DOI: https://doi.org/10.15587/1729-4061.2017.108458

Development of software for combining finite element and optical analyses

Valentin Kolobrodov, Dmytro Pozdniakov, Vyacheslav Sokurenko, Volodymyr Tiagur

Abstract


In the process of development of numerous optical systems of aerospace designation, it is necessary to take into account deformations that arise in the optical and mechanical elements of the structure. Such deformations can occur due to loads, vibrations, impacts, temperature effects, and other factors. Their consideration in system development will enable prediction of influence of external factors on the final optical image quality. However, it is impossible to directly import results of finite element analysis into optical programs.

A special computer program Deform was developed, which makes it possible to link programs for finite-element and optical analysis. The general idea is to determine parameters of the shape and spatial orientation of the spherical or aspherical "basic" surface, which is most closely approximated to the deformed surface for a specified set of surface points. Next, approximation of the deformation function of higher order is carried out.

Operability of this software has been proven during development of means for a three-mirror anastigmattic quasi-orthoscopic lens. With the help of parametric simulation, a study was carried out on the influence of geometric parameters of lightening and fastening on deformation of the working surface of extra-axial segments of axisymmetric mirrors. As a result of this study, an option of lightening and fastening was selected, which minimized deformation of the working mirror surfaces. The results of simulation of impact of gravity on nonlightened and lightened mirrors, which was carried out in ANSYS Workbench, were then imported into ZEMAX optical analysis program for obtaining MTF charts of the system

Keywords


Zernicke polynomials; finite element analysis; optomechanics; load simulation; mirrorweight reduction

Full Text:

PDF

References


Wang, C., Ruan, P., Liu, Q. (2013). Improved design of support for large aperture space lightweight mirror. International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications. doi: 10.1117/12.2034456

Leys, A., Hull, T., Westerhoff, T. (2015). Cost-optimized methods extending the solution space of lightweight spaceborne monolithic ZERODUR® mirrors to larger sizes. Optomechanical Engineering 2015. doi: 10.1117/12.2187099

Toney, J. E. (2011). Multiphysics Modeling of Electro-Optic Devices. Proceedings of COMSOL Conference, Boston. Availabler at: https://www.comsol.com/paper/download/83949/toney_paper.pdf

Genberg, V., Michels, G. (2011). Integrating MD Nastran with optical performance analysis. MSC Software. Available at: http://www.sigmadyne.com/sigweb/downloads/MSC-UC-2011-Genberg.pdf

Michels, G., Genberg, V., Doyle, K. (2008). Integrating ANSYS mechanical analysis with optical performance analysis using SigFit. ANSYS. Available at: http://www.sigmadyne.com/sigweb/downloads/CADFEM-2008-2.16.12.pdf

Michels, G. J., Genberg, V. L. (2015). Optomechanical analysis of diffractive optical elements. Optical Modeling and Performance Predictions VII. doi: 10.1117/12.2189292

Michels, G. J., Genberg, V. L., Bisson, G. R. (2016). Improvements in analysis techniques for segmented mirror arrays. Modeling, Systems Engineering, and Project Management for Astronomy VI. doi: 10.1117/12.2231436

Michels, G. J., Genberg, V. L. (2012). Analysis techniques for adaptively controlled segmented mirror arrays. Adaptive Optics Systems III. doi: 10.1117/12.924307

Doyle, K. B., Genberg, V. L., Michels, G. J. (2002). Numerical methods to compute optical errors due to stress birefringence. Optical Design and Analysis Software II. doi: 10.1117/12.481188

Storn, R., Price, K. (1997). Differential Evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11 (4), 341–359. doi: 10.1023/a:1008202821328

Qin, A. K., Suganthan, P. N. (2005). Self-adaptive Differential Evolution Algorithm for Numerical Optimization. 2005 IEEE Congress on Evolutionary Computation. doi: 10.1109/cec.2005.1554904

Storn, R., Price, K. (2005). Differential Evolution-A practical approach to global optimization. Springer-Verlag Berlin Heidelberg, 539. doi: 10.1007/3-540-31306-0

Das, S., Abraham, A., Konar, A. (2008). Automatic Clustering Using an Improved Differential Evolution Algorithm. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38 (1), 218–237. doi: 10.1109/tsmca.2007.909595

Rahnamayan, S., Tizhoosh, H. R., Salama, M. M. A. (2008). Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation, 12 (1), 64–79. doi: 10.1109/tevc.2007.894200

Man, M., Wang, M.-H., Fan, J.-C. (2012). Trajectory optimization based on improved differential evolution algorithm. Control and Decision, 27 (2), 247–251.

Das, S., Mullick, S. S., Suganthan, P. N. (2016). Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation, 27, 1–30. doi: 10.1016/j.swevo.2016.01.004

Tiahur, V. M., Lykholit, M. I., Hryniuk, I. Ye. (2009). Pat. No. 94303 UA. Trydzerkalnyi anastyhmatychnyi kvaziortoskopichnykh obiektyv. MPK G02B 17/00. No. 200907107; declareted: 08.07.2009; published: 26.04.2011, Bul. No. 8, 6.

Tiagur, V. M., Lykholit, N. I. (2015). Three-mirror anastigmatic quasi-orthoscopic lens with the off-axis field of view. Space Science and Technology, 21 (2), 27–33. doi: 10.15407/knit2015.02.027

Bin, F., Wei-jun, C., Ying, H. (2012). Design and Test of a High Performance Off-axis TMA Telescope. ICSO. Available at: http://www.congrexprojects.com/custom/icso/2012/papers/FP_ICSO-038.pdf

Savitskiy, A. M., Sokolov, I. M. (2009). Voprosy konstruirovaniya oblegchennyh glavnyh zerkal kosmicheskih teleskopov. Opticheskiy zhurnal, 76, 94–98.

Kolobrodov, V., Pozdniakov, D., Tyagur, V. (2017). Influence of Geometrical Parameters of Reduction on the Deformation of Working Surface of the Off-Axis Segments of Axisymmetric Mirrors. Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute", 2, 89–96. doi: 10.20535/1810-0546.2017.2.94144


GOST Style Citations


Wang, C. Improved design of support for large aperture space lightweight mirror [Text] / C. Wang, P. Ruan, Q. Liu // International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications. – 2013. doi: 10.1117/12.2034456 

Leys, A. Cost-optimized methods extending the solution space of lightweight spaceborne monolithic ZERODUR® mirrors to larger sizes [Text] / A. Leys, T. Hull, T. Westerhoff // Optomechanical Engineering 2015. – 2015. doi: 10.1117/12.2187099 

Toney, J. E. Multiphysics Modeling of Electro-Optic Devices [Electronic resource] / J. E. Toney // Proceedings of COMSOL Conference, Boston. – 2011. – Availabler at: https://www.comsol.com/paper/download/83949/toney_paper.pdf

Genberg, V. Integrating MD Nastran with optical performance analysis [Electronic resource] / V. Genberg, G. Michels // MSC Software. – 2011. – Available at: http://www.sigmadyne.com/sigweb/downloads/MSC-UC-2011-Genberg.pdf

Michels, G. Integrating ANSYS mechanical analysis with optical performance analysis using SigFit [Electronic resource] / G. Michels, V. Genberg, K. Doyle // ANSYS. – 2008. – Available at: http://www.sigmadyne.com/sigweb/downloads/CADFEM-2008-2.16.12.pdf

Michels, G. J. Optomechanical analysis of diffractive optical elements [Text] / G. J. Michels, V. L. Genberg // Optical Modeling and Performance Predictions VII. – 2015. doi: 10.1117/12.2189292 

Michels, G. J. Improvements in analysis techniques for segmented mirror arrays [Text] / G. J. Michels, V. L. Genberg, G. R. Bisson // Modeling, Systems Engineering, and Project Management for Astronomy VI. – 2016. doi: 10.1117/12.2231436 

Michels, G. J. Analysis techniques for adaptively controlled segmented mirror arrays [Text] / G. J. Michels, V. L. Genberg // Adaptive Optics Systems III. – 2012. doi: 10.1117/12.924307 

Doyle, K. B. Numerical methods to compute optical errors due to stress birefringence [Text] / K. B. Doyle, V. L. Genberg, G. J. Michels // Optical Design and Analysis Software II. – 2002. doi: 10.1117/12.481188 

Storn, R. Differential Evolution-A simple and efficient heuristic for global optimization over continuous spaces [Text] / R. Storn, K. Price // Journal of Global Optimization. – 1997. – Vol. 11, Issue 4. – P. 341–359. doi: 10.1023/a:1008202821328 

Qin, A. K. Self-adaptive Differential Evolution Algorithm for Numerical Optimization [Text] / A. K. Qin, P. N. Suganthan // 2005 IEEE Congress on Evolutionary Computation. – 2005. doi: 10.1109/cec.2005.1554904 

Storn, R. Differential Evolution-A practical approach to global optimization [Text] / R. Storn, K. Price. – Springer-Verlag Berlin Heidelberg, 2005. – 539 p. doi: 10.1007/3-540-31306-0 

Das, S. Automatic Clustering Using an Improved Differential Evolution Algorithm [Text] / S. Das, A. Abraham, A. Konar // IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans. – 2008. – Vol. 38, Issue 1. – P. 218–237. doi: 10.1109/tsmca.2007.909595 

Rahnamayan, S. Opposition-Based Differential Evolution [Text] / S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama // IEEE Transactions on Evolutionary Computation. – 2008. – Vol. 12, Issue 1. – P. 64–79. doi: 10.1109/tevc.2007.894200 

Man, M. Trajectory optimization based on improved differential evolution algorithm [Text] / M. Man, M.-H. Wang, J.-C. Fan // Control and Decision. – 2012. – Vol. 27, Issue 2. – P. 247–251.

Das, S. Recent advances in differential evolution – An updated survey [Text] / S. Das, S. S. Mullick, P. N. Suganthan // Swarm and Evolutionary Computation. – 2016. – Vol. 27. – P. 1–30. doi: 10.1016/j.swevo.2016.01.004 

Pat. No. 94303 UA. Trydzerkalnyi anastyhmatychnyi kvaziortoskopichnykh obiektyv. MPK G02B 17/00 [Text] / Tiahur V. M., Lykholit M. I., Hryniuk I. Ye.; zaiavnyk i vlasnyk Kazenne pidpryemstvo spetsialnoho pryladobuduvannia "Arsenal". – No. 200907107; declareted: 08.07.2009; published: 26.04.2011, Bul. No. 8. – 6 p.

Tiagur, V. M. Three-mirror anastigmatic quasi-orthoscopic lens with the off-axis field of view [Text] / V. M. Tiagur, N. I. Lykholit // Space Science and Technology. – 2015. – Vol. 21, Issue 2. – P. 27–33. doi: 10.15407/knit2015.02.027 

Bin, F. Design and Test of a High Performance Off-axis TMA Telescope [Electronic resource] / F. Bin, C. Wei-jun, H. Ying // ICSO. – 2012. – Available at: http://www.congrexprojects.com/custom/icso/2012/papers/FP_ICSO-038.pdf

Savitskiy, A. M. Voprosy konstruirovaniya oblegchennyh glavnyh zerkal kosmicheskih teleskopov [Text] / A. M. Savitskiy, I. M. Sokolov // Opticheskiy zhurnal. – 2009. – Issue 76. – P. 94–98.

Kolobrodov, V. Influence of Geometrical Parameters of Reduction on the Deformation of Working Surface of the Off-Axis Segments of Axisymmetric Mirrors [Text] / V. Kolobrodov, D. Pozdniakov, V. Tyagur // Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute". – 2017. – Issue 2. – P. 89–96. doi: 10.20535/1810-0546.2017.2.94144 



 

Cited-by:

1. Optic-electronic processing of images
M F Noskov
Journal of Physics: Conference Series  Vol: 1210  First page: 012108  Year: 2019  
doi: 10.1088/1742-6596/1210/1/012108





Copyright (c) 2017 Valentin Kolobrodov, Dmytro Pozdniakov, Vyacheslav Sokurenko, Volodymyr Tiagur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061