Tribotechnical research into friction surfaces based on polymeric composite materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.114367

Keywords:

metal-cutting machine tools, slide guides, tribotechnical characteristics, polymeric composite materials, friction coefficient

Abstract

The technique of controlling coefficients of friction and temperature was developed. As a result of application of a tribometer, which excludes misalignment of the sample and the counter sample, it was possible to avoid the macro-alignment. Applicability of the Euler’s formula for calculating friction coefficients was proved both when operating by the scheme «shaft – sleeve» and when operating with a flexible steel belt – the counter sample. The developed technique of controlling the mode of friction and lubrication by the character of oscillograms and by measuring temperature change rate ΔT/Δt allowed determining the region of boundary friction. This is the range of small velocities of up to 0.1 m/s, on which at an increase of sliding velocity V, temperature increase rate ΔT/Δt also grows.

Comparative research into tribotechnical characteristics of the polymeric material «Moglice» and the developed new polymeric composite material DC-6 were conducted. Coefficients of sliding friction of the couples «cast iron – DC-6» and «cast iron – moglice» are close in magnitude and are within 0.050…0.058. Temperature of friction of materials «Moglice» and «DC-6» increases with an increase in sliding velocity up to 0.078 m/s and reaches 60 °C and 70 °C, respectively.

Thus, to restore damaged or worn friction surfaces of metal-cutting machine tools, it is possible to apply such polymeric materials as «Moglice» and «DC-6». The composite polymeric material «DC-6» has friction coefficients and thermal resistance, which are similar to those of the polymer «Moglice» and can replace the more expensive repair material «Moglice».

This result opens up broad prospects for the application of new polymeric material that would significantly reduce the cost of repairing and restoration work of the guides of machine tools. 

Author Biographies

Anatoly Ishchenko, Priazovsky State Technical University Universytetska str., 7, Mariupol, Ukraine, 87500

Doctor of Technical Sciences, Professor

Department Mechanical equipment of factories of ferrous metallurgy

Alexander Radionenko, Priazovsky State Technical University Universytetska str., 7, Mariupol, Ukraine, 87500

PhD, Associate Professor

Department of Mechanical Engineering

Elena Ischenko, LTD “Diamant” Budivelnykiv ave., 80, Mariupol, Ukraine, 87548

Engineer of 1 category

References

  1. Mang, T., Bobzin, K., Bartels, T. (2010). Industrial tribology: Tribosystems, friction, wear and surface engineering, lubrication. John Wiley & Sons, 672. doi: 10.1002/9783527632572
  2. Sviridenok, A. I., Myshkin, N. K., Kovaleva, I. N. (2015). Latest developments in tribology in the journal Friction and Wear. Journal of Friction and Wear, 36 (6), 449–453. doi: 10.3103/s106836661506015x
  3. Bociaga, E., Baranowski, W. (2005). Selected technical problems with polymer application on slide ways. Technical sciences, 8, 233–237.
  4. Biba, E. L., Sin'kevich, D. V., Yurkevich, S. N. (2004). Obzor opyta primeneniya metallopolimernyh materialov firmy «Diamant metallplastic gmbh» (Germaniya) dlya remontno-vosstanovitel'nyh rabot na predpriyatiyah respubliki Belarus'. Metalloobrabotka, 6, 41–44.
  5. Friedrich, K., Zhang, Z., Schlarb, A. (2005). Effects of various fillers on the sliding wear of polymer composites. Composites Science and Technology, 65 (15-16), 2329–2343. doi: 10.1016/j.compscitech.2005.05.028
  6. Yousif, B. F., Nirmal, U., Wong, K. J. (2010). Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced epoxy (T-BFRE) composite. Materials & Design, 31 (9), 4514–4521. doi: 10.1016/j.matdes.2010.04.008
  7. Katnam, K. B., Da Silva, L. F. M., Young, T. M. (2013). Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 61, 26–42. doi: 10.1016/j.paerosci.2013.03.003
  8. Chang, L., Zhang, Z., Ye, L., Friedrich, K. (2007). Tribological properties of high temperature resistant polymer composites with fine particles. Tribology International, 40 (7), 1170–1178. doi: 10.1016/j.triboint.2006.12.002
  9. Jiang, Z., Gyurova, L. A., Schlarb, A. K., Friedrich, K., Zhang, Z. (2008). Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Composites Science and Technology, 68 (3-4), 734–742. doi: 10.1016/j.compscitech.2007.09.022
  10. Shalwan, A., Yousif, B. F. (2013). In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design, 48, 14–24. doi: 10.1016/j.matdes.2012.07.014
  11. Iliuţă, V., Rîpă, M., Preda, A., Andrei, G. (2015). Friction and Wear Behavior of Moglice Polymer Composite through Dry Sliding Ball-on-Flat Reciprocating Test. Applied Mechanics and Materials, 808, 137–142. doi: 10.4028/www.scientific.net/amm.808.137
  12. Szulewski, S. (1995). Wykonanie lub regeneracja lozyska slizgowego obrabiaкki. Technologie, 5-6, 14–17.
  13. Barna, B., Molnar, L., Tokacs, D., Towt, A. (1995). Badanie syntetycznych powlokna powierzchniach par slizgowyc. Technologia i automatyzacia montazy, 2, 34–38.
  14. Sysoev, P. V., Bliznets, M. M., Pogosyan, A. K. et. al. (1990). Antifriktsionnye epoksidnye kompozity v stankostroenii. Minsk: Nauka i tekhnika, 231.
  15. Ishchenko, A. A., Radionenko, A. V., Ishchenko, E. A. (2014). Issledovanie i primenenie polimernogo materiala «moglays» dlya vosstanovleniya napravlyayushchih poverhnostey salazok supportov metallorezhushchih stankov. Problemi tertya ta znoshuvannya, 1 (62), 23–29.
  16. Strutinskiy, V. B., Radionenko, A. V., Ishchenko, E. A. (2015). Tribotekhnicheskie issledovaniya polimernyh kompozitov, primenyaemyh pri vosstanovlenii napravlyayushchih stankov. Problemi tertya ta znoshuvannya, 2 (67), 4–11.
  17. Sparham, M., Sarhan, A. A. D., Mardi, N. A., Dahari, M., Hamdi, M. (2016). Cutting force analysis to estimate the friction force in linear guideways of CNC machine. Measurement, 85, 65–79. doi: 10.1016/j.measurement.2016.02.017
  18. Radionenko, A. V. (1987). Tribometr dlya issledovaniya vliyaniya kachestva poverhnostey na sostoyanie smazochnoy plenki. Mashinovedenie, 6, 93–97.
  19. Kindrachuk, M. V., Radionenko, A. V. (2016). Osobennosti perekhodnyh rezhimov treniya poverhnostey s chastichno regulyarnym mikrorel'efom. Problemi tertya ta znoshuvannya, 2 (71), 4–13.

Downloads

Published

2017-11-08

How to Cite

Ishchenko, A., Radionenko, A., & Ischenko, E. (2017). Tribotechnical research into friction surfaces based on polymeric composite materials. Eastern-European Journal of Enterprise Technologies, 6(12 (90), 12–19. https://doi.org/10.15587/1729-4061.2017.114367

Issue

Section

Materials Science