Research into parameters of magnetic treatment to modify the disperse­filled epoxy composite materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140876

Keywords:

polymer, composite, epoxy oligomer, polyethylene polyamine, residual stresses, impact viscosity, PID-controller

Abstract

Improving the operational properties of epoxy composites makes it possible to extend the scope of their application. One of the techniques to enhance the strength and durability of epoxy composites is the use of magnetic treatment.

In order to modify polymeric compositions under the influence of a magnetic field, it is necessary to maintain the optimal treatment modes and time-temperature conditions, determining which is the aim of this research.

The result of the conducted experimental research is the established influence of parameters of an alternating magnetic field on physical-mechanical properties of the modified epoxy composites. We investigated patterns in the influence of proportionality coefficients, integration and differentiation coefficients in the algorithm to control magnetic treatment on impact viscosity and heat resistance of the modified epoxy composites. The optimum values for the frequency of an alternating magnetic field during treatment of epoxy composites were determined. We examined dependences of the content of a finely-dispersed ferromagnetic filler on residual stresses and temperature in the zone of magnetic treatment. Research into epoxy composites was accompanied by the parallel tests of properties related to the effect of similar temperature at magnetic treatment. The law of change in temperature parameters without magnetic treatment was assigned similarly to that of magnetic treatment. This paper reports results of the mathematical planning of the experiment and correlation dependences of magnetic field induction and the content of a filler on heat resistance of the modified epoxy-composite material. The research identified limiting values for the content of a filler and treatment modes of epoxy-composite materials, which ensure the improved performance properties. Our study is important for improving the technological process to modify epoxy compositions with magnetic treatment

Author Biographies

Vitalii Kartashov, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD

Department of Computer-Integrated Technologies

Danulo Stukhlyak, Company "NOVO-KOM" I. Franka str., 23, Ternopil, Ukraine, 46001

Manager

Olexandr Holotenko, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD

Department of Computer-Integrated Technologies

Ihor Dobrotvor, Ternopil National Economic University Lvivska str., 11, Ternopil, Ukraine, 46009

Doctor of Technical Sciences, Professor

Department of Economic Cybernetics and Informatics

Andrii Mikitishin, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD, Associate Professor

Department of Computer-Integrated Technologies

Mykola Mytnyk, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD, Associate Professor

Department of Computer-Integrated Technologies

Valerii Marukha, Karpenko physico-mechanical institute of the NAS of Ukraine Naukova str., 5, Lviv, Ukraine, 79060

Doctor of Technical Sciences, Professor

Olexandr Skorokhod, Gomel Branch of the University of Civil Protection of the Ministry of Emergencies of Belarus Mashinostroiteley str., 25, Minsk, Republic of Belarus, 220118

PhD

References

  1. Stukhlyak, P. D., Holotenko, O. S., Dobrotvor, I. H., Mytnyk, M. M. (2015). Investigation of the Adhesive Strength and Residual Stresses in Epoxy Composites Modified by Microwave Electromagnetic Treatment. Materials Science, 51 (2), 208–212. doi: https://doi.org/10.1007/s11003-015-9830-z
  2. Dosoudil, R., Franek, J., Ušáková, M., Olah, V., Sláma, J. (2008). High-Frequency EMI Noise Suppression by Polymer-Based Composite Magnetic Materials. Advances in Electrical and Electronic Engineering, 406–409.
  3. Zhang, W., Choi, H. (2014). Stimuli-Responsive Polymers and Colloids under Electric and Magnetic Fields. Polymers, 6 (11), 2803–2818. doi: https://doi.org/10.3390/polym6112803
  4. Peña-Rodríguez, G., Rivera-Suárez, P. A., González-Gómez, C. H., Parra-Vargas, C. A., Garzón-Posada, A. O., Landínez-Téllez, D. A., Roa-Rojas, J. (2018). Efecto de la concentración de magnetita en la estructura, propiedades eléctricas y magnéticas de un material compuesto a base de resina de poliéster. TecnoLógicas, 21 (41), 13–27. doi: https://doi.org/10.22430/22565337.708
  5. Dobrotvor, I. H., Stukhlyak, P. D., Buketov, A. V. (2009). Determination of the ranges of the optimal content of a dispersed filler in epoxy composites. Materials Science, 45 (6), 790–797. doi: https://doi.org/10.1007/s11003-010-9244-x
  6. Le Roy, D., Dhungana, D., Ourry, L., Faivre, M., Ferrigno, R., Tamion, A. et. al. (2016). Anisotropic ferromagnetic polymer: A first step for their implementation in microfluidic systems. AIP Advances, 6 (5), 056604. doi: https://doi.org/10.1063/1.4943927
  7. Nilsén, F., Aaltio, I., Hannula, S.-P. (2018). Comparison of magnetic field controlled damping properties of single crystal Ni-Mn-Ga and Ni-Mn-Ga polymer hybrid composite structures. Composites Science and Technology, 160, 138–144. doi: https://doi.org/10.1016/j.compscitech.2018.03.026
  8. Chung, J.-Y., Lee, J.-G., Baek, Y.-K., Shin, P.-W., Kim, Y.-K. (2018). Magnetic field-induced enhancement of thermal conductivities in polymer composites by linear clustering of spherical particles. Composites Part B: Engineering, 136, 215–221. doi: https://doi.org/10.1016/j.compositesb.2017.10.033
  9. Manaila Maximean, D. (2018). New grafted ferrite particles/liquid crystal composite under magnetic field. Journal of Magnetism and Magnetic Materials, 452, 343–348. doi: https://doi.org/10.1016/j.jmmm.2017.12.096
  10. Chi, Q. G., Gao, L., Wang, X., Chen, Y., Dong, J. F., Cui, Y., Lei, Q. Q. (2015). Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers. AIP Advances, 5 (11), 117103. doi: https://doi.org/10.1063/1.4935270
  11. Dotsenko, O., Suslyaev, V., Frolov, K., Wagner, D. (2016). Effect of magnetic field treatment on the electromagnetic properties of polymer composite based on barium hexaferrite at microwave frequencies. AIP Conference Proceedings, 1772, 040006. doi: https://doi.org/10.1063/1.4964565
  12. Shut, M. I., Sichkar, T. H., Malezhyk, P. M. (2012). Doslidzhennia kinetyky tverdnennia epoksydnoho olihomera v mahnitnomu poli. Fizyka i khimiya tverdoho tila, 13 (1), 234–237.
  13. Stukhliak, P. D., Kartashov, V. V., Andrievskyi, V. V. (2011). Pat. No. 62717 UA. Prystriy dlia obrobky polimernykh kompozytsiy zminnym mahnitnym polem. MPK V 03 V 13/04. No. u201101904; declareted: 18.02.2011; published: 12.09.2011, Bul. No. 17.
  14. Mamunya, Ye. P., Davydenko, V. V., Apekis, L., Zois, H., Snarskii, A. A., Slipchenko, K. V. (2002). Dielectric properties of polymers filled with dispersed metals. Polymers and Polymer Composites, 10 (3), 219–227.
  15. Buketov, A. V. (1999). Vplyv mahnitnoi pryrody napovniuvachiv na reolohichni vlastyvosti polimerkompozytsiynykh koroziynostiykykh pokryttiv. Mashynoznavstvo, 4, 61–62.

Downloads

Published

2018-08-21

How to Cite

Kartashov, V., Stukhlyak, D., Holotenko, O., Dobrotvor, I., Mikitishin, A., Mytnyk, M., Marukha, V., & Skorokhod, O. (2018). Research into parameters of magnetic treatment to modify the disperse­filled epoxy composite materials. Eastern-European Journal of Enterprise Technologies, 4(12 (94), 23–28. https://doi.org/10.15587/1729-4061.2018.140876

Issue

Section

Materials Science