DOI: https://doi.org/10.15587/1729-4061.2018.133127

Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises

Boris Pospelov, Vladimir Andronov, Evgenіy Rybka, Ruslan Meleshchenko, Pavlo Borodych

Abstract


It was shown that the methods of nonlinear dynamics, surpassing traditional methods of temporal, frequency or frequency-temporal analysis of dangerous ignition factors may be used for early detection of ignitions in premises. The existence of carbon monoxide in gas medium was found to be most dangerous at fires in premises. The theoretical grounds for studying recurrent diagrams of carbon monoxide concentration in gas medium were substantiated. The modification of recurrent distance diagrams, based on power representations was proposed, making it possible to highlight selectively or to smooth structural features of configuration of recurrent points of distance diagrams. Results of research into recurrent diagrams of dynamics of carbon monoxide concentration show that the specified factor of ignition of materials has generally not stochastic, but chaotic dynamics. It was qualitatively determined that dynamics of carbon monoxide concentration in gas medium has non-uniformed distribution of points. In this case, the configuration of clustering of recurrent points of diagrams for various flammable materials varies and can be used for detecting the type and the beginning of early ignition of combustible material. The established fact of chaotic dynamics of carbon monoxide concentration in gas medium at early ignition of materials should be taken into consideration in the development of new technologies for reliable detection of early ignitions in premises. The data, obtained in the research, are important for deeper understanding of dynamics of the process of carbon monoxide formation in gas medium in non-airtight premises at ignition of various materials, because it is related to saving lives of people who are in these premises and their timely evacuation.


Keywords


recurrent diagrams; concentration of carbon monoxide; gas medium; non-airtight premises

References


Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: 10.1007/s10694-011-0230-0

Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.

Ji, J., Yang, L., Fan, W. (2003). Experimental study on effects of burning behaviours of materials caused by external heat radiation. Journal of Combustion Science and Technology, 9, 139.

Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. Journal of Chongqing University, 28, 122.

Andronov, V., Pospelov, B., Rybka, E. (2016). Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 38–44. doi: 10.15587/1729-4061.2016.75063

Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: 10.15587/1729-4061.2017.96694

Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: 10.15587/1729-4061.2017.108448

Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: 10.15587/1729-4061.2017.110092

Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: 10.15587/1729-4061.2017.117789

Korn, G. A., Korn, T. M. (2000). Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. General Publishing Company, 1151.

Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures, fourth edition. John Wiley & Sons. doi: 10.1002/9781118032428

Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: 10.1155/2009/673539

Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL, 1–7. Available at: https://hal.archives-ouvertes.fr/hal-01303330

Bundy, M., Hamins, A., Johnsson, E. L., Kim, S. C., Ko, G. H., Lenhert, D. B. (2007). Measurements of heat and combustion products in reduced-scale ventilation-limited compartment fires. NIST Technical Note 1483, 155. doi: 10.6028/nist.tn.1483

Pretrel, H., Querre, P., Forestier, M. (2005). Experimental Study of Burning Rate Behaviour in Confined and Ventilated Fire Compartments. Fire Safety Science, 8, 1217–1228. doi: 10.3801/iafss.fss.8-1217

Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: 10.15587/1729-4061.2018.122419

Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, Amazon, 655.

Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304. doi: 10.1109/tsp.2009.2028978

Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: 10.1016/j.jmaa.2012.09.053

Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: 10.15587/1729-4061.2018.125926

Nishikawa, H., Matsumura, K., Okino, S., Watanabe, T., Suda, F. (2015). Detection of the chaotic flow instability in a natural convection loop using the recurrence plot analysis and the nonlinear prediction. Journal of Thermal Science and Technology, 10 (2), JTST0028–JTST0028. doi: 10.1299/jtst.2015jtst0028

Marwan, N., Donges, J. F., Zou, Y., Donner, R. V., Kurths, J. (2009). Complex network approach for recurrence analysis of time series. Physics Letters A, 373 (46), 4246–4254. doi: 10.1016/j.physleta.2009.09.042

Rusinek, R., Zaleski, K. (2015). Dynamics of thin-walled element milling expressed by recurrence analysis. Meccanica, 51 (6), 1275–1286. doi: 10.1007/s11012-015-0293-y

Kabiraj, L., Saurabh, A., Nawroth, H., Paschereit, C. O. (2015). Recurrence Analysis of Combustion Noise. AIAA Journal, 53 (5), 1199–1210. doi: 10.2514/1.j053285

Marwan, N., Carmenromano, M., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438 (5-6), 237–329. doi: 10.1016/j.physrep.2006.11.001

Llop, M. F., Gascons, N., Llauró, F. X. (2015). Recurrence plots to characterize gas–solid fluidization regimes. International Journal of Multiphase Flow, 73, 43–56. doi: 10.1016/j.ijmultiphaseflow.2015.03.003

Zbilut, J. P., Thomasson, N., Webber, C. L. (2002). Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Medical Engineering & Physics, 24 (1), 53–60. doi: 10.1016/s1350-4533(01)00112-6

Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: 10.15587/1729-4061.2017.101985


GOST Style Citations


Poulsen A., Jomaas G. Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings // Fire Technology. 2011. Vol. 48, Issue 2. P. 419–439. doi: 10.1007/s10694-011-0230-0 

Zhang D., Xue W. Effect of heat radiation on combustion heat release rate of larch // Journal of West China Forestry Science. 2010. Issue 39. P. 148.

Ji J., Yang L., Fan W. Experimental study on effects of burning behaviours of materials caused by external heat radiation // Journal of Combustion Science and Technology. 2003. Issue 9. Р. 139.

Peng X., Liu S., Lu G. Experimental analysis on heat release rate of materials // Journal of Chongqing University. 2005. Issue 28. Р. 122.

Andronov V., Pospelov B., Rybka E. Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, Issue 5 (82). P. 38–44. doi: 10.15587/1729-4061.2016.75063 

Andronov V., Pospelov B., Rybka E. Development of a method to improve the performance speed of maximal fire detectors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 9 (86). P. 32–37. doi: 10.15587/1729-4061.2017.96694 

Design of fire detectors capable of self-adjusting by ignition / Pospelov B., Andronov V., Rybka E., Skliarov S. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 9 (88). P. 53–59. doi: 10.15587/1729-4061.2017.108448 

Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors / Pospelov B., Andronov V., Rybka E., Skliarov S. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 9 (89). P. 43–48. doi: 10.15587/1729-4061.2017.110092 

Results of experimental research into correlations between hazardous factors of ignition of materials in premises / Pospelov B., Rybka E., Meleshchenko R., Gornostal S., Shcherbak S. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 10 (90). P. 50–56. doi: 10.15587/1729-4061.2017.117789 

Korn G. A., Korn T. M. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. General Publishing Company, 2000. 1151 p.

Bendat J. S., Piersol A. G. Random data: analysis and measurement procedures, fourth edition. John Wiley & Sons, 2010. doi: 10.1002/9781118032428 

Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review / Shafi I., Ahmad J., Shah S. I., Kashif F. M. // EURASIP Journal on Advances in Signal Processing. 2009. Vol. 2009, Issue 1. doi: 10.1155/2009/673539 

Singh P. Time-frequency analysis via the fourier representation // HAL. 2016. P. 1–7. URL: https://hal.archives-ouvertes.fr/hal-01303330

Measurements of heat and combustion products in reduced-scale ventilation-limited compartment fires / Bundy M., Hamins A., Johnsson E. L., Kim S. C., Ko G. H., Lenhert D. B. // NIST Technical Note 1483. 2007. 155 p. doi: 10.6028/nist.tn.1483 

Pretrel H., Querre P., Forestier M. Experimental Study of Burning Rate Behaviour in Confined and Ventilated Fire Compartments // Fire Safety Science. 2005. Vol. 8. P. 1217–1228. doi: 10.3801/iafss.fss.8-1217 

Experimental study of the fluctuations of gas medium parameters as early signs of fire / Pospelov B., Andronov V., Rybka E., Popov V., Romin A. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 10 (91). P. 50–55. doi: 10.15587/1729-4061.2018.122419 

Stankovic L., Dakovic M., Thayaparan T. Time-frequency signal analysis // Kindle edition, Amazon. 2014. 655 p.

Avargel Y., Cohen I. Modeling and Identification of Nonlinear Systems in the Short-Time Fourier Transform Domain // IEEE Transactions on Signal Processing. 2010. Vol. 58, Issue 1. P. 291–304. doi: 10.1109/tsp.2009.2028978 

Giv H. H. Directional short-time Fourier transform // Journal of Mathematical Analysis and Applications. 2013. Vol. 399, Issue 1. P. 100–107. doi: 10.1016/j.jmaa.2012.09.053 

Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire / Pospelov B., Andronov V., Rybka E., Popov V., Semkiv O. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 10 (92). P. 44–49. doi: 10.15587/1729-4061.2018.125926 

Detection of the chaotic flow instability in a natural convection loop using the recurrence plot analysis and the nonlinear prediction / Nishikawa H., Matsumura K., Okino S., Watanabe T., Suda F. // Journal of Thermal Science and Technology. 2015. Vol. 10, Issue 2. P. JTST0028–JTST0028. doi: 10.1299/jtst.2015jtst0028 

Complex network approach for recurrence analysis of time series / Marwan N., Donges J. F., Zou Y., Donner R. V., Kurths J. // Physics Letters A. 2009. Vol. 373, Issue 46. P. 4246–4254. doi: 10.1016/j.physleta.2009.09.042 

Rusinek R., Zaleski K. Dynamics of thin-walled element milling expressed by recurrence analysis // Meccanica. 2015. Vol. 51, Issue 6. P. 1275–1286. doi: 10.1007/s11012-015-0293-y 

Recurrence Analysis of Combustion Noise / Kabiraj L., Saurabh A., Nawroth H., Paschereit C. O. // AIAA Journal. 2015. Vol. 53, Issue 5. P. 1199–1210. doi: 10.2514/1.j053285 

Recurrence plots for the analysis of complex systems / Marwan N., Carmenromano M., Thiel M., Kurths J. // Physics Reports. 2007. Vol. 438, Issue 5-6. P. 237–329. doi: 10.1016/j.physrep.2006.11.001 

Llop M. F., Gascons N., Llauró F. X. Recurrence plots to characterize gas–solid fluidization regimes // International Journal of Multiphase Flow. 2015. Vol. 73. P. 43–56. doi: 10.1016/j.ijmultiphaseflow.2015.03.003 

Zbilut J. P., Thomasson N., Webber C. L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals // Medical Engineering & Physics. 2002. Vol. 24, Issue 1. P. 53–60. doi: 10.1016/s1350-4533(01)00112-6 

Examining the learning fire detectors under real conditions of application / Andronov V., Pospelov B., Rybka E., Skliarov S. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 9 (87). P. 53–59. doi: 10.15587/1729-4061.2017.101985 







Copyright (c) 2018 Boris Pospelov, Vladimir Andronov, Evgenіy Rybka, Ruslan Meleshchenko, Pavlo Borodych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061