Experimental studies of temperature channel efficiency for solar energy systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.100908

Keywords:

solar collector, semiconductor temperature converter, temperature difference meter, thermometer calibration

Abstract

The methods to improve the thermal test equipment and determine the efficiency of solar collectors are proposed. To improve the performance specifications of such equipment, it is proposed to use highly sensitive semiconductor sensors. Based on experimental studies, planar transistors are chosen and sensors that can be used in temperature channels of devices for solar system studies are designed. Series connection of several transistor diodes enables an increase in sensitivity while reducing technological variations and simplifying secondary devices.

The experimental studies have shown that the maximum temperature characteristics variation of the nine studied sensors does not exceed ±0.06 °С throughout the measuring range of 0 °С to +80 °С.

The structure of a digital temperature difference meter with the studied sensors is designed. The temperature difference meter circuit is based on two current-to-voltage converters, in the feedback of which temperature sensors are enabled. By using a single reference voltage source, the same currents will flow through the sensors. The output signals of both converters are equal to voltage drops on the sensors and are fed to the differential inputs of the ADC, which provides a source code proportional to the measured temperature difference. The meter calibration at any temperature in the measuring range while ensuring the temperature uniformity of both sensors is proposed. After calibration, the estimated error value of the temperature difference meter does not exceed ±0.1 °С throughout the measuring range.

The calibration method of precision digital thermometers with the designed sensors in two temperature points is proposed. At 0 °С, the thermometer additive error is determined, which is later used as a correction to all measuring results. The multiplier factor value is expedient to determine near the maximum measured temperature as the ratio of the nominal and the resulting values of the code that matches the calibration temperature. A method for adjusting a nonlinear error component in the whole measuring range is developed. It is based on determining the parameters of sensors approximating dependencies using experimental data. The logarithmic approximation temperature dependence of semiconductor sensors, whose value is equal to zero at both calibration temperature values is proposed. It is shown that this approximation dependence can be easily implemented in the modern microcontrollers base. After calibration, the acceptable error limit of digital thermometers in the measuring range from 0 °С to 100 °С does not exceed ±0.1 °С.

Author Biographies

Khrystyna Vasylykha, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of metrology, standardization and certification

Yurii Yatsuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of computerized automatic systems

Volodymyr Zdeb, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of metrology, standardization and certification

Vasyl Yatsuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of metrology, standardization and certification

References

Do 2020 roku v Ukrayini 11 % enerhiyi vyroblyatymet'sya z vidnovlyuvanykh dzherel. EcoTown. Available at: http://ecotown.com.ua/news/Do-2020-roku-v-Ukrayini-11-enerhiyi-vyroblyatymetsya-z-vidnovlyuvanykh-dzherel/

Duffie, J. A., Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Chichester John Wiley & Sons Ltd., 910. doi: 10.1002/9781118671603

Paul, G. (2010). The Complexities of Solar Collector Testing. Evaluation Engineering. Schreier. Available at: https://www.evaluationengineering.com/the-complexities-of-solar-collector-testing

A guide to the standard EN 12975. Quality Assurance in solar thermal heating and cooling technology – keeping track with recent and upcoming developments (2012). QAiST. Available at: http://www.estif.org/fileadmin/estif/content/projects/QAiST/QAiST_results/QAiST%20D2.3%20Guide%20to%20EN%2012975.pdf

Mysak, Y. S., Vozniak, O. T., Datsko, O. S., Shapoval, S. P. (2014). Soniachna enerhetyka: teoriia ta praktyka. Lviv: Vyd-vo Lviv. Politekhniky, 340.

Fischer, S., Osorio, T., Carvalho, M., Fritzsche, U., Kovacs, P. et. al. (Eds.) (2012). Topic report for WP2 Solar thermal collectors. Performance testing of evacuated tubular collectors. QAiST. Available at: http://www.estif.org/solarkeymarknew/images/downloads/QAiST/qaist%20d2.1%20r2.1%20performance%20testing%20of%20evacuated%20tubular%20collectors.pdf

Seene, G., Ollas, P. (2012). Optimization of the Quasi Dynamic Method for Solar Collector Testing. Chalmers University of Technology, Gothenburg, Sweden, 94. Available at: http://publications.lib.chalmers.se/records/fulltext/162910.pdf

Allan, J., Dehouche, Z., Stankovic, S., Mauricette, L. (2015). Performance testing of thermal and photovoltaic thermal solar collectors. Energy Science & Engineering, 3 (4), 310–326. doi: 10.1002/ese3.75

Stoliarchuk, P. H., Yatsuk, V. O., Mykyichuk, M. M., Mikhalieva, M. S., Shpak, O. I., Oleskiv, T. M. (2014). Development of a mathematical model of solar converter efficiency. Eastern-European Journal of Enterprise Technologies, 5 (8 (71)), 30–36. doi: 10.15587/1729-4061.2014.27856

Solar Simulation. Oriel Product Training. Available at: https://assets.newport.com/webDocuments-EN/images/12298.pdf

Osorio, T., Carvalho, M. J. (2012). Testing of Solar Thermal Collectors Under Transient Conditions. Energy Procedia, 30, 1344–1353. doi: 10.1016/j.egypro.2012.11.148

Nazarenko, L. A., Tymofeev, E. P. (2011). Razvytye pretsyzyonnoi fotometryy y radyometryy. Suchasni problemy svitlotekhniky. Kharkiv, 15–17.

Serkez, Kh. V., Yatsuk, V. O., Yatsuk, Yu. V. (2013). Pokrashchennia kharakterystyk pryimachiv soniachnoho vyprominennia z elektrychnym zamishchenniam. Visnyk Nats-noho un-tu «Lvivska politekhnika», 753, 25–30.

Test Report: KTB Nr. 2006-39-a-en. Collector test according to EN 12975-1,2:2006 (2012). Fraunhofer-Institute for Solar Energy Systems ISE. Available at: http://www.twl-technologie.de/files/3669/upload/CE/Pruefbericht_Fraunhofer_TWL_Technologie_FK200.pdf

Eurofins Product Testing – Solar collectors and thermal systems. Conformity tests for certification in accordance with EN 12975 – EN 12976. Available at: http://www.eurofins.com/consumer-product-testing/services/testing/solar-collectorsphotovoltaics/solar-collectors-and-thermal-systems/

Bondarenko, L. I., Hryshchenko, L. V., Nazarenko, L. A., Polevoi, V. I. (2006). Modyfikatsiia konstruktsii bloka termoindykatsii absoliutnoho radiometra enerhetychnoi osvitlenosti. Metrolohiia ta vymiriuvalna tekhnika. Kharkiv, 59–63.

Yatsuk, V., Buhaitsova, P., Yatsuk, Yu. (2013). Possibilities of improving methrological provision of individual heat accounting systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 6–10. Available at: http://journals.uran.ua/eejet/article/view/18445/16192

Polishchuk, Ye. S., Van'ko, V. M., Yatsuk, V. O., Dorozhovets', M. M., Yatsuk, Yu. V. (2015). Vymiryuval'ni peretvoryuvachi (sensory). Lviv, 584.

Serkez, H. V., Yacuk, V. A. (2013). Metrologicheskoe obespechenie izmerenii ehnergeticheskih parametrov solnechnogo izlucheniya pri ispytaniyah solnechnyh kollektorov. Ustoichivoe razvitie, 7, 45–49.

Serkez, Kh. V., Yatsuk, V. O. (2016). Doslidzhennya diodnykh sensoriv temperatury dlya zastosuvannya v absolyutnomu radiometri z elektrychnym zamishchennyam. Metrolohiya ta vymiryuval'na tekhnika. Kharkiv, 125.

Published

2017-06-30

How to Cite

Vasylykha, K., Yatsuk, Y., Zdeb, V., & Yatsuk, V. (2017). Experimental studies of temperature channel efficiency for solar energy systems. Eastern-European Journal of Enterprise Technologies, 3(8 (87), 10–16. https://doi.org/10.15587/1729-4061.2017.100908

Issue

Section

Energy-saving technologies and equipment