Determinig the parameters of the acoustic system for the primary treatment of wool

Lyudmyla Mykhailova, Oleksandr Kozak, Natalia Kosulina, Pavel Potapski, Aleksandr Cherenkov

Abstract


We have studied the process of primary treatment of wool in order to remove soil and manure contaminants, vegetable impurities, fat, and sweat. The primary treatment of wool performs a key role in retaining the natural properties of wool fiber and makes it possible to obtain high-quality raw materials for textile industry. It was found in the course of research that the intensification of the processes of primary treatment of wool requires the application of acoustic oscillations. Acoustic oscillations act on the system wool‒washing solution. The system wool‒washing solution is in between grating conveyors. Conveyors form a grating of metal rods. To determine parameters of the acoustic system for the primary treatment of wool, we performed an analysis of three problems. The problems related to: the scattering of acoustic oscillations on a metal grating, on a layer of wool-washing solution, and combining the solutions to two problems into one using a scattering matrix method. Our study allowed us to define parameters for the system of primary treatment of wool with acoustic oscillations, which makes it possible to achieve greater effectiveness in cleaning wool compared to existing analogues. It was established in the course of theoretical and experimental studies that the washing of wool should be carried out at the following parameters of acoustic oscillations in a washing solution: frequency of the sound field is 1.1±0.1 kHz; the sound intensity is 1.1±0.01 W/cm2. In this case, the thickness of a layer of wool at the conveyor is 0.06±0.01 m; the motion speed of conveyor is 0.1 m/s; the number of converters per bath is 8±1 pieces.

The application of optimal parameters in process of continuous washing of wool fibers in an aqueous solution makes it possible to obtain the residual fat on wool within 1.5 % of the amount of fat in the unwashed wool while GOST of Ukraine permits up to 2 %.


Keywords


primary treatment of wool; parameters of acoustic oscillations; coefficient of reflection of acoustic wave

Full Text:

PDF

References


Rogachev, N., Vasil'eva, L., Timoshenko, N. (2000). Sherst'. Pervichnaya obrabotka i rynok. Moscow: VNIIMP RASKHN, 600.

Cherenkov, A. D., Kosulina, N. G. (2016). Ploskiy gidrodinamicheskiy izluchatel' v ustroystvah moyki shersti. Enerhetyka ta kompiuterno-intehrovani tekhnolohiyi v APK, 1, 62–66.

Moroz, O., Cherenkov, A. (2004). Perspektyvy vykorystannia ultrazvukovykh kolyvan dlia pervynnoi obrobky vovny. Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva “Problemy enerhoza-bezpechennia ta enerhozberezhennia v APK Ukrainy”, 27, 255–260.

Tang, B., Wang, J., Xu, S., Afrin, T., Tao, J., Xu, W. et. al. (2012). Function improvement of wool fabric based on surface assembly of silica and silver nanoparticles. Chemical Engineering Journal, 185-186, 366–373. doi: 10.1016/j.cej.2012.01.082

Li, Q., Hurren, C. J., Wang, X. (2017). Ultrasonic assisted industrial wool scouring. Procedia Engineering, 200, 39–44. doi: 10.1016/j.proeng.2017.07.007

Peila, R., Actis Grande, G., Giansetti, M., Rehman, S., Sicardi, S., Rovero, G. (2015). Washing off intensification of cotton and wool fabrics by ultrasounds. Ultrasonics Sonochemistry, 23, 324–332. doi: 10.1016/j.ultsonch.2014.09.004

Bahtiyari, M. İ., Duran, K. (2013). A study on the usability of ultrasound in scouring of raw wool. Journal of Cleaner Production, 41, 283–290. doi: 10.1016/j.jclepro.2012.09.009

Ceria, A., Rombaldoni, F., Rovero, G., Mazzuchetti, G., Sicardi, S. (2010). The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics. Journal of Materials Processing Technology, 210 (5), 720–726. doi: 10.1016/j.jmatprotec.2009.12.006

Zhang, R., Wang, A. (2015). Modification of wool by air plasma and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production, 87, 961–965. doi: 10.1016/j.jclepro.2014.10.004

Zhang, Y., Pang, G., Zhao, Y., Wang, X., Bu, F., Zhao, X. (2016). Pulsed electrohydraulic discharge for wool fiber cleaning. Journal of Cleaner Production, 112, 1033–1039. doi: 10.1016/j.jclepro.2015.08.023

Actis Grande, G., Giansetti, M., Pezzin, A., Rovero, G., Sicardi, S. (2017). Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature. Ultrasonics Sonochemistry, 35, 276–284. doi: 10.1016/j.ultsonch.2016.10.003

Carran, R. S., Ghosh, A., Dyer, J. M. (2013). The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics. Applied Surface Science, 287, 467–472. doi: 10.1016/j.apsusc.2013.09.181

Pan, Y., Hurren, C. J., Li, Q. (2018). Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres. Ultrasonics Sonochemistry, 41, 227–233. doi: 10.1016/j.ultsonch.2017.09.045

McNeil, S. J., McCall, R. A. (2011). Ultrasound for wool dyeing and finishing. Ultrasonics Sonochemistry, 18 (1), 401–406. doi: 10.1016/j.ultsonch.2010.07.007

Ferrero, F., Periolatto, M. (2012). Ultrasound for low temperature dyeing of wool with acid dye. Ultrasonics Sonochemistry, 19 (3), 601–606. doi: 10.1016/j.ultsonch.2011.10.006

Skuchik, E. (1976). Osnovy akustiki. Moscow: Mir, 520.

Tihonov, A., Samarskiy, A. (1987). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 735.

Shestopalov, V., Litvinenko, L., Masalov, S. (1973). Difrakciya voln na reshetkah. Kharkiv, 288.

Vinarskiy, M. S., Lur'e, M. V. (1975). Planirovanie eksperimenta v tekhnologicheskih issledovaniyah. Kyiv: Tekhnikа, 168.

Spiridonov, A. A. (1981). Planirovanie eksperimenta pri issledovanii tekhnologicheskih processov. Moscow: Mashinostroenie, 184.

GOST 5778-2000. Sherst' sortirovannaya mytaya. Upakovka, markirovka, transportirovanie i hranenie. Vzamen GOST-5778-73 (1995). Minsk: Mezhgos. sovet po standartiz., metrologii i sertif., 8.


GOST Style Citations


Rogachev N., Vasil'eva L., Timoshenko N. Sherst'. Pervichnaya obrabotka i rynok. Moscow: VNIIMP RASKHN, 2000. 600 p.

Cherenkov A. D., Kosulina N. G. Ploskiy gidrodinamicheskiy izluchatel' v ustroystvah moyki shersti // Enerhetyka ta kompiuterno-intehrovani tekhnolohiyi v APK. 2016. Issue 1. P. 62–66.

Moroz O., Cherenkov A. Perspektyvy vykorystannia ultrazvukovykh kolyvan dlia pervynnoi obrobky vovny // Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva “Problemy enerhoza-bezpechennia ta enerhozberezhennia v APK Ukrainy”. 2004. Issue 27. P. 255–260.

Function improvement of wool fabric based on surface assembly of silica and silver nanoparticles / Tang B., Wang J., Xu S., Afrin T., Tao J., Xu W. et. al. // Chemical Engineering Journal. 2012. Vol. 185-186. P. 366–373. doi: 10.1016/j.cej.2012.01.082 

Li Q., Hurren C. J., Wang X. Ultrasonic assisted industrial wool scouring // Procedia Engineering. 2017. Vol. 200. P. 39–44. doi: 10.1016/j.proeng.2017.07.007 

Washing off intensification of cotton and wool fabrics by ultrasounds / Peila R., Actis Grande G., Giansetti M., Rehman S., Sicardi S., Rovero G. // Ultrasonics Sonochemistry. 2015. Vol. 23. P. 324–332. doi: 10.1016/j.ultsonch.2014.09.004 

Bahtiyari M. İ., Duran K. A study on the usability of ultrasound in scouring of raw wool // Journal of Cleaner Production. 2013. Vol. 41. P. 283–290. doi: 10.1016/j.jclepro.2012.09.009 

The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics / Ceria A., Rombaldoni F., Rovero G., Mazzuchetti G., Sicardi S. // Journal of Materials Processing Technology. 2010. Vol. 210, Issue 5. P. 720–726. doi: 10.1016/j.jmatprotec.2009.12.006 

Zhang R., Wang A. Modification of wool by air plasma and enzymes as a cleaner and environmentally friendly process // Journal of Cleaner Production. 2015. Vol. 87. P. 961–965. doi: 10.1016/j.jclepro.2014.10.004 

Pulsed electrohydraulic discharge for wool fiber cleaning / Zhang Y., Pang G., Zhao Y., Wang X., Bu F., Zhao X. // Journal of Cleaner Production. 2016. Vol. 112. P. 1033–1039. doi: 10.1016/j.jclepro.2015.08.023 

Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature / Actis Grande G., Giansetti M., Pezzin A., Rovero G., Sicardi S. // Ultrasonics Sonochemistry. 2017. Vol. 35. P. 276–284. doi: 10.1016/j.ultsonch.2016.10.003 

Carran R. S., Ghosh A., Dyer J. M. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics // Applied Surface Science. 2013. Vol. 287. P. 467–472. doi: 10.1016/j.apsusc.2013.09.181 

Pan Y., Hurren C. J., Li Q. Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres // Ultrasonics Sonochemistry. 2018. Vol. 41. P. 227–233. doi: 10.1016/j.ultsonch.2017.09.045 

McNeil S. J., McCall R. A. Ultrasound for wool dyeing and finishing // Ultrasonics Sonochemistry. 2011. Vol. 18, Issue 1. P. 401–406. doi: 10.1016/j.ultsonch.2010.07.007 

Ferrero F., Periolatto M. Ultrasound for low temperature dyeing of wool with acid dye // Ultrasonics Sonochemistry. 2012. Vol. 19, Issue 3. P. 601–606. doi: 10.1016/j.ultsonch.2011.10.006 

Skuchik E. Osnovy akustiki. Moscow: Mir, 1976. 520 p.

Tihonov A., Samarskiy A. Uravneniya matematicheskoy fiziki. Moscow: Nauka, 1987. 735 p.

Shestopalov V., Litvinenko L., Masalov S. Difrakciya voln na reshetkah. Kharkiv, 1973. 288 p.

Vinarskiy M. S., Lur'e M. V. Planirovanie eksperimenta v tekhnologicheskih issledovaniyah. Kyiv: Tekhnikа, 1975. 168 p.

Spiridonov A. A. Planirovanie eksperimenta pri issledovanii tekhnologicheskih processov. Moscow: Mashinostroenie, 1981. 184 p.

GOST 5778-2000. Sherst' sortirovannaya mytaya. Upakovka, markirovka, transportirovanie i hranenie. Vzamen GOST-5778-73. Minsk: Mezhgos. sovet po standartiz., metrologii i sertif., 1995. 8 p.



DOI: https://doi.org/10.15587/1729-4061.2018.133710

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Lyudmyla Mykhailova, Oleksandr Kozak, Natalia Kosulina, Pavel Potapski, Aleksandr Cherenkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061