A study of the effect of electrostatic processing on performance characteristics of axle oil

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120977

Keywords:

axle oil, electrostatic processing, motor-axial bearing, wheels and motors unit, wear rate

Abstract

The effect of electrostatic processing on performance characteristics of axle oil is investigated. Axle oil is used for wetting motor-axial bearings (MAB) of locomotives. There is a pressing and urgent problem of the MAB service life, which is indirectly related to the underdeveloped reserves of anti-wear properties of axle oil. To study them, it was decided to use the method of electrostatic processing, which does not require the introduction of any additives and has proven its effectiveness in the studies of other mineral oils. It is based on the ability of electric fields to destroy micellar aggregates in oil and form a solid boundary layer of molecules on friction surfaces. In the context of solving the current problem of the MAB service life, this method wasn’t considered earlier.

The research was carried out by means of the «roller-pad» friction pair, which was wetted with axle oil at different load conditions and operating times. The dependences of wear of the experimental samples under different load conditions, oil operating times and degrees of electric processing are obtained.

The results show that when using axle oil subjected to ESP, the wear rate of the experimental samples is reduced. Wear rate reduction depends on the oil operating time in the lubrication system. The greatest wear rate reduction of 1.92 times is noted for fresh oil. For the oil state after the locomotive run of 75 thousand km, the reduction is about 1.68 times and for the oil at the end of its service life, wear rate reduction is approximately 1.47 times.

Author Biographies

Pavlo Konovalov, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD

Department of Construction, Track and Cargo Handling Machines

Serhii Voronin, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor, Head of Department

Department of Construction, Track and Cargo Handling Machines

Dmytro Onopreychuk, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Construction, Track and Cargo Handling Machines

Volodymyr Stefanov, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Construction, Track and Cargo Handling Machines

Viktor Pashchenko, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Department of Tactics

Hennadii Radionov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Department of Tactics

Viktor Temnikov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Department of operation and repair of cars and military vehicles

Aleksandr Onoprienko, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

Department of Tactics

References

  1. Sergienko, N. I. (2010). Reshenie problemy podvizhnogo sostava zheleznyh dorog Ukrainy cherez vzaimodeystvie gosudarstvennogo i chastnogo sektorov ekonomiki. Lokomotiv-inform, 6, 40–46.
  2. Sergienko, N. I. (2011). Podvizhnoy sostav zheleznyh dorog Ukrainy: sostoyanie i perspektivy. Lokomotiv-inform, 6, 15–24.
  3. Kalabukhin, Yu. Ye. (2008). Analiz suchasnoho stanu tiahovoho rukhomoho skladu zaliznyts Ukrainy. Lokomotiv-inform, 11, 4–5.
  4. Pro zatverdzhennia prohramy onovlennia lokomotyvnoho parku zaliznyts Ukrainy na 2012–2016 roky (2011). Zbirnyk uriadovykh aktiv Ukrainy, 61, 7–8.
  5. Rukovodstvo po tekhnicheskomu obsluzhivaniyu i tekushchemu remontu teplovozov 2TE116. TE116 IO (2004). Moscow, 406.
  6. Biryukov, I. V., Belyaev, A. I., Rybnikov, E. K. (1986). Tyagovye peredachi elektropodvizhnogo sostava zheleznyh dorog. Moscow: Transport, 256.
  7. Azarenko, V. A., Germanov, A. N. (1988). Povyshenie nadezhnosti motorno-osevyh podshipnikov lokomotivov. Vestnik VNII zheleznodorozhnogo transporta, 2, 36–40.
  8. Vinkler, F. (2008). Rol' obsluzhivaniya i remonta teplovozov v sovremennyh usloviyah. Lokomotiv-inform, 2, 24–26.
  9. Orlov, Yu. A., Yanov, V. P. (2010). Bazovaya platforma dlya rossiyskih elektrovozov novogo pokoleniya. Lokomotiv-inform, 3, 7–9.
  10. Konovalov, P. Ye. (2013). Physical model of wear of motor-axial bearing of locomotive. Eastern-European Journal of Enterprise Technologies, 1 (7 (61)), 25–29. Available at: http://journals.uran.ua/eejet/article/view/9320/8089
  11. Voronin, S., Skoryk, O., Stefanov, V., Onopreychuk, D., Korostelov, Y. (2017). Study of the predominant defect development in rails of underground systems after preventive grinding and lubrication. MATEC Web of Conferences, 116, 03005. doi: 10.1051/matecconf/201711603005
  12. Voronin, S., Hrunyk, I., Stefanov, V., Volkov, O., Onopreychuk, D. (2017). Research into frictional interaction between the magnetized rolling elements. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 11–16. doi: 10.15587/1729-4061.2017.109523
  13. Balabin, V. N., Kakotkin, V. Z. (2007). Primenenie sovremennyh tribotekhnicheskih tekhnologiy v lokomotivnom hozyaystve. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni V. Dalia, 168–173.
  14. Kovalenko, D. M. (2006). Vykorystannia novitnikh materialiv dlia pidvyshchennia stroku zhyttievoho tsyklu tiahovykh elektrychnykh dvyhuniv manevrovykh teplovoziv. Ukrainska derzhavna akademiya zaliznychnoho transportu, 72, 169–175.
  15. Romanov, S. M., Romanov, D. S., Naysh, N. M. et. al. (2002). Novoe pokolenie motorno-osevyh podshipnikov tyagovyh elektrodvigateley lokomotivov iz materiala Romanit-N. Zaliznychnyi transport Ukrainy, 4, 16–20.
  16. Borodin, A. V., Taruta, D. V. (2002). Podshipnikovyy uzel kolesno-motornogo bloka: svidetel'stvo na poleznuyu model' No. 27943. MKI F16C19/00. declareted: 17.07.2002; published: 27.02.2003, Bul. No. 6.
  17. Borodin, A. V., Taruta, D. V. (2005). Prinuditel'naya sistema smazyvaniya motorno-osevyh podshipnikov elektrodvigatelya lokomotiva: pat. No. 2255253 RF. MKI F16C33/10. published: 27.06.2005. Bul. No. 18.
  18. Simdyankin, A. A., Uspensky, I. A., Pashchenko, V. M., Starunsky, A. V. (2017). Ultrasonic machining of engine lubricating oil during tribotechnical testing. Journal of Friction and Wear, 38 (4), 311–315. doi: 10.3103/s1068366617040134
  19. Bolotov, A. N., Novikov, V. V., Novikova, O. O. (2017). The Research of Tribotechnical Characteristics of Nanostructured Magnetic Lubricating Oils with Various Dispersive Media. Academic Journal, 38 (2), 107–113.
  20. Dmitrichenko, N. F., Milanenko, A. A., Savchuk, A. N., Bilyakovich, O. N., Turitsa, Y. A., Pavlovskiy, M. V., Artemuk, S. I. (2016). Improving the efficiency of lubricants by introducing friction modifiers for tracked vehicles under stationary conditions of friction. Journal of Friction and Wear, 37 (5), 441–447. doi: 10.3103/s1068366616050044
  21. Voronin, S. V., Dunaev, A. V. (2015). Effects of electric and magnetic fields on the behavior of oil additives. Journal of Friction and Wear, 36 (1), 33–39. doi: 10.3103/s1068366615010158
  22. Ermakov, S. F. (2012). Effect of lubricants and additives on the tribological performance of solids. Part 2. Active friction control. Journal of Friction and Wear, 33 (3), 217–223. doi: 10.3103/s106836661203004x
  23. Lyubimov, D. N., Dolgopolov, K. N., Kozakov, A. T., Nikolskii, A. V. (2011). Improvement of performance of lubricating materials with additives of clayey minerals. Journal of Friction and Wear, 32 (6), 442–451. doi: 10.3103/s1068366611060092
  24. Tochil’nikov, D. G., Kupchin, A. N., Lyashkov, A. I., Ponyaev, S. A., Shepelevskii, A. A., Ginzburg, B. M. (2012). Effect of fullerene black additives on boundary sliding friction of steel counterbodies lubricated with mineral oil. Journal of Friction and Wear, 33 (2), 94–100. doi: 10.3103/s1068366612020122
  25. Voronin, S. V., Suranov, A. V., Suranov, A. A. (2017). The effect of carbon nanoadditives on the tribological properties of industrial oils. Journal of Friction and Wear, 38 (5), 359–363. doi: 10.3103/s1068366617050130
  26. Aleksandrov, E. E., Kravets, I. A., Lysikov, E. N. et. al. (2006). Povyshenie resursa tekhnicheskih sistem putem ispol'zovaniya elektricheskih i magnitnyh poley. Kharkiv: NTU «KhPI», 544.
  27. Lysikov, E. N., Voronin, S. V., Konovalov, P. E. (2010). Ispol'zovanie effekta elektroobrabotki zhidkih smazochnyh sred v tyazhelyh rezhimah raboty podshipnikov. Ukrainska derzhavna akademiya zaliznychnoho transportu, 115, 122–127.
  28. Instruktsiya TsT-0060 z vykorystannia mastylnykh materyaliv na tiahovomu rukhomomu skladi zaliznyts Ukrainy (2003). Kyiv: Derzh. admin. zalizn. transportu Ukrainy, 54.
  29. Sidenko, V. M., Grushko, I. M. (1977). Osnovy nauchnyh issledovaniy. Kharkiv: Vysshaya shkola, 287.
  30. Braun, E. D., Evdokimov, Yu. A., Chichinadze, A. V. (1982). Modelirovanie treniya iznashivaniya v mashinah. Moscow: Mashinostroenie, 191.

Downloads

Published

2018-01-15

How to Cite

Konovalov, P., Voronin, S., Onopreychuk, D., Stefanov, V., Pashchenko, V., Radionov, H., Temnikov, V., & Onoprienko, A. (2018). A study of the effect of electrostatic processing on performance characteristics of axle oil. Eastern-European Journal of Enterprise Technologies, 1(1 (91), 4–12. https://doi.org/10.15587/1729-4061.2018.120977

Issue

Section

Engineering technological systems