms may not be
applied because the Dijkstra’s algorithm is insufficient (ac-

cording to it, we find only one line from the matrix of the
shortest distances), and the Floyd algorithm is excessive
(it generates matrix of the shortest distances between any
a/p, that is, m+n to m+n).

It is necessary to find the shortest routes for flights
between the airports (a/p) of departures and landings, in-
cluding landings at intermediate a/p (they can be both a/p of
departures and a/p of landings of airplanes). In other words,
we must receive the matrix of the shortest distances between
the a/p of departures and the a/p of landings (Table 1).

Table 1
Matrix of the shortest distances between departures and
landings
Indicators A/p of landings
No. 1 2 S n
Cy Cp . Ci
A/p of departures 2 Coy Coo . Co,
m Cm1 CmZ R Cmn

That is why we consider a fundamentally new algorithm,
shown in the listing of program from a pseudo code, which is
presented below and in which:

—array D is the resulting matrix of the shortest dis-
tances, and at every step element D[i, v] contains length of
the current shortest path from vertex i to vertex v;

—array C specifies distances of the flights, where ele-
ment C[i, j] is equal to the cost of arc i—j. If arc i—j does
not exist, then C[i, j] equals o (infinity), that is, larger
than any actual cost of arcs;

— element of array P[i, v] contains the number of ver-
tex, preceding vertex v in the shortest path from vertex i;

—set S means the same as in the Dijkstra’s algorithm,
namely a sequence of vertices of the “special” shortest path:

procedure New( var D: array[1 .. m, | .. (m + n)] of real;
C:array[l .. (m + n),].. (m + n)] of real,

P:array[1 .. m,].. (m + n)] of integer);
begin

() fori:=1tomdo

begin

S := {i}; {selecting the next vertex from the subset of
a/p of departures}

forj:=1to (m + n) do

begin

DI[i, j] := Cl[i, j]; { D initialization }

P[i,j] =i

end

(2)forj:=1to(m+n—-1)do

begin

selecting such vertex w from set V\S that value D[i, w|

minimal;

add w to set S;

for each vertex o from set V\S do

begin

if (D[i, w) + C[w, v] < D[i, v] then

P[i, j] == w;

Dli, v] :== min(D[i, v], D([i, w] + C[w, V] );
end

(3) end

(4) end

end; { New }



In the external loop (lines 1—4), we sequentially select
all a/p of departures, and in the internal one (lines 2—3)
we find the shortest routes from these a/p to all others,
and if, along this route, the intermediate vertices are
available, they are remembered.

An analysis of the commonly known network algo-
rithms for constructing the shortest paths between the
vertices of directed graph reveals that the proposed new
method for constructing the shortest paths between
specified sets of vertices in the network has the following
advantages:

— it fully solves the set problem that could not funda-
mentally be solved using the Dijkstra’s algorithm, due to
the lack of obtained results;

— it solves the problem of finding the shortest paths
between the given infinities of vertices in the network
more effectively, that is, easier and faster, compared to,
though adequate but redundant, results, that we receive,
using the Floyd algorithm.

The new algorithm for constructing the shortest paths
between specified sets of vertices in the network was imple-
mented in the form of software package, which was verified
at alarge number of examples, thus proving its reliability and
universality in the network TVs of large dimensions.

The matrix method. First, we compile adjacency matrix
S of the known graph G=(V, E) shown in Fig. 3. The lines
of matrix S correspond to vertices Vi (i=1,5), columns —
vertices V; (j:1,75), Element Sy, which is located at the
intersection of the i-th line and the j-th column, is assigned
equal to the value that is set on the corresponding arc Ej;
between vertices V; and Vjand 0 — in the absence of direct
link between them (Table 2).

Table 2
Matrix S
No. 1 2 3 4 5
1 0 10 0 30 100
2 0 0 50 0 0
3 70 0 0 0 10
4 0 0 20 0 0
5 0 0 0 60 0

Next we determine matrix S2=S+S by the following rule
of adding elements of matrices S:

S} =min {i (Sik +Sy )},

k=1

provided

((SikXSkj)¢0)(i:1,n;j:H)_ 5)

Upon completion of the formation of all matrices S™,
we define matrix D — resulting matrix of the shortest
paths between vertices V; and V; of graph G whose ele-
ments are calculated by the following formula:

D, =min{S}--Sy'},at S} Sy #0. (6)

Described new method for finding the shortest paths
on directed weighted graph by its functional capabilities
is fully comparable to the Floyd method. It should also be
noted that the new method described, similar to the Dijks-

tra’s algorithm with its various modifications and the Floyd
algorithm, may also be used when processing the network
models of representation of cargo transportation in TN of
various structure [8, 9].

A new method for constructing the shortest paths be-
tween different sets of vertices on a graph, which we exam-
ined, is also implemented as a software package.

3. Results of research into improvement of the methods
for finding the shortest distances in a transportation
network

5. 1. Improvement of the method for maximum flow

Improvement of the method for maximum flow is conve-
niently resolved by the method of trees [10, 11]. Let us ex-
plore this method on the example of TN with a node-source
and a node-runoff (Fig. 4).

It is necessary to find maximum flow from point 1 to
point 6.

Let the links of the network experience permissible two-
way motion and their throughput capacity in both directions
of motion is the same. The entire network is divided arbitrarily
into two trees. One is point 1 (source) and the other one is
point 6 (runoff). In Fig. 6, a, one tree consists of four edges
1-2,1-3, 1-4 and 3-5; the second one is from one vertex 6.

o5
+

Fig. 4. Transport network with node-source (1) and
node-runoff (6)

First, let the flow between vertices 1 and 6 equals zero.
Then the trees are connected by arc shown in dotted li-
ne 5—6 (Fig. 5). In this regard, from vertex 1 to vertex 6,
flow Q may pass, equal to the minimum throughput capaci-
ty of one of the arcs. In Fig. 5, there are 2 links with minimal
throughput capacity — 3—5 and 5-6. Let the flow equal to
1 pass along route 1-3—-5—6. Next, one of the links (we se-
lect, for example, 5—6) is eliminated from the network, and
we marking this action with a cross in Fig. 6.

The network is again split into two trees. The first one in-
cludes vertices 1, 2, 3, 4, 5, and the second one — vertex 6. Let
us connect them by link 4—6 (Fig. 6), along which additional
flow Q, may pass. Its size, due to the minimal throughput
capacity of links of route 1-4-6, is equal to 2. Let this flow
pass and then exclude in subsequent transformations link
4—6 from the network.

By continuing the same transformations over TN links,
we receive at the last step 7 in Fig. 7 the maximum flow in
the network, equal to 8. The crossed out links determine
minimum section in the network that separates source (ver-
tex 1) and runoff (vertex 6) and whose throughput capacity
equals the maximum flow.

The solution may be applied to the problem with multiple
sources and runoffs. For this purpose, it is sufficient to build



a fake source and connect it by links with nodes of dispatch.
A throughput capacity of these links will be the magnitude
of possible dispatch of a vehicle from each node. Similar ac-
tions can be performed with the nodes of arrival.

Fig. 5. Step 1 of finding maximum flow in TN by
the tree method

Fig. 6. Step 2 of finding maximum flow in TN by
the tree method

Fig. 7. Step 7 of finding maximum flow in TN by
the tree method

5. 2. Improvement of the methods for reducing a
network representation of the transport problem to the
matrix form

The first way is the improvement of the method Orde-
na [10, 11], shown in Table 3. Every vertex of the network
shown in Fig. 1 is assigned with a line and a column. Thus, in
our case, the table consists of seven lines and seven columns.
It should always be square. In the cells of the main diagonal
in Table 3, the cost of transportation is equal to 0, because
the output and, at the same time, input arcs to the same ver-
tex cannot exist.

For the vertices, interconnected by a link, in the cells
of the table at the crossing of the corresponding lines and
columns is the cost of transportation by this link. Other cells
are blocked by the numbers that are larger than the costs of
transportation (in Table 3, it is 99).

Table 3

Reducing a network transport problem to the matrix form by
method Ordena

No. 1 2 3 4 5 6 7 )y
0 4 6 3

1 1

| 9 ,—2 ,—1 ,—4 99 99 99 6
0 3
2 4 2
,—7 99 ,—2 99 9 |9
0
3 6 99 ,— 4 99 12 10 |9
9

4 3 2 4 0 3 99 |11

,?99

0
5 99 3 99 99 5 99 9
9

6 99 99 12 3 5 0 5

7 99 99 10 99 99 5 0

5]
lT 9
> 9 9 10 9 11 9 15 |72

For convenience of the calculation, the value of production
(consumption) volume at each vertex is added with any posi-
tive number. In Table 3, it is number 9. Thus, the volume of pro-
duction in vertex 1 will equal 7+9=16; in transit vertex 2 — 9,
similar to the volume of consumption; the volume of consump-
tion in vertex 3 will equal 1+9=10, etc. Then the transport
problem is solved by any known tabular method, for example,
the method of potentials. In Table 3, values of the optimal plan
of cargo transportation are in italics, in Fig. 1 — arrows.

The second way is improving the Wagner method [11]. It
is more convenient for the networks with throughput capac-
ity limitations. Such a network is depicted in Fig. 2, where
an optimal plan of transportation is also presented. Table 4
demonstrates reducing this network to the matrix form.

Table 4

Reducing a network problem to the matrix form by
the Wagner method

No. 1 2 3 415 6 7 >
4
1-2 0 ,— 99 99 199 99 99 1
1
0
2-1 4 ,— 99 99 | 99 99 99 1
1
1-3 0 99 0 99 |99 99 99 2
1 1
6-5| 99 99 99 915 0 99 2
2
6-7| 99 99 99 99 | 99 0 > 7
1 6
0
7-6| 99 99 99 99 | 99 5 ,— 7
7
> 1 9 107 |17 | 7 18 113 | 72

Arcs here are in lines, the vertices are in columns. In the
upper-left corner of the table cell is the cost of transportation
along the arc. The cells that contain no digits are supposed
to be blocked by the numbers that are larger than the costs
of transportation (in Table 4, it is 99).



Production volume is equal to the arc’s throughput ca-
pacity (1). For the arcs whose throughput capacity is unlim-
ited, in particular, arcs 3—7 and 7-3, it corresponds (in our
example) to a number of 100.

Consumption volumes for the production vertices of the
network are determined by formula (2), for the vertices that
consume the goods — by formula (3), and for the transit ver-
tices — by formula (4).

Thus, for vertex 1, the volume of consumption is equal
to 1+5+2-7=1, for vertex 7 — 7+100+6=113, and for ver-
tex 2 — 1+5+3=9.

Table 4 also shows the final result of solving the prob-
lem — the optimal plan for the transportation of cargo,
which is represented in the form of italicized values that
correspond to the flows in Fig. 2.

3. 3. Improvement of the methods for finding the short-
est distances in the transportation network

The method of graphs. Tables 5—7 present matrices C, D
and P, respectively, obtained by using a new algorithm for
directed graph, shown in Fig. 3, which mean the following:

—array C assigns distances of flights;

—array D is the resulting matrix of the shortest dis-
tances;

— element of array P[i, v] contains the number of the
vertex, preceding vertex v along the shortest path from
vertex i.

The matrix method. Using formula (5), we determine
matrices S?=S+S, S3=S+S? and so on, until the last resulting
matrix does not contain any zero (Tables 8, 9).

Table 8
Matrix S?
No. 1 2 S 4
1 0 0 50 160
2 120 0 0 0 60
3 0 80 0 70 170
4 90 0 0 0 30
5 0 0 80 0 0
Table 9
Matrix S1°
No. 1 2 3 4 5
1 430 310 520 300 370
2 620 470 320 460 560
3 340 580 430 570 280
4 590 440 290 430 530
5 490 340 580 330 430

Elements of matrix S determine length of the short-
est path between vertices Vj and V; that contains m links

Table 5 (arcs).
Matrix C In the process of forming matrices S™, we obtain matrix
Indicators A/p of departures and landings P whose elements are the quantities of arcs that make up
cor u pa S anc anding = the shortest paths between vertices V; and V;j of graph G
No | 1 | 2 |3 | 4 (Table 10).
1 o0 10 0 30 100
A/p of departures 2 © © 50 0 0 Table 10
and landings 3 70 ) 0 ) 10 Matrix P
4 © o 20 o © 1 5 =
5 0 © o 60 - No. 3 4
1 3 1 2 1 3
Table 6 2 2 3 1 3 2
Matrix D 3 1 9 3 9 1
Indicators A/p of departures and landings 4 2 3 1 3 2
No. 1 2 3 4 5 5 3 4 2 1 3

A/p of departures 1 o 10 50 30 60
2 120 o0 50 120 60

Table 7
Matrix P

A/p of departures and landings
No. 1 2 3 4 5
A/p of departures 1 0 10 0 30 100

2 0 0 50 © ©

Indicators

Using data from matrix P, it is possible to build the
routes of flights from each a/p of departures (1 and 2) to
each of the a/p of landings (3, 4 and 5):

1&4&3:50 2i>?>=50
1i>4=30 2 50 3 10 5 60
1 30 4 20 3 10 5=60 2i>Bi>S=60

4=120

Upon completion of the formation of all matrices S™,
we define matrix D (Table 11) — the resulting matrix of the
shortest paths between vertices V; and V; of graph G, whose
elements are calculated by formula (6).

Table 11
Matrix D
No. 1 2 3 4 5
1 120 10 50 30 60
2 120 130 50 120 60
3 70 80 90 70 10
4 90 100 20 90 30
5 150 160 80 60 90

In the end, by analyzing the contents of Tables
S...S™ P and D, we build routes for the shortest paths
between all vertices V; and Vjof graph G.



6. Discussion of results of the research into the impact of
indicators of transportation network on the solution of
the problems on maximum flow and the shortest paths in
transportation network

Improvement of the method for maximum flow is con-
veniently resolved by the method of trees. The solution can
be applied to the problem with multiple sources and runoffs.
This will solve problems for the optimization of transporta-
tion networks with and without limitations of their through-
put capacity.

For this purpose, it is sufficient to build a fake source and
connect it by links with the nodes of dispatch. A throughput
capacity of these links will be the magnitude of possible
dispatch from each node. Similarly, these actions can be per-
formed with the nodes of arrival.

The improvement of the method for the shortest paths is
resolved by using the modified Dijkstra’s algorithm. Solving
the problem on finding the shortest path, in addition to the
value of the shortest distance from a given vertex to all others,
we obtain the shortest route, in particular, a list of vertices
that it passes. It might be used for imposing flows on the net-
works. By having matrix of correspondences of freight traffic
from each vertex to all others, we build a tree of the shortest
paths and then, returning from each point of unloading by the
shortest route, we summarize flows at the arcs of the network.
Going from one vertex to another vertex, we receive density
of traffic in the network without limitation in the throughput
capacity. This technique might be used to determine actual
density of traffic in the network in the static state.

When a network has throughput capacity limitations,
imposing a flow on the network is a bit complicated. In this
case, it is necessary to subtract each elementary flow from
the existing throughput capacity of the arc, on which it is
imposed. Once the capacity of the arc is filled, it is removed
from the network, new trees of the shortest paths are built
and the imposition is applied to another tree, and so on. The
plan built in this way is not optimal, but, if there are no many

arcs with limitations in throughput capacity, then, after a
machine imposes flows on the network, it is possible to de-
termine bandwidth capabilities and potentials of the vertices
and adjust the flows manually.

The improvement of the methods for reducing a network
representation of the transport problem to the matrix form
is carried out by the more effective modified Dijkstra’s
method that has algorithmic and software provision of its
implementation.

Studies we conducted were performed within the frame-
work of implementation of applied work by requests from
motor transport enterprises of the Association of Interna-
tional Automobile Carriers of Ukraine. The results might be
used to optimize the routes of transportation of cargoes and
the optimization of carriers’ loading. Further studies may
be extended in the direction of optimization of multimodal
transportation of goods by different types of transport.

7. Conclusions

1.1t is proposed to improve the method for maximum
flow in the transportation network through the use of the
method of trees. The solution can be applied to a problem
with multiple sources and runoffs. This will solve the prob-
lems on the optimization of transportation networks with
and without limitations in throughput capacity.

2. We proposed an improved method for building the
shortest paths in a transport network between different
sets of vertices on the graph, namely, sets of providers
and consumers. The method is implemented in the form
of software package that might be used for the transport
problems of large dimensionality.

3. We defined a conversion mechanism for the network
models of the process of cargo transportation in the matrix
model, which are set in the form of directed graphs and
which allow the transportation of cargo through intermedi-
ate transportation nodes.
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