DOI: https://doi.org/10.15587/1729-4061.2017.118914

Plasma-chemical formation of silver nanodispersion in water solutions

Margarita Skiba, Alexander Pivovarov, Anna Makarova, Oleksandr Pasenko, Aleksey Khlopytskyi, Viktoria Vorobyova

Abstract


The application of plasma discharges of different methods of generation is an innovative, environmentally safe and promising method of synthesizing silver nanodispersions. The efficiency of using the contact nonequilibrium low-temperature plasma in comparison with the conventional method of chemical reduction in solutions and photochemical deposition is investigated. Plasma-chemical synthesis of silver nanodispersions from water AgNO3 solutions without the use of additional reducing reagents and in the presence of sodium alginate stabilizing reagent is carried out. It is found that the yield of silver nanoparticles in the plasma-chemical synthesis is 95.10–97.17 %. The obtained data are obtained by the chemical reduction method in solutions (93.9 %) and photochemical deposition (20.0 %). It is found that in the plasma-chemical synthesis of silver nanodispersions, the introduction of sodium alginate into the reaction mixture increases the yield of silver nanoparticles and allows synthesizing stable colloidal silver solutions. It is shown that the formation of silver nanodispersions under plasma discharge is characterized by the presence of the peak λmax=400–420 nm. The formation of silver nanoparticles was confirmed by the X-ray diffraction analysis. Microscopic examination (SEM) indicates that the size of the formed silver particles is up to 100 nm. The mechanism of synthesizing silver nanoparticles in the sodium alginate solution under plasma discharge is proposed. The obtained data testify to the promising application of the nonequilibrium plasma for the controlled synthesis of silver nanodispersions and the need for further research in this direction

Keywords


low-temperature plasma; conventional methods; chemical deposition; IR radiation; sodium alginate; aggregation; microphotographs

References


Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3 (3), 135–140. doi: 10.1016/j.arabjc.2010.04.008

Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27 (1), 76–83. doi: 10.1016/j.biotechadv.2008.09.002

Marambio-Jones, C., Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12 (5), 1531–1551. doi: 10.1007/s11051-010-9900-y

Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77 (3), 233–257. doi: 10.1070/rc2008v077n03abeh003751

Saito, G., Akiyama, T. (2015). Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials, 2015, 1–21. doi: 10.1155/2015/123696

Mariotti, D., Sankaran, R. M. (2010). Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 43 (32), 323001. doi: 10.1088/0022-3727/43/32/323001

Richmonds, C., Sankaran, R. M. (2008). Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 93 (13), 131501. doi: 10.1063/1.2988283

Chen, Q., Kaneko, T., Hatakeyama, R. (2012). Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 521, 113–117. doi: 10.1016/j.cplett.2011.11.065

Koo, I. G., Lee, M. S., Shim, J. H., Ahn, J. H., Lee, W. M. (2005). Platinum nanoparticles prepared by a plasma-chemical reduction method. Journal of Materials Chemistry, 15 (38), 4125. doi: 10.1039/b508420b

Chiang, W.-H., Sankaran, R. M. (2007). Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Applied Physics Letters, 91 (12), 121503. doi: 10.1063/1.2786835

Chiang, W.-H., Sankaran, R. M. (2008). Synergistic Effects in Bimetallic Nanoparticles for Low Temperature Carbon Nanotube Growth. Advanced Materials, 20 (24), 4857–4861. doi: 10.1002/adma.200801006

Sato, S., Mori, K., Ariyada, O., Atsushi, H., Yonezawa, T. (2011). Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surface and Coatings Technology, 206 (5), 955–958. doi: 10.1016/j.surfcoat.2011.03.110

Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: 10.1134/s1070363215050497

Frolova, L., Pivovarov, A., Tsepich, E. (2016). Non-equilibrium Plasma-Assisted Hydrophase Ferritization in Fе2+–Ni2+–SO4 2−–OH− System. Nanophysics, Nanophotonics, Surface Studies, and Applications, 213–220. doi: 10.1007/978-3-319-30737-4_18

Vorobiova, M. I., Pivovarov, O. A., Vorobiova, V. I., Frolova, L. A. (2014). Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method. Eastern-European Journal of Enterprise Technologies, 4 (5 (70)), 39–44. doi: 10.15587/1729-4061.2014.26262

Sergeeva, O. V., Pivovarov, A. A. (2015). Poluchenie nanorazmernyh chastits serebra v vodnom rastvore pod deystviem kontaktnoy neravnovesnoy nizkotemperaturnoy plazmy. Visnyk NTU «KhPI», 22 (1131), 10–13.

Ershov, B. G., Janata, E., Henglein, A., Fojtik, A. (1993). Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. The Journal of Physical Chemistry, 97 (18), 4589–4594. doi: 10.1021/j100120a006

Baetzold, R. C. (2015). Silver–Water Clusters: A Theoretical Description of Agn(H2O)m for n=1–4; m=1–4. The Journal of Physical Chemistry C, 119 (15), 8299–8309. doi: 10.1021/jp512556g

Treguer, M., Rocco, F., Lelong, G., Le Nestour, A., Cardinal, T., Maali, A., Lounis, B. (2005). Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sciences, 7 (7), 812–818. doi: 10.1016/j.solidstatesciences.2005.01.017

Abdel-Halim, E. S., Al-Deyab, S. S. (2011). Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydrate Polymers, 86 (4), 1615–1622. doi: 10.1016/j.carbpol.2011.06.072

Bogle, K. A., Dhole, S. D., Bhoraskar, V. N. (2006). Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology, 17 (13), 3204–3208. doi: 10.1088/0957-4484/17/13/021

Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W. (2010). Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372 (1-3), 172–176. doi: 10.1016/j.colsurfa.2010.10.013

Theivasanthi, T., Alagar, M. (2012). Electrolytic Synthesis and Characterization of Silver Nanopowder. Nano Biomedicine and Engineering, 4 (2). doi: 10.5101/nbe.v4i2.p58-65

Mohan, Y. M., Raju, K. M., Sambasivudu, K., Singh, S., Sreedhar, B. (2007). Preparation of acacia-stabilized silver nanoparticles: A green approach. Journal of Applied Polymer Science, 106 (5), 3375–3381. doi: 10.1002/app.26979


GOST Style Citations


Abou El-Nour, K. M. M. Synthesis and applications of silver nanoparticles [Text] / K. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, R. A. A. Ammar // Arabian Journal of Chemistry. – 2010. – Vol. 3, Issue 3. – P. 135–140. doi: 10.1016/j.arabjc.2010.04.008 

Rai, M. Silver nanoparticles as a new generation of antimicrobials [Text] / M. Rai, A. Yadav, A. Gade // Biotechnology Advances. – 2009. – Vol. 27, Issue 1. – P. 76–83. doi: 10.1016/j.biotechadv.2008.09.002 

Marambio-Jones, C. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [Text] / C. Marambio-Jones, E. M. V. Hoek // Journal of Nanoparticle Research. – 2010. – Vol. 12, Issue 5. – P. 1531–1551. doi: 10.1007/s11051-010-9900-y 

Krutyakov, Yu. A. Synthesis and properties of silver nanoparticles: advances and prospects [Text] / Yu. A. Krutyakov, A. A. Kudrinskiy, A. Yu. Olenin, G. V. Lisichkin // Russian Chemical Reviews. – 2008. – Vol. 77, Issue 3. – P. 233–257. doi: 10.1070/rc2008v077n03abeh003751 

Saito, G. Nanomaterial Synthesis Using Plasma Generation in Liquid [Text] / G. Saito, T. Akiyama // Journal of Nanomaterials. – 2015. – Vol. 2015. – P. 1–21. doi: 10.1155/2015/123696 

Mariotti, D. Microplasmas for nanomaterials synthesis [Text] / D. Mariotti, R. M. Sankaran // Journal of Physics D: Applied Physics. – 2010. – Vol. 43, Issue 32. – P. 323001. doi: 10.1088/0022-3727/43/32/323001 

Richmonds, C. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations [Text] / C. Richmonds, R. M. Sankaran // Applied Physics Letters. – 2008. – Vol. 93, Issue 13. – P. 131501. doi: 10.1063/1.2988283 

Chen, Q. Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma [Text] / Q. Chen, T. Kaneko, R. Hatakeyama // Chemical Physics Letters. – 2012. – Vol. 521. – P. 113–117. doi: 10.1016/j.cplett.2011.11.065 

Koo, I. G. Platinum nanoparticles prepared by a plasma-chemical reduction method [Text] / I. G. Koo, M. S. Lee, J. H. Shim, J. H. Ahn, W. M. Lee // Journal of Materials Chemistry. – 2005. – Vol. 15, Issue 38. – P. 4125. doi: 10.1039/b508420b 

Chiang, W.-H. Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth [Text] / W.-H. Chiang, R. M. Sankaran // Applied Physics Letters. – 2007. – Vol. 91, Issue 12. – P. 121503. doi: 10.1063/1.2786835 

Chiang, W.-H. Synergistic Effects in Bimetallic Nanoparticles for Low Temperature Carbon Nanotube Growth [Text] / W.-H. Chiang, R. M. Sankaran // Advanced Materials. – 2008. – Vol. 20, Issue 24. – P. 4857–4861. doi: 10.1002/adma.200801006 

Sato, S. Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid [Text] / S. Sato, K. Mori, O. Ariyada, H. Atsushi, T. Yonezawa // Surface and Coatings Technology. – 2011. – Vol. 206, Issue 5. – P. 955–958. doi: 10.1016/j.surfcoat.2011.03.110 

Pivovarov, A. A. Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice [Text] / A. A. Pivovarov, A. V. Kravchenko, A. P. Tishchenko, N. V. Nikolenko, O. V. Sergeeva, M. I. Vorob’eva, S. V. Treshchuk // Russian Journal of General Chemistry. – 2015. – Vol. 85, Issue 8. – P. 1339–1350. doi: 10.1134/s1070363215050497 

Frolova, L. Non-equilibrium Plasma-Assisted Hydrophase Ferritization in Fе2+–Ni2+–SO4 2−–OH− System [Text] / L. Frolova, A. Pivovarov, E. Tsepich // Springer Proceedings in Physics. – 2016. – P. 213–220. doi: 10.1007/978-3-319-30737-4_18 

Vorobiova, M. I. Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method [Text] / M. I. Vorobiova, O. A. Pivovarov, V. I. Vorobiova, L. A. Frolova // Eastern-European Journal of Enterprise Technologies. – 2014. – Vol. 4, Issue 5 (70). – P. 39–44. doi: 10.15587/1729-4061.2014.26262 

Sergeeva, O. V. Poluchenie nanorazmernyh chastits serebra v vodnom rastvore pod deystviem kontaktnoy neravnovesnoy nizkotemperaturnoy plazmy [Text] / O. V. Sergeeva, A. A. Pivovarov // Visnyk NTU «KhPI». – 2015. – Issue 22 (1131). – P. 10–13.

Ershov, B. G. Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions [Text] / B. G. Ershov, E. Janata, A. Henglein, A. Fojtik // The Journal of Physical Chemistryю – 1993. – Vol. 97, Issue 18. – P. 4589–4594. doi: 10.1021/j100120a006 

Baetzold, R. C. Silver–Water Clusters: A Theoretical Description of Agn(H2O)m for n=1–4; m=1–4 [Text] / R. C. Baetzold // The Journal of Physical Chemistry C. – 2015. – Vol. 119, Issue 15. – P. 8299–8309. doi: 10.1021/jp512556g 

Treguer, M. Fluorescent silver oligomeric clusters and colloidal particles [Text] / M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, B. Lounis // Solid State Sciences. – 2005. – Vol. 7, Issue 7. – P. 812–818. doi: 10.1016/j.solidstatesciences.2005.01.017 

Abdel-Halim, E. S. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles [Text] / E. S. Abdel-Halim, S. S. Al-Deyab // Carbohydrate Polymers. – 2011. – Vol. 86, Issue 4. – P. 1615–1622. doi: 10.1016/j.carbpol.2011.06.072 

Bogle, K. A. Silver nanoparticles: synthesis and size control by electron irradiation [Text] / K. A. Bogle, S. D. Dhole, V. N. Bhoraskar // Nanotechnology. – 2006. – Vol. 17, Issue 13. – P. 3204–3208. doi: 10.1088/0957-4484/17/13/021 

Qin, Y. Size control over spherical silver nanoparticles by ascorbic acid reduction [Text] / Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu, W. Yang // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2010. – Vol. 372, Issue 1-3. – P. 172–176. doi: 10.1016/j.colsurfa.2010.10.013 

Theivasanthi, T. Electrolytic Synthesis and Characterization of Silver Nanopowder [Text] / T. Theivasanthi, M. Alagar // Nano Biomedicine and Engineering. – 2012. – Vol. 4, Issue 2. doi: 10.5101/nbe.v4i2.p58-65 

Mohan, Y. M. Preparation of acacia-stabilized silver nanoparticles: A green approach [Text] / Y. M. Mohan, K. M. Raju, K. Sambasivudu, S. Singh, B. Sreedhar // Journal of Applied Polymer Science. – 2007. – Vol. 106, Issue 5. – P. 3375–3381. doi: 10.1002/app.26979 







Copyright (c) 2017 Margarita Skiba, Alexander Pivovarov, Anna Makarova, Oleksandr Pasenko, Aleksey Khlopytskyi, Viktoria Vorobyova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061