DOI: https://doi.org/10.15587/1729-4061.2017.116090

Investigation of copper adsorption on natural and microwave-treated bentonite

Andriy Kontsur, Leonid Sysa, Marianna Petrova

Abstract


The research studied the removal of copper ions from simulated wastewater by adsorption on natural and simulated with microwave electromagnetic radiation bentonite (EMR-stimulated bentonite). X-ray diffraction was employed to study the structure of the natural bentonite, which was proved to contain hydromica, montmorillonite, quartz, and chlorite. The maximal removal rates of Cu2+ were 20.5 % and 29.1 % for natural and EMR-stimulated bentonite, respectively.

The experimental data of copper adsorption were fitted with theoretical isotherms (Langmuir, Freundlich, Redlich-Peterson, Toth, and Langmuir-Freundlich) using non-linear modeling. The adsorption on natural bentonite followed the Langmuir model, while the Langmuir-Freundlich model fitted the adsorption on EMR-stimulated bentonite. The isotherms were used to calculate the maximal adsorption capacities, which were 11.82 and 25.74 mg/g for natural and EMR-stimulated adsorbents, respectively. The electromagnetic treatment stimulated the formation of the new adsorption sites, improved the pores structure, and influenced the surface charge. The specific adsorption and surface precipitation were involved in the adsorption on EMR-stimulated adsorbent

Keywords


modified clays; microwave radiation; wastewater purification; adsorption modeling; non-linear modeling.

Full Text:

PDF

References


Escobar, I. C., Schäfer, A. I. (Eds.) (2010). Sustainable water for the future: Water recycling versus desalination. Vol. 2. Amsterdam, Elsevier Science, 444.

Hopcroft, F. J. (2015). Wastewater treatment concepts and practices. New York, Momentum Press, 165.

Al-Saydeh, S. A., El-Naas, M. H., Zaidi, S. J. (2017). Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry, 56, 35–44. doi: 10.1016/j.jiec.2017.07.026

De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40. doi: 10.1016/j.susmat.2016.06.002

Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258. doi: 10.1016/j.clay.2015.12.024

Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. doi: 10.1016/j.cej.2016.09.029

Pandey, S. (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091–1113. doi: 10.1016/j.molliq.2017.06.115

Legras, B., Polaert, I., Thomas, M., Estel, L. (2013). About using microwave irradiation in competitive adsorption processes. Applied Thermal Engineering, 57 (1-2), 164–171. doi: 10.1016/j.applthermaleng.2012.03.034

Li, J., Zhu, L., Cai, W. (2006). Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water. Journal of Hazardous Materials, 136 (2), 251–257. doi: 10.1016/j.jhazmat.2005.12.005

Subannajui, K. (2016). The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation. Materials Chemistry and Physics, 184, 345–350. doi: 10.1016/j.matchemphys.2016.09.061

Kontsur, A. Z., Karpyak, A. R., Sysa, L. V. (2016). Some peculiarities of bentonite regeneration by means of using high-frequency emanation (on the example of biogenic ions). Scientific Bulletin of UNFU, 26 (8), 292–298. doi: 10.15421/40260845

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361–1403. doi: 10.1021/ja02242a004

Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

Redlich, O., Peterson, D. L. (1959). A Useful Adsorption Isotherm. The Journal of Physical Chemistry, 63 (6), 1024–1024. doi: 10.1021/j150576a611

Tóth, J. (2000). Calculation of the BET-Compatible Surface Area from Any Type I Isotherms Measured above the Critical Temperature. Journal of Colloid and Interface Science, 225 (2), 378–383. doi: 10.1006/jcis.2000.6723

Giles, C. H., Smith, D., Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47 (3), 755–765. doi: 10.1016/0021-9797(74)90252-5

Kinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental Science & Technology, 20 (9), 895–904. doi: 10.1021/es00151a008

Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. doi: 10.1016/j.watres.2017.04.014

Ratkowsky, D. A. (1990). Handbook of nonlinear regression models. New York, Marcel Dekker Inc., 241.

Duggleby, R. G. (1980). Estimation of the Reliability of Parameters Obtained by Non-linear Regression. European Journal of Biochemistry, 109 (1), 93–96. doi: 10.1111/j.1432-1033.1980.tb04771.x

Subramanyam, B., Das, A. (2014). Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. Journal of Environmental Health Science and Engineering, 12 (1), 92. doi: 10.1186/2052-336x-12-92

Mekewi, M. A., Darwish, A. S., Amin, M. S., Eshaq, Gh., Bourazan, H. A. (2016). Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egyptian Journal of Petroleum, 25 (2), 269–279. doi: 10.1016/j.ejpe.2015.06.011

Yu, D. Y., Song, W. H., Zhou, B., Li, W. F. (2009). Assessment of Cu (II)-Bearing Montmorillonite on Cd Adsorption. Biological Trace Element Research, 130 (2), 185–192. doi: 10.1007/s12011-009-8327-8


GOST Style Citations


Sustainable water for the future: Water recycling versus desalination. Vol. 2 [Text] / I. C. Escobar, A. I. Schäfer (Eds.). – Amsterdam, Elsevier Science, 2010. – 444 p.

Hopcroft, F. J. Wastewater treatment concepts and practices [Text] / F. J. Hopcroft. – New York, Momentum Press, 2015. – 165 p.

Al-Saydeh, S. A. Copper removal from industrial wastewater: A comprehensive review [Text] / S. A. Al-Saydeh, M. H. El-Naas, S. J. Zaidi // Journal of Industrial and Engineering Chemistry. – 2017. – Vol. 56. – P. 35–44. doi: 10.1016/j.jiec.2017.07.026 

De Gisi, S. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review [Text] / S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola // Sustainable Materials and Technologies. – 2016. – Vol. 9. – P. 10–40. doi: 10.1016/j.susmat.2016.06.002 

Zhu, R. Adsorbents based on montmorillonite for contaminant removal from water: A review [Text] / R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, H. He // Applied Clay Science. – 2016. – Vol. 123. – P. 239–258. doi: 10.1016/j.clay.2015.12.024 

Uddin, M. K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade [Text] / M. K. Uddin // Chemical Engineering Journal. – 2017. – Vol. 308. – P. 438–462. doi: 10.1016/j.cej.2016.09.029 

Pandey, S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment [Text] / S. Pandey // Journal of Molecular Liquids. – 2017. – Vol. 241. – P. 1091–1113. doi: 10.1016/j.molliq.2017.06.115 

Legras, B. About using microwave irradiation in competitive adsorption processes [Text] / B. Legras, I. Polaert, M. Thomas, L. Estel // Applied Thermal Engineering. – 2013. – Vol. 57, Issue 1-2. – P. 164–171. doi: 10.1016/j.applthermaleng.2012.03.034 

Li, J. Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water [Text] / J. Li, L. Zhu, W. Cai // Journal of Hazardous Materials. – 2006. – Vol. 136, Issue 2. – P. 251–257. doi: 10.1016/j.jhazmat.2005.12.005 

Subannajui, K. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation [Text] / K. Subannajui // Materials Chemistry and Physics. – 2016. – Vol. 184. – P. 345–350. doi: 10.1016/j.matchemphys.2016.09.061 

Kontsur, A. Z. Some peculiarities of bentonite regeneration by means of using high-frequency emanation (on the example of biogenic ions) [Text] / A. Z. Kontsur, A. R. Karpyak, L. V. Sysa // Scientific Bulletin of UNFU. – 2016. – Vol. 26, Issue 8. – P. 292–298. doi: 10.15421/40260845 

Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum [Text] / I. Langmuir // Journal of the American Chemical Society. – 1918. – Vol. 40, Issue 9. – P. 1361–1403. doi: 10.1021/ja02242a004 

Freundlich, H. M. F. Over the adsorption in solution [Text] / H. M. F. Freundlich // Journal of Physical Chemistry. – 1906. – Vol. 57. – P. 385–471.

Redlich, O. A Useful Adsorption Isotherm [Text] / O. Redlich, D. L. Peterson // The Journal of Physical Chemistry. – 1959. – Vol. 63, Issue 6. – P. 1024–1024. doi: 10.1021/j150576a611 

Tóth, J. Calculation of the BET-Compatible Surface Area from Any Type I Isotherms Measured above the Critical Temperature [Text] / J. Tóth // Journal of Colloid and Interface Science. – 2000. – Vol. 225, Issue 2. – P. 378–383. doi: 10.1006/jcis.2000.6723 

Giles, C. H. A general treatment and classification of the solute adsorption isotherm. I. Theoretical [Text] / C. H. Giles, D. Smith, A. Huitson // Journal of Colloid and Interface Science. – 1974. – Vol. 47, Issue 3. – P. 755–765. doi: 10.1016/0021-9797(74)90252-5 

Kinniburgh, D. G. General purpose adsorption isotherms [Text] / D. G. Kinniburgh // Environmental Science & Technology. – 1986. – Vol. 20, Issue 9. – P. 895–904. doi: 10.1021/es00151a008 

Tran, H. N. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [Text] / H. N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao // Water Research. – 2017. – Vol. 120. – P. 88–116. doi: 10.1016/j.watres.2017.04.014 

Ratkowsky, D. A. Handbook of nonlinear regression models [Text] / D. A. Ratkowsky. – New York, Marcel Dekker Inc., 1990. – 241 p.

Duggleby, R. G. Estimation of the Reliability of Parameters Obtained by Non-linear Regression [Text] / R. G. Duggleby // European Journal of Biochemistry. – 1980. – Vol. 109, Issue 1. – P. 93–96. doi: 10.1111/j.1432-1033.1980.tb04771.x 

Subramanyam, B. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means [Text] / B. Subramanyam, A. Das // Journal of Environmental Health Science and Engineering. – 2014. – Vol. 12, Issue 1. – P. 92. doi: 10.1186/2052-336x-12-92 

Mekewi, M. A. Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation [Text] / M. A. Mekewi, A. S. Darwish, M. S. Amin, Gh. Eshaq, H. A. Bourazan // Egyptian Journal of Petroleum. – 2016. – Vol. 25, Issue 2. – P. 269–279. doi: 10.1016/j.ejpe.2015.06.011 

Yu, D. Y. Assessment of Cu (II)-Bearing Montmorillonite on Cd Adsorption [Text] / D. Y. Yu, W. H. Song, B. Zhou, W. F. Li // Biological Trace Element Research. – 2009. – Vol. 130, Issue 2. – P. 185–192. doi: 10.1007/s12011-009-8327-8 







Copyright (c) 2017 Andriy Kontsur, Leonid Sysa, Marianna Petrova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061