DOI: https://doi.org/10.15587/1729-4061.2017.102888

Investigation of charge and discharge regimes of nanomodified heat-accumulating materials

Alexander Shchegolkov, Alexey Schegolkov, Nikolay Karpus, Vadym Kovalenko, Valerii Kotok

Abstract


Charge/discharge regimes of nanomodified paraffins have been studied. The nanomodification of paraffin was carried out by using the “Taunit” series nanomaterials with different morphological parameters under ultrasonic treatment. Comparative studies of thermophysical parameters (thermal conductivity and heat capacity) have been conducted for the prepared samples. Under charge/discharge regimes, the effect of “tracking thermal contact” manifests. The thermal conductivity increases to 0.48, 0.42 and 0.36 W/mºС in case of CNM-MD, CNM-M and CNM, relative to the initial thermal conductivity of 0.25 w/mºС. It has been established that the extreme on the thermal dependency graph depends on heat capacity ((57, 63 and 72 ºС for CNM, CNM-M and CNM-MD correspondingly). Modification of paraffin with carbon nanotubes allows controlling the phase-transition parameters, which allows obtaining a variety of temperature dependencies of heat capacity, thermal conductivity and physical-mechanical characteristics by combining different ratios of the “Taunit” series nanotubes and physical influences such as thermal fields and ultrasound. The heat-accumulating materials prepared in such a way allow achieving optimized operation of the heat accumulator under different temperature regimes.


Keywords


heat accumulator; paraffin; modification; carbon nanotubes; thermal conductivity; heat capacity; charge/discharge

Full Text:

PDF

References


Tyagi, V. V., Panwar, N. L., Rahim, N. A., Kothari, R. (2012). Review on solar air heating system with and without thermal energy storage system. Renewable and Sustainable Energy Reviews, 16 (4), 2289–2303. doi: 10.1016/j.rser.2011.12.005

Nithyanandam, K., Pitchumani, R., Mathur, A. (2014). Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power. Applied Energy, 113, 1446–1460. doi: 10.1016/j.apenergy.2013.08.053

Zeng, J. L., Cao, Z., Yang, D. W., Sun, L. X., Zhang, L. (2009). Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 101 (1), 385–389. doi: 10.1007/s10973-009-0472-y

Tang, B., Qiu, M., Zhang, S. (2012). Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar Energy Materials and Solar Cells, 105, 242–248. doi: 10.1016/j.solmat.2012.06.012

Zhao, C. Y., Lu, W., Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 84 (8), 1402–1412. doi: 10.1016/j.solener.2010.04.022

Fan, L., Khodadadi, J. M. (2011). Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 15 (1), 24–46. doi: 10.1016/j.rser.2010.08.007

Warzoha, R. J., Zhang, D., Feng, G., Fleischer, A. S. (2013). Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 61, 441–457. doi: 10.1016/j.carbon.2013.05.028

Warzoha, R. J., Fleischer, A. S. (2015). Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials. Applied Energy, 154, 271–276. doi: 10.1016/j.apenergy.2015.04.121

Li, M., Guo, Q., Nutt, S. (2017). Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Solar Energy, 146, 1–7. doi: 10.1016/j.solener.2017.02.003

Zhang, N., Yuan, Y., Yuan, Y., Cao, X., Yang, X. (2014). Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage. Solar Energy, 110, 64–70. doi: 10.1016/j.solener.2014.09.003

Renteria, J., Nika, D., Balandin, A. (2014). Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Applied Sciences, 4 (4), 525–547. doi: 10.3390/app4040525

Kant, K., Shukla, A., Sharma, A., Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453–463. doi: 10.1016/j.solener.2017.03.013

Liu, X., Rao, Z. (2017). Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochimica Acta, 647, 15–21. doi: 10.1016/j.tca.2016.11.010

Kolupaev, I., Sobol, O., Murakhovski, A., Koltsova, T., Kozlova, M., Sobol, V. (2016). Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 29–35. doi: 10.15587/1729-4061.2016.81255

Li, B., Liu, T., Hu, L., Wang, Y., Gao, L. (2013). Fabrication and Properties of Microencapsulated Paraffin@SiO2Phase Change Composite for Thermal Energy Storage. ACS Sustainable Chemistry & Engineering, 1 (3), 374–380. doi: 10.1021/sc300082m

Sun, K., Stroscio, M. A., Dutta, M. (2009). Thermal conductivity of carbon nanotubes. Journal of Applied Physics, 105 (7), 074316. doi: 10.1063/1.3095759

Huang, H., Liu, C. H., Wu, Y., Fan, S. (2005). Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced Materials, 17 (13), 1652–1656. doi: 10.1002/adma.200500467

Liu, C. H., Huang, H., Wu, Y., Fan, S. S. (2004). Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Applied Physics Letters, 84 (21), 4248–4250. doi: 10.1063/1.1756680

Foygel, M., Morris, R. D., Anez, D., French, S., Sobolev, V. L. (2005). Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Physical Review B, 71 (10). doi: 10.1103/physrevb.71.104201

Xu, X., Pereira, L. F. C., Wang, Y., Wu, J., Zhang, K., Zhao, X. et. al. (2014). Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 5. doi: 10.1038/ncomms4689

Shchegolkov, A. V. (2017). Regenerative Heat Exchanger Based on Graphene-Modified Paraffin for Portable Respiratory Devices. Nano Hybrids and Composites, 13, 69–74. doi: 10.4028/www.scientific.net/nhc.13.69

Bodin, N. B., Semenov, A. S., Shchegolkov, A. V., Shchegolkov, A. V., Popova, A. A. (2016). Nanomodified heat accumulating materials for energy saving in industrial processes. Ecology, Environment and Conservation, 22 (4), 2155–2162.


GOST Style Citations


Tyagi, V. V. Review on solar air heating system with and without thermal energy storage system [Text] / V. V. Tyagi, N. L. Panwar, N. A. Rahim, R. Kothari // Renewable and Sustainable Energy Reviews. – 2012. – Vol. 16, Issue 4. – P. 2289–2303. doi: 10.1016/j.rser.2011.12.005 

Nithyanandam, K. Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power [Text] / K. Nithyanandam, R. Pitchumani, A. Mathur // Applied Energy. – 2014. – Vol. 113. – P. 1446–1460. doi: 10.1016/j.apenergy.2013.08.053 

Zeng, J. L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material [Text] / J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, L. Zhang // Journal of Thermal Analysis and Calorimetry. – 2009. – Vol. 101, Issue 1. – P. 385–389. doi: 10.1007/s10973-009-0472-y 

Tang, B. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping [Text] / B. Tang, M. Qiu, S. Zhang // Solar Energy Materials and Solar Cells. – 2012. – Vol. 105. – P. 242–248. doi: 10.1016/j.solmat.2012.06.012 

Zhao, C. Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) [Text] / C. Y. Zhao, W. Lu, Y. Tian // Solar Energy. – 2010. – Vol. 84, Issue 8. – P. 1402–1412. doi: 10.1016/j.solener.2010.04.022 

Fan, L. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [Text] / L. Fan, J. M. Khodadadi // Renewable and Sustainable Energy Reviews. – 2011. – Vol. 15, Issue 1. – P. 24–46. doi: 10.1016/j.rser.2010.08.007 

Warzoha, R. J. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials [Text] / R. J. Warzoha, D. Zhang, G. Feng, A. S. Fleischer // Carbon. – 2013. – Vol. 61. – P. 441–457. doi: 10.1016/j.carbon.2013.05.028 

Warzoha, R. J. Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials [Text] / R. J. Warzoha, A. S. Fleischer // Applied Energy. – 2015. – Vol. 154. – P. 271–276. doi: 10.1016/j.apenergy.2015.04.121 

Li, M. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage [Text] / M. Li, Q. Guo, S. Nutt // Solar Energy. – 2017. – Vol. 146. – P. 1–7. doi: 10.1016/j.solener.2017.02.003 

Zhang, N. Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage [Text] / N. Zhang, Y. Yuan, Y. Yuan, X. Cao, X. Yang // Solar Energy. – 2014. – Vol. 110. – P. 64–70. doi: 10.1016/j.solener.2014.09.003 

Renteria, J. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage [Text] / J. Renteria, D. Nika, A. Balandin // Applied Sciences. – 2014. – Vol. 4, Issue 4. – P. 525–547. doi: 10.3390/app4040525 

Kant, K. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage [Text] / K. Kant, A. Shukla, A. Sharma, P. H. Biwole // Solar Energy. – 2017. – Vol. 146. – P. 453–463. doi: 10.1016/j.solener.2017.03.013 

Liu, X. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material [Text] / X. Liu, Z. Rao // Thermochimica Acta. – 2017. – Vol. 647. – P. 15–21. doi: 10.1016/j.tca.2016.11.010 

Kolupaev, I. Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure [Text] / I. Kolupaev, O. Sobol, A. Murakhovski, T. Koltsova, M. Kozlova, V. Sobol // Eastern-European Journal of Enterprise Technologies. – 2016. – Vol. 5, Issue 4 (83). – P. 29–35. doi: 10.15587/1729-4061.2016.81255 

Li, B. Fabrication and Properties of Microencapsulated Paraffin@SiO2Phase Change Composite for Thermal Energy Storage [Text] / B. Li, T. Liu, L. Hu, Y. Wang, L. Gao // ACS Sustainable Chemistry & Engineering. – 2013. – Vol. 1, Issue 3. – P. 374–380. doi: 10.1021/sc300082m 

Sun, K. Thermal conductivity of carbon nanotubes [Text] / K. Sun, M. A. Stroscio, M. Dutta // Journal of Applied Physics. – 2009. – Vol. 105, Issue 7. – P. 074316. doi: 10.1063/1.3095759 

Huang, H. Aligned Carbon Nanotube Composite Films for Thermal Management [Text] / H. Huang, C. H. Liu, Y. Wu, S. Fan // Advanced Materials. – 2005. – Vol. 17, Issue 13. – P. 1652–1656. doi: 10.1002/adma.200500467 

Liu, C. H. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading [Text] / C. H. Liu, H. Huang, Y. Wu, S. S. Fan // Applied Physics Letters. – 2004. – Vol. 84, Issue 21. – P. 4248–4250. doi: 10.1063/1.1756680 

Foygel, M. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity [Text] / M. Foygel, R. D. Morris, D. Anez, S. French, V. L. Sobolev // Physical Review B. – 2005. – Vol. 71, Issue 10. doi: 10.1103/physrevb.71.104201 

Xu, X. Length-dependent thermal conductivity in suspended single-layer grapheme [Text] / X. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao et. al. // Nature Communications. – 2014. – Vol. 5. doi: 10.1038/ncomms4689 

Shchegolkov, A. V. Regenerative Heat Exchanger Based on Graphene-Modified Paraffin for Portable Respiratory Devices [Text] / A. V. Shchegolkov // Nano Hybrids and Composites. – 2017. – Vol. 13. – P. 69–74. doi: 10.4028/www.scientific.net/nhc.13.69 

Bodin, N. B. Nanomodified heat accumulating materials for energy saving in industrial processes [Text] / N. B. Bodin, A. S. Semenov, A. V. Shchegolkov, A. V. Shchegolkov, A. A. Popova // Ecology, Environment and Conservation. – 2016. – Vol. 22, Issue 4. – P. 2155–2162.







Copyright (c) 2017 Alexander Shchegolkov, Alexey Schegolkov, Nikolay Karpus, Vadym Kovalenko, Valerii Kotok

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061