DOI: https://doi.org/10.15587/1729-4061.2018.144602

“Green” synthesis of nanoparticles of precious metals: antimicrobial and catalytic properties

Margarita Skiba, Viktoria Vorobyova, Alexander Pivovarov, Anastasiia Shakun, Elena Gnatko, Inna Trus

Abstract


The paper presents the use of agricultural products, namely grape skins, in the “green” synthesis of monometallic (Au, Ag) and bimetallic (Au-Ag) nanoparticles (NPs) from aqueous solutions of metal ions of the corresponding precursors. At present, there exist urgent problems of utilization of waste from the agro-industrial complex, rational use of nature and transition to the use of environment-friendly and energy-efficient technologies. Therefore, there is a tendency to use “green” technologies in obtaining nanomaterials that are considered environment-friendly and resource-saving.

The study has proved the efficiency of using food waste (grape skins) as a reducing and stabilizing agent in forming nanoparticles of precious metals of mono- and bimetallic structures. Biological raw materials were extracted in an aqueous medium under a short-term effect of low-temperature plasma discharges. On the basis of the complex analysis of the extract composition, it was proved that the hydroxyl, carbonyl and carboxyl functional groups of the organic compounds of the grape skin extract are responsible for the recovery of the metal ions and stabilization of the resulting NPs.

The research has proved that mono- and bimetallic NPs are formed with the following peaks: for Ag0max=440 nm), Au0max=540 nm), and Ag-Au (λmax=510 nm). The size and stability of the nanoparticles obtained by the “green” synthesis were assessed in comparison with the same parameters for the plasmochemical method of nanoparticles’ formation. The study has revealed antibacterial, catalytic and anti-corrosion properties of the synthesized nanoparticles. The resulting monometallic (Au, Ag) and bimetallic (Au–Ag) nanoparticles show excellent catalytic activity while recovering p-nitrophenol (4-NPh) to p-aminophenol (4-APh) in the presence of NaBH4. The synthesized NPs demonstrate their antibacterial activity against gram-positive and gram-negative bacteria. The findings allow to expand the practical application of metal nanoparticles in various industries and enhance the processing and reuse of non-liquid waste

Keywords


aqueous extract; componential composition; grapes; recovery; nitrophenol; antibacterial properties; antioxidant activity

Full Text:

PDF

References


Sharma, G., Kumar, D., Kumar, A., Al-Muhtaseb, A. H., Pathania, D., Naushad, M., Mola, G. T. (2017). Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Materials Science and Engineering: C, 71, 1216–1230. doi: https://doi.org/10.1016/j.msec.2016.11.002

Han, P., Martens, W., Waclawik, E. R., Sarina, S., Zhu, H. (2018). Metal Nanoparticle Photocatalysts: Synthesis, Characterization, and Application. Particle & Particle Systems Characterization, 35 (6), 1700489. doi: https://doi.org/10.1002/ppsc.201700489

Liu, X., Astruc, D. (2017). From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. Advanced Materials, 29 (16), 1605305. doi: https://doi.org/10.1002/adma.201605305

Solomon, M. M., Gerengi, H., Umoren, S. A. (2017). Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H2SO4 Medium. ACS Applied Materials & Interfaces, 9 (7), 6376–7389. doi: https://doi.org/10.1021/acsami.6b14153

Nelson, D., Seabra, A. B. (2018). Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Current Nanoscience, 14 (2), 82–94. doi: https://doi.org/10.2174/1573413714666171207160637

Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering, 1 (4). doi: https://doi.org/10.1007/s41204-016-0004-5

Saratale, R. G., Saratale, G. D., Shin, H. S., Jacob, J. M., Pugazhendhi, A., Bhaisare, M., Kumar, G. (2017). New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research, 25 (11), 10164–10183. doi: https://doi.org/10.1007/s11356-017-9912-6

Devi, T. B., Ahmaruzzaman, M. (2017). Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: A green and efficient approach for wastewater treatment. Chemical Engineering Journal, 317, 726–741. doi: https://doi.org/10.1016/j.cej.2017.02.082

Sun, L., Yin, Y., Lv, P., Su, W., Zhang, L. (2018). Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Advances, 8 (8), 3964–3973. doi: https://doi.org/10.1039/c7ra13650a

Ingale, A. G., Chaudhari, A. N. (2013). Biogenic Synthesis of Nanoparticles and Potential Applications: An Eco- Friendly Approach. Journal of Nanomedicine & Nanotechnology, 04 (02). doi: https://doi.org/10.4172/2157-7439.1000165

Chyhyrynets, O. E., Fateev, Y. F., Vorobiova, V. I., Skyba, M. I. (2016). Study of the Mechanism of Action of the Isopropanol Extract of Rapeseed Oil Cake on the Atmospheric Corrosion of Copper. Materials Science, 51 (5), 644–651. doi: https://doi.org/10.1007/s11003-016-9886-4

Vorobyova, V., Chygyrynets’, O., Skiba, M., Zhuk, T., Kurmakova, І., Bondar, О. (2018). A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel. International Journal of Corrosion and Scale Inhibition, 7 (2), 185–202. doi: https://doi.org/10.17675/2305-6894-2018-7-2-6

Vorobyova, V., Chygyrynets’, O., Skiba, M. (2018). 4-hydroxy-3-methoxybenzaldehyde as a volatile inhibitor on the atmospheric corrosion of carbon steel. Journal of Chemical Technology and Metallurgy, 53 (2), 336–345.

Vorobyova, V., Chygyrynets, O., Skiba, M., Kurmakova, І., Bondar, O. (2017). Self-assembled monoterpenoid phenol as vapor phase atmospheric corrosion inhibitor of carbon steel. International Journal of Corrosion and Scale Inhibition, 6 (4), 485–503. doi: https://doi.org/10.17675/2305-6894-2017-6-4-8

Ulug, B., Haluk Turkdemir, M., Cicek, A., Mete, A. (2015). Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 153–161. doi: https://doi.org/10.1016/j.saa.2014.06.142

Abdelghany, A. M., Abdelrazek, E. M., Badr, S. I., Abdel-Aziz, M. S., Morsi, M. A. (2017). Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 21 (5), 528–537. doi: https://doi.org/10.1016/j.jscs.2015.10.002

Irimia, A., Ioanid, G. E., Zaharescu, T., Coroabă, A., Doroftei, F., Safrany, A., Vasile, C. (2017). Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiation Physics and Chemistry, 130, 52–61. doi: https://doi.org/10.1016/j.radphyschem.2016.07.028

Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: https://doi.org/10.1134/s1070363215050497

Skiba, M., Pivovarov, A., Makarova, A., Pasenko, O., Khlopytskyi, A., Vorobyova, V. (2017). Plasma-chemical formation of silver nanodispersion in water solutions. Eastern-European Journal of Enterprise Technologies, 6 (6 (90)), 59–65. doi: https://doi.org/10.15587/1729-4061.2017.118914

Pivovarov, О. А., Skіba, М. І., Makarova, А. K., Vorobyova, V. І., Pasenko, О. О. (2017). Plasma-chemical obtaining of silver nanoparticles in the presence of sodium alginate. Voprosy khimii i khimicheskoi tekhnologii, 6 (115), 82–88.

Taylor, P. L., Ussher, A. L., Burrell, R. E. (2005). Impact of heat on nanocrystalline silver dressings. Biomaterials, 26 (35), 7221–7229. doi: https://doi.org/10.1016/j.biomaterials.2005.05.040

Sadeghi, B., Jamali, M., Kia, Sh., Amini nia, A., Ghafar, S. (2010). Synthesis and characterization of silver nanoparticles for antibacterial activity. International Journal of Nano Dimension, 1 (2), 119–124. doi: https://doi.org/10.7508/IJND.2010.02.004

Farhadi S. Ajerloo, B., Mohammadi, A. (2017). Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects. International Journal of Nano Dimension, 8 (1), 49–60. doi: https://doi.org/10.22034/IJND.2017.24376

Krishnaswamy, K., Vali, H., Orsat, V. (2014). Value-adding to grape waste: Green synthesis of gold nanoparticles. Journal of Food Engineering, 142, 210–220. doi: https://doi.org/10.1016/j.jfoodeng.2014.06.014

Yallappa, S., Manjanna, J., Dhananjaya, B. L. (2015). Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 236–243. doi: https://doi.org/10.1016/j.saa.2014.08.030

Kuppusamy, P., Ilavenil, S., Srigopalram, S., Kim, D. H., Govindan, N., Maniam, G. P. et. al. (2017). Synthesis of Bimetallic Nanoparticles (Au–Ag Alloy) Using Commelina nudiflora L. Plant Extract and Study its on Oral Pathogenic Bacteria. Journal of Inorganic and Organometallic Polymers and Materials, 27 (2), 562–568. doi: https://doi.org/10.1007/s10904-017-0498-8

Khatami, M., Alijani, H., Nejad, M., Varma, R. (2018). Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Applied Sciences, 8 (3), 411. doi: https://doi.org/10.3390/app8030411

Pivovarov, A. A., Skiba, M. I., Makarova, A. K., Vorobyova, V. I. (2017). Obtaining of bimetallic nanoparticles by using plasma discharge. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, 3 (86), 97–101.

Skіba, M., Pivovarov, A., Makarova, A., Vorobyova, V. (2018). Plasma-chemical Synthesis of Silver Nanoparticles in the Presence of Citrate. Chemistry Journal of Moldova, 13 (1), 7–14. doi: https://doi.org/10.19261/cjm.2018.475

Skіba, М. І., Pivovarov, О. А., Makarova, А. K. Parkhomenko, V. D. (2018). One-pot synthesis of silver nanoparticles using discharged plasma in the presence of polyvinyl alcohol. Voprosy khimii i khimicheskoi tekhnologii, 3, 113–120.

Skiba, M., Pivovarov, A., Makarova, A., Vorobyova, V. (2018). Plasmochemical preparation of silver nanoparticles: thermodynamics and kinetics analysis of the process. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 4–9. doi: https://doi.org/10.15587/1729-4061.2018.127103

Ijaz Hussain, J., Kumar, S., Adil Hashmi, A., Khan, Z. (2011). Silver Nanoparticles: Preparation, Characterization, And Kinetics. Advanced Materials Letters, 2 (3), 188–194. doi: https://doi.org/10.5185/amlett.2011.1206

Marambio-Jones, C., Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12 (5), 1531–1551. doi: https://doi.org/10.1007/s11051-010-9900-y

Francis, S., Joseph, S., Koshy, E. P., Mathew, B. (2017). Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46 (4), 795–804. doi: https://doi.org/10.1080/21691401.2017.1345921

Wunder, S., Polzer, F., Lu, Y., Mei, Y., Ballauff, M. (2010). Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. The Journal of Physical Chemistry C, 114 (19), 8814–8820. doi: https://doi.org/10.1021/jp101125j

Jiménez, M., Juárez, N., Jiménez-Fernández, V. M., Monribot-Villanueva, J. L., Guerrero-Analco, J. A. (2018). Phenolic Compounds And Antioxidant Activity Of Wild Grape (Vitis Tiliifolia). Italian Journal of Food Science, 30 (1), 128–143. doi: https://doi.org/10.14674/IJFS-975

Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3 (3), 135–140. doi: https://doi.org/10.1016/j.arabjc.2010.04.008


GOST Style Citations


Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review / Sharma G., Kumar D., Kumar A., Al-Muhtaseb A. H., Pathania D., Naushad M., Mola G. T. // Materials Science and Engineering: C. 2017. Vol. 71. P. 1216–1230. doi: https://doi.org/10.1016/j.msec.2016.11.002 

Metal Nanoparticle Photocatalysts: Synthesis, Characterization, and Application / Han P., Martens W., Waclawik E. R., Sarina S., Zhu H. // Particle & Particle Systems Characterization. 2018. Vol. 35, Issue 6. P. 1700489. doi: https://doi.org/10.1002/ppsc.201700489 

Liu X., Astruc D. From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science // Advanced Materials. 2017. Vol. 26, Issue 16. P. 1605305. doi: https://doi.org/10.1002/adma.201605305 

Solomon M. M., Gerengi H., Umoren S. A. Carboxymethyl Cellulose/Silver Nanoparticles Composite: Synthesis, Characterization and Application as a Benign Corrosion Inhibitor for St37 Steel in 15% H2SO4 Medium // ACS Applied Materials & Interfaces. 2017. Vol. 9, Issue 7. P. 6376–7389. doi: https://doi.org/10.1021/acsami.6b14153 

Nelson D., Seabra A. B. Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications // Current Nanoscience. 2018. Vol. 14, Issue 2. Р. 82–94. doi: https://doi.org/10.2174/1573413714666171207160637

Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? / Peralta-Videa J. R., Huang Y., Parsons J. G., Zhao L., Lopez-Moreno L., Hernandez-Viezcas J. A., Gardea-Torresdey J. L. // Nanotechnology for Environmental Engineering. 2016. Vol. 1, Issue 4. doi: https://doi.org/10.1007/s41204-016-0004-5 

New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications / Saratale R. G., Saratale G. D., Shin H. S., Jacob J. M., Pugazhendhi A., Bhaisare M., Kumar G. // Environmental Science and Pollution Research. 2017. Vol. 25, Issue 11. P. 10164–10183. doi: https://doi.org/10.1007/s11356-017-9912-6 

Devi T. B., Ahmaruzzaman M. Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: A green and efficient approach for wastewater treatment // Chemical Engineering Journal. 2017. Vol. 317. P. 726–741. doi: https://doi.org/10.1016/j.cej.2017.02.082 

Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity / Sun L., Yin Y., Lv P., Su W., Zhang L. // RSC Advances. 2018. Vol. 8, Issue 8. P. 3964–3973. doi: https://doi.org/10.1039/c7ra13650a 

Ingale A. G., Chaudhari A. N. Biogenic Synthesis of Nanoparticles and Potential Applications: An Eco- Friendly Approach // Journal of Nanomedicine & Nanotechnology. 2013. Vol. 04, Issue 02. doi: https://doi.org/10.4172/2157-7439.1000165 

Study of the Mechanism of Action of the Isopropanol Extract of Rapeseed Oil Cake on the Atmospheric Corrosion of Copper / Chyhyrynets O. E., Fateev Y. F., Vorobiova V. I., Skyba M. I. // Materials Science. 2016. Vol. 51, Issue 5. P. 644–651. doi: https://doi.org/10.1007/s11003-016-9886-4 

A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel / Vorobyova V., Chygyrynets’ O., Skiba M., Zhuk T., Kurmakova І., Bondar О. // International Journal of Corrosion and Scale Inhibition. 2018. Vol. 7, Issue 2. P. 185–202. doi: https://doi.org/10.17675/2305-6894-2018-7-2-6 

Vorobyova V., Chygyrynets’ O., Skiba M. 4-hydroxy-3-methoxybenzaldehyde as a volatile inhibitor on the atmospheric corrosion of carbon steel // Journal of Chemical Technology and Metallurgy. 2018. Vol. 53, Issue 2. P. 336–345.

Self-assembled monoterpenoid phenol as vapor phase atmospheric corrosion inhibitor of carbon steel / Vorobyova V., Chygyrynets O., Skiba M., Kurmakova І., Bondar O. // International Journal of Corrosion and Scale Inhibition. 2017. Vol. 6, Issue 4. P. 485–503. doi: https://doi.org/10.17675/2305-6894-2017-6-4-8 

Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract / Ulug B., Haluk Turkdemir M., Cicek A., Mete A. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. Vol. 135. P. 153–161. doi: https://doi.org/10.1016/j.saa.2014.06.142 

Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract / Abdelghany A. M., Abdelrazek E. M., Badr S. I., Abdel-Aziz M. S., Morsi M. A. // Journal of Saudi Chemical Society. 2017. Vol. 21, Issue 5. P. 528–537. doi: https://doi.org/10.1016/j.jscs.2015.10.002 

Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds / Irimia A., Ioanid G. E., Zaharescu T., Coroabă A., Doroftei F., Safrany A., Vasile C. // Radiation Physics and Chemistry. 2017. Vol. 130. P. 52–61. doi: https://doi.org/10.1016/j.radphyschem.2016.07.028 

Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice / Pivovarov A. A., Kravchenko A. V., Tishchenko A. P., Nikolenko N. V., Sergeeva O. V., Vorob’eva M. I., Treshchuk S. V. // Russian Journal of General Chemistry. 2015. Vol. 85, Issue 5. P. 1339–1350. doi: https://doi.org/10.1134/s1070363215050497 

Plasma-chemical formation of silver nanodispersion in water solutions / Skiba M., Pivovarov A., Makarova A., Pasenko O., Khlopytskyi A., Vorobyova V. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 6 (90). P. 59–65. doi: https://doi.org/10.15587/1729-4061.2017.118914 

Plasma-chemical obtaining of silver nanoparticles in the presence of sodium alginate / Pivovarov О. А., Skіba М. І., Makarova А. K., Vorobyova V. І., Pasenko О. О. // Voprosy khimii i khimicheskoi tekhnologii. 2017. Vol. 6, Issue 115. P. 82–88.

Taylor P. L., Ussher A. L., Burrell R. E. Impact of heat on nanocrystalline silver dressings // Biomaterials. 2005. Vol. 26, Issue 35. P. 7221–7229. doi: https://doi.org/10.1016/j.biomaterials.2005.05.040 

Synthesis and characterization of silver nanoparticles for antibacterial activity / Sadeghi B., Jamali M., Kia Sh., Amini nia A., Ghafar S. // International Journal of Nano Dimension. 2010. Vol. 1, Issue 2. Р. 119–124. doi: https://doi.org/10.7508/IJND.2010.02.004

Farhadi S. Ajerloo B., Mohammadi A. Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects // International Journal of Nano Dimension. 2017. Vol. 8, Issue 1. Р. 49–60. doi: https://doi.org/10.22034/IJND.2017.24376

Krishnaswamy K., Vali H., Orsat V. Value-adding to grape waste: Green synthesis of gold nanoparticles // Journal of Food Engineering. 2014. Vol. 142. P. 210–220. doi: https://doi.org/10.1016/j.jfoodeng.2014.06.014 

Yallappa S., Manjanna J., Dhananjaya B. L. Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015. Vol. 137. P. 236–243. doi: https://doi.org/10.1016/j.saa.2014.08.030 

Synthesis of Bimetallic Nanoparticles (Au–Ag Alloy) Using Commelina nudiflora L. Plant Extract and Study its on Oral Pathogenic Bacteria / Kuppusamy P., Ilavenil S., Srigopalram S., Kim D. H., Govindan N., Maniam G. P. et. al. // Journal of Inorganic and Organometallic Polymers and Materials. 2017. Vol. 27, Issue 2. P. 562–568. doi: https://doi.org/10.1007/s10904-017-0498-8 

Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products / Khatami M., Alijani H., Nejad M., Varma R. // Applied Sciences. 2018. Vol. 8, Issue 3. P. 411. doi: https://doi.org/10.3390/app8030411 

Obtaining of bimetallic nanoparticles by using plasma discharge / Pivovarov A. A., Skiba M. I., Makarova A. K., Vorobyova V. I. // Vibratsiyi v tekhnitsi ta tekhnolohiyakh. 2017. Issue 3 (86). P. 97–101.

Plasma-chemical Synthesis of Silver Nanoparticles in the Presence of Citrate / Skіba M., Pivovarov A., Makarova A., Vorobyova V. // Chemistry Journal of Moldova. 2018. Vol. 13, Issue 1. P. 7–14. doi: https://doi.org/10.19261/cjm.2018.475 

One-pot synthesis of silver nanoparticles using discharged plasma in the presence of polyvinyl alcohol / Skіba М. І., Pivovarov О. А., Makarova А. K. Parkhomenko V. D. // Voprosy khimii i khimicheskoi tekhnologii. 2018. Issue 3. P. 113–120.

Plasmochemical preparation of silver nanoparticles: thermodynamics and kinetics analysis of the process / Skiba M., Pivovarov A., Makarova A., Vorobyova V. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 6 (82). P. 4–9. doi: https://doi.org/10.15587/1729-4061.2018.127103 

Silver Nanoparticles: Preparation, Characterization, And Kinetics / Ijaz Hussain J., Kumar S., Adil Hashmi A., Khan Z. // Advanced Materials Letters. 2011. Vol. 2, Issue 3. P. 188–194. doi: https://doi.org/10.5185/amlett.2011.1206 

Marambio-Jones C., Hoek E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment // Journal of Nanoparticle Research. 2010. Vol. 12, Issue 5. P. 1531–1551. doi: https://doi.org/10.1007/s11051-010-9900-y 

Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications / Francis S., Joseph S., Koshy E. P., Mathew B. // Artificial Cells, Nanomedicine, and Biotechnology. 2017. Vol. 46, Issue 4. P. 795–804. doi: https://doi.org/10.1080/21691401.2017.1345921 

Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes / Wunder S., Polzer F., Lu Y., Mei Y., Ballauff M. // The Journal of Physical Chemistry C. 2010. Vol. 114, Issue 19. P. 8814–8820. doi: https://doi.org/10.1021/jp101125j 

Phenolic Compounds And Antioxidant Activity Of Wild Grape (Vitis Tiliifolia) / Jiménez M., Juárez N., Jiménez-Fernández V. M., Monribot-Villanueva J. L., Guerrero-Analco J. A. // Italian Journal of Food Science. 2018. Vol. 30, Issue 1. Р. 128–143. doi: https://doi.org/10.14674/IJFS-975

Synthesis and applications of silver nanoparticles / Abou El-Nour K. M. M., Eftaiha A., Al-Warthan A., Ammar R. A. A. // Arabian Journal of Chemistry. 2010. Vol. 3, Issue 3. P. 135–140. doi: https://doi.org/10.1016/j.arabjc.2010.04.008 







Copyright (c) 2018 Margarita Skiba, Viktoria Vorobyova, Alexander Pivovarov, Anastasiia Shakun, Elena Gnatko, Inna Trus

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061