Study of thermal dehydration of sodium orthophosphate monosubstituted

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.100982

Keywords:

polymeric phosphates, high-temperature dehydration, sodium orthophosphate monosubstituted, chemical scheme

Abstract

Depending on the conditions of conducting the synthesis, it is possible to obtain polymeric phosphates of different composition and structure. The mixtures of polyphosphates, employed in the production of technological lubricants, are expedient to synthesize by the high-temperature dehydration of sodium orthophosphate monosubstituted. The temperature ranges, over which the thermochemical transformations of sodium orthophosphate monosubstituted with the formation of polyphosphates proceed, are established by the thermogravimetric method. The composition of polyphosphates is determined using the X-ray phase analysis. Quantitative composition of the mixtures of polyphosphates is determined by applying the original method of eluent ion-exchange chromatography. It is established that the basic products of thermal dehydration of sodium orthophosphate monosubstituted in the range of temperatures 200–650 °C are Na3Р3О9, Na2H2P2O7 and Na6P6O18. Thermochemical transformations of NaH2PO4 into Na6P6O18 at temperature 650 °C are accompanied by the side reactions of formation of Na3H2P3O10. We proposed the chemical scheme of the high-temperature dehydration of sodium orthophosphate monosubstituted. Kinetics of the isothermal process of obtaining the polymeric phosphates from sodium orthophosphate monosubstituted at different temperatures is examined.

We established quantitative composition of the mixtures of inorganic polymeric phosphates depending on the duration of isothermal process of dehydration. The possibility of obtaining a salt mixture of polymeric phosphates of the assigned qualitative and quantitative composition is demonstrated. We proposed to use the mixture: 76 % Na6P6O18, 8 % Na2H2P2O7, 8 % Na3H2P3O10, 8 % NaH2PO4, obtained at 650 °C, as the basic phosphate component of technological lubricants for the hot rolling of pipes.

Author Biographies

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Irina Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Yaroslav Kozlov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Energetics

Olga Sverdlikovska, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processing polymers and photo-, nano -, and polygraphic materials

Oleksii Sigunov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Astringent Materials

References

  1. Kulakovskaya, T. V., Vagabov, V. M., Kulaev, I. S. (2012). Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process Biochemistry, 47 (1), 1–10. doi: 10.1016/j.procbio.2011.10.028
  2. McBeath, T. M., Lombi, E., McLaughlin, M. J., Bunemann, E. K. (2007). Polyphosphate-fertilizer solution stability with time, temperature, and pH. Journal of Plant Nutrition and Soil Science, 170 (3), 387–391. doi: 10.1002/jpln.200625166
  3. Rajaei, M., Wang, D.-Y., Bhattacharyya, D. (2017). Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Composites Part B: Engineering, 113, 381–390. doi: 10.1016/j.compositesb.2017.01.039
  4. Matykiewicz, D., Przybyszewski, B., Stanik, R., Czulak, A. (2017). Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process. Composites Part B: Engineering, 108, 224–231. doi: 10.1016/j.compositesb.2016.10.003
  5. Rulliere, C., Perenes, L., Senocq, D., Dodi, A., Marchesseau, S. (2012). Heat treatment effect on polyphosphate chain length in aqueous and calcium solutions. Food Chemistry, 134 (2), 712–716. doi: 10.1016/j.foodchem.2012.02.164
  6. Gray, M. J., Jakob, U. (2015). Oxidative stress protection by polyphosphate – new roles for an old player. Current Opinion in Microbiology, 24, 1–6. doi: 10.1016/j.mib.2014.12.004
  7. Farrokhpay, S., Morris, G. E., Britcher, L. G. (2012). Stability of sodium polyphosphate dispersants in mineral processing applications. Minerals Engineering, 39, 39–44. doi: 10.1016/j.mineng.2012.07.001
  8. Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2014). Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 50 (3), 293–296. doi: 10.1134/s1023193514030045
  9. Danilov, F. I., Tkach, I. G., Sknar, I. V., Sknar, Y. E. (2014). Ni-Co alloy coatings obtained from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 50 (5), 639–642. doi: 10.1134/s2070205114050062
  10. Naderi, R., Attar, M. M. (2010). Cathodic disbondment of epoxy coating with zinc aluminum polyphosphate as a modified zinc phosphate anticorrosion pigment. Progress in Organic Coatings, 69 (4), 392–395. doi: 10.1016/j.porgcoat.2010.08.001
  11. Heydarpour, M. R., Zarrabi, A., Attar, M. M., Ramezanzadeh, B. (2014). Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments. Progress in Organic Coatings, 77 (1), 160–167. doi: 10.1016/j.porgcoat.2013.09.003
  12. Amini, R., Vakili, H., Ramezanzadeh, B. (2016). Studying the effects of poly (vinyl) alcohol on the morphology and anti-corrosion performance of phosphate coating applied on steel surface. Journal of the Taiwan Institute of Chemical Engineers, 58, 542–551. doi: 10.1016/j.jtice.2015.06.024
  13. Abdalla, K., Rahmat, A., Azizan, A. (2012). The Effect of pH on Zinc Phosphate Coating Morphology and its Corrosion Resistance on Mild Steel. Advanced Materials Research, 626, 569–574. doi: 10.4028/www.scientific.net/amr.626.569
  14. Panasenko, S. P., Yesaulov, G. O., Polsky, G. M., Steba, V. K., Korolkov, S. I., Zelensky, O. I. et. al. (2007). Pat. No. 83779 UA. Grease quitrents hot metal forming method and its reception. MPK С 10 М 103/00, C 10 M 125/26. No. 200709266; declareted: 14.08.2007; published: 11.08.2008, Bul. No. 15, 5.
  15. Panasenko, S. P., Polsky, G. M., Ivanov, K. O., Steba, V. K., Korolkov, S. I., Turbar, V. P. et. al. (2008). Pat. No. 86730 UA. Grease quitrents hot metal forming. MPK С 10 М 103/00, С 10 М 169/04. No. 200809414; declareted: 18.07.2008; published: 12.05.2009, Bul. No. 9, 6.
  16. Essehli, R., El Bali, B., Benmokhtar, S., Fuess, H., Svoboda, I., Obbade, S. (2010). Synthesis, crystal structure and infrared spectroscopy of a new non-centrosymmetric mixed-anion phosphate Na4Mg3(PO4)2(P2O7). Journal of Alloys and Compounds, 493 (1-2), 654–660. doi: 10.1016/j.jallcom.2009.12.181
  17. Zhang, X., Wu, H., Wang, Y., Dong, X., Han, S., Pan, S. (2016). Application of the Dimensional Reduction Formalism to Pb12[Li2(P2O7)2(P4O13)2](P4O13): a Phosphate Containing Three Types of Isolated P–O Groups. Inorganic Chemistry, 55 (15), 7329–7331. doi: 10.1021/acs.inorgchem.6b01273
  18. Shen, Y., Zeng, S., Xu, Y., Liu, S., Wang, S., Wu, Z. et. al. (2016). KMg6(P2O7)2P3O10: A novel phosphate with two distinct anions. Inorganic Chemistry Communications, 66, 83–86. doi: 10.1016/j.inoche.2016.02.006
  19. Chen, Y.-G., Xing, M.-L., Liu, P.-F., Guo, Y., Yang, N., Zhang, X.-M. (2017). Two Phosphates: Noncentrosymmetric Cs6Mg6(PO3)18 and Centrosymmetric Cs2MgZn2(P2O7)2. Inorganic Chemistry, 56 (2), 845–851. doi: 10.1021/acs.inorgchem.6b02303
  20. Momeni, A., Filiaggi, M. J. (2013). Synthesis and characterization of different chain length sodium polyphosphates. Journal of Non-Crystalline Solids, 382, 11–17. doi: 10.1016/j.jnoncrysol.2013.10.003

Downloads

Published

2017-06-08

How to Cite

Cheremysinova, A., Sknar, I., Kozlov, Y., Sverdlikovska, O., & Sigunov, O. (2017). Study of thermal dehydration of sodium orthophosphate monosubstituted. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 60–66. https://doi.org/10.15587/1729-4061.2017.100982

Issue

Section

Technology organic and inorganic substances