DOI: https://doi.org/10.15587/1729-4061.2018.145198

Studying the photocatalytic oxidation of hydroxybenzene in aquatic medium on the photocatalizers SnO2, ZnO, TiO2

Dmytro Deineka, Oleksandr Kobziev, Svitlana Avina, Svitlana Grin, Viktoriya Deyneka, Dmytro Taraduda, Vitaliy Sobina

Abstract


This paper reports results of research into photocatalytic activity of oxides SnO2, ZnO, TiO2 in the process of hydroxybenzene degradation in an aqueous medium with the separately considered properties of the allotrope modifications of titanium oxide (IV): anatase and rutile. The relationship has been substantiated between a decrease in the value for the width of the restricted area and an increase in the photocatalytic activity of the examined oxides. The effect has been established of the organization of agitation on an increase in the degree of hydroxybenzene degradation in an aqueous medium, which is 10‒15 % on average. We have studied the influence of ratio of anatase to rutile in a photocatalyst on the hydroxybenzene degradation efficiency. It has been shown that the results obtained in the course of the study are consistent with data from the scientific literature, while opening up additional possibilities to increase the degree of hydroxybenzene oxidation in a joint application of anatase and rutile. It was established that the greatest degree of oxidation with and without agitation at an irradiation time of 60 minutes can be achieved at the content ratio of anatase to rutile of 75/25 % and is 23 % and 37 %, respectively. The use of such a composition makes it possible to increase the degree of hydroxybenzene oxidation in an aqueous medium by 11‒18 %, which is 1.5‒1.9 times larger in comparison with pure rutile and anatase. The results obtained led to the conclusion on that in order to reduce the time required to achieve the maximal indicators for the process of hydroxybenzene degradation, it is necessary to increase the ratio of the irradiated surface to the height of the device and to increase the Re number of the agitation process. Based on the obtained experimental data, we have established the optimum composition of a photocatalyst, which makes it possible to reach the maximal degree of hydroxybenzene recovery from solution

Keywords


wastewater treatment; hydroxybenzene; photocatalytic activity; titanium dioxide; anatase; rutile

Full Text:

PDF

References


Guhman, G. A. (2018). Kachestvo okruzhayushchey sredy pri sovremennyh urovnyah nagruzki na nee. Energiya: ekonomika, tekhnika, ekologiya, 6, 44–50.

Osypenko, V. P., Vasylchuk, T. O. (2010). Mihratsya i rozpodil orhanichnykh rechovyn mizh abiotychnymy komponentamy poverkhnevykh vodoim za aerobnykh i anaerobnykh umov seredovyshcha. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu, 259, 188–198.

Ermakov, V. V. (2015). Geohimicheskaya ekologiya i biogeohimicheskie kriterii ocenki ekologicheskogo sostoyaniya taksonov biosfery. Geohimiya, 3, 203–221.

Kirieieva, I. Yu. (2015). The monitoring features of aquatic biodiversity. Science Almanac, 5, 158–165. doi: https://doi.org/10.17117/na.2015.05.158

Alekseenko, K. V., Batalova, V. N. (2015). The study of phenol electrooxidation in alkaline solution on glassy carbon electrode. Vestnik Tomskogo gosudarstvennogo universiteta, 400, 309–314. doi: https://doi.org/10.17223/15617793/400/50

Mokbel', S. M., Kolosov, E. N., Mihalenko, I. I. (2016). Okislenie fenola i hlorfenolov na platinirovannyh titanovyh anodah v kisloy srede. Zhurnal fizicheskoy himii, 90 (16), 960–963. doi: https://doi.org/10.7868/s0044453716060212

Harlamova, T. A., Aliev, Z. M. (2016). Primenenie elektroliza pod davleniem dlya destruktivnogo okisleniya fenola i azokrasiteley. Elektrohimiya, 52 (3), 291–300. doi: https://doi.org/10.7868/s0424857016030063

Maallah, R., Chtaini, A. (2018). Bacterial Electrode for the Oxidation and Detection of Phenol. Pharmaceutica Analytica Acta, 09 (03). doi: https://doi.org/10.4172/2153-2435.1000580

Ratanapongleka, K., Onsarn, A. (2018). Immobilization of Peroxidase from Cauliflower Stem on Ultrafiltration Membrane for Phenol Removal. Applied Mechanics and Materials, 879, 137–143. doi: https://doi.org/10.4028/www.scientific.net/amm.879.137

Wu, Y., Fu, X., Tian, G., Xuehong, G., Liu Z. (2018). Pervaporation of phenol wastewater with PEBA-PU blend membrane. Desalination and water treatment, 102, 101–109. doi: https://doi.org/10.5004/dwt.2018.21861

Ben Moshe, S., Rytwo, G. (2018). Thiamine-based organoclay for phenol removal from water. Applied Clay Science, 155, 50–56. doi: https://doi.org/10.1016/j.clay.2018.01.003

Hu, L., Zhang, J., Li, N., Zhang, S., Chen, F., Ji, B. et. al. (2018). Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes. Journal of Chemical Technology & Biotechnology, 93 (8), 2208–2215. doi: https://doi.org/10.1002/jctb.5562

Bai, X., Yang, L., Hagfeldt, A., Johansson, E. M. J., Jin, P. (2019). D35-TiO2 nano-crystalline film as a high performance visible-light photocatalyst towards the degradation of bis-phenol A. Chemical Engineering Journal, 355, 999–1010. doi: https://doi.org/10.1016/j.cej.2018.08.061

Lebedeva, I. I., Sizeneva, I. P., Kisel'kov, D. M. (2015). Razrabotka vysokoaktivnogo fotokatalizatora na osnove mezoporistogodioksida titana, dopirovannogo oksidom alyuminiya. Vestnik Permskogo nauchnogo centra, 49–53.

Andrade, M. A., Carmona, R. J., Mestre, A. S., Matos, J., Carvalho, A. P., Ania, C. O. (2014). Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 76, 183–192. doi: https://doi.org/10.1016/j.carbon.2014.04.066

Akhlaghian, F., Najafi, A. (2018). CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater. Scientia Iranica. doi: https://doi.org/10.24200/sci.2018.20611

Li, H., Ji, J., Cheng, C., Liang, K. (2018). Preparation of phenol-formaldehyde resin-coupled TiO 2 and study of photocatalytic activity during phenol degradation under sunlight. Journal of Physics and Chemistry of Solids, 122, 25–30. doi: https://doi.org/10.1016/j.jpcs.2018.06.012

Skvorcova, L., Chuhlomina, L., Gormakova, N., Kozubec, M. (2013). Ocenka vozmozhnosti ochistki vody ot fenol'nyh soedineniy v usloviyah kataliticheskogo ozonirovaniya i UF izlucheniya s primeneniem kompoziciy B-N-Fe i Si-N-Fe. Vestnik Tomskogo gosudarstvennogo universiteta, 370, 190–193.

Hella, K., Bahari, K., Sadi, F. (2014). Kataliticheskie svoystva mezoporistoy sistemy Fe-HMS v okislenii fenola. Kinetika i kataliz, 55 (4), 490–497. doi: https://doi.org/10.7868/s0453881114040091

Hryukin, M. B. (2017). Princip vybora osnovnyh razmerov peremeshivayushchih apparatov. Academy, 5, 46–49.

Chudakov, G. M., Ivanov, M. G. (2015). Razrabotka fil'truyushchih centrifug. Nauchnye trudy KubGTU, 5.

Zolotov, Yu. A. (2016). K voprosu o metodologii sozdaniya metodov kolichestvennogo himicheskogo analiza. Zhurnal analiticheskoy himii, 71 (10), 1061–1062. doi: https://doi.org/10.7868/s0044450216100145

Blinova, N. N., Aubakirova, R. A., Troeglazova, A. V. (2015). Metod bromatometricheskogo titrovaniya dlya analiza atmosfernogo vozduha na soderzhanie fenola. Aktual'nye problemy gumanitarnyh i estestvennyh nauk, 7, 20–28.

Cherkasova, C. O., Shapovalov, V. V., Dmitrenko, I. P., Budnik, A. P. (2017). Vliyanie fazovogo sostava dioksida titana na fotokataliticheskuyu degradaciyu organicheskih krasiteley. Inzhenerniy vestnik Dona, 2.

Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., Fennell, J. A. (1998). Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air. Environmental Science Technology, 32 (17), 2650–2653. doi: https://doi.org/10.1021/es980036f

Zhao, W., Chen, C., Li, X., Zhao, J., Hidaka, H., Serpone, N. (2002). Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst. The Journal of Physical Chemistry B, 106 (19), 5022–5028. doi: https://doi.org/10.1021/jp020205p

Mahapatra, S., Nayak, S. K., Madras, G., Guru Row, T. N. (2008). Microwave Synthesis and Photocatalytic Activity of Nano Lanthanide (Ce, Pr, and Nd) Orthovanadates. Industrial & Engineering Chemistry Research, 47 (17), 6509–6516. doi: https://doi.org/10.1021/ie8003094


GOST Style Citations


Guhman G. A. Kachestvo okruzhayushchey sredy pri sovremennyh urovnyah nagruzki na nee // Energiya: ekonomika, tekhnika, ekologiya. 2018. Issue 6. P. 44–50.

Osypenko V. P., Vasylchuk T. O. Mihratsya i rozpodil orhanichnykh rechovyn mizh abiotychnymy komponentamy poverkhnevykh vodoim za aerobnykh i anaerobnykh umov seredovyshcha // Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu. 2010. Issue 259. P. 188–198.

Ermakov V. V. Geohimicheskaya ekologiya i biogeohimicheskie kriterii ocenki ekologicheskogo sostoyaniya taksonov biosfery // Geohimiya. 2015. Issue 3. P. 203–221.

Kirieieva I. Yu. The monitoring features of aquatic biodiversity // Science Almanac. 2015. Issue 5. P. 158–165. doi: https://doi.org/10.17117/na.2015.05.158 

Alekseenko K. V., Batalova V. N. The study of phenol electrooxidation in alkaline solution on glassy carbon electrode // Vestnik Tomskogo gosudarstvennogo universiteta. 2015. Issue 400. Р. 309–314. doi: https://doi.org/10.17223/15617793/400/50 

Mokbel' S. M., Kolosov E. N., Mihalenko I. I. Okislenie fenola i hlorfenolov na platinirovannyh titanovyh anodah v kisloy srede // Zhurnal fizicheskoy himii. 2016. Vol. 90, Issue 16. P. 960–963. doi: https://doi.org/10.7868/s0044453716060212 

Harlamova T. A., Aliev Z. M. Primenenie elektroliza pod davleniem dlya destruktivnogo okisleniya fenola i azokrasiteley // Elektrohimiya. 2016. Vol. 52, Issue 3. P. 291–300. doi: https://doi.org/10.7868/s0424857016030063 

Maallah R., Chtaini A. Bacterial Electrode for the Oxidation and Detection of Phenol // Pharmaceutica Analytica Acta. 2018. Vol. 09, Issue 03. doi: https://doi.org/10.4172/2153-2435.1000580 

Ratanapongleka K., Onsarn A. Immobilization of Peroxidase from Cauliflower Stem on Ultrafiltration Membrane for Phenol Removal // Applied Mechanics and Materials. 2018. Vol. 879. P. 137–143. doi: https://doi.org/10.4028/www.scientific.net/amm.879.137 

Pervaporation of phenol wastewater with PEBA-PU blend membrane / Wu Y., Fu X., Tian G., Xuehong G., Liu Z. // Desalination and water treatment. 2018. Vol. 102. P. 101–109. doi: https://doi.org/10.5004/dwt.2018.21861 

Ben Moshe S., Rytwo G. Thiamine-based organoclay for phenol removal from water // Applied Clay Science. 2018. Vol. 155. P. 50–56. doi: https://doi.org/10.1016/j.clay.2018.01.003 

Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes / Hu L., Zhang J., Li N., Zhang S., Chen F., Ji B. et. al. // Journal of Chemical Technology & Biotechnology. 2018. Vol. 93, Issue 8. P. 2208–2215. doi: https://doi.org/10.1002/jctb.5562 

D35-TiO2 nano-crystalline film as a high performance visible-light photocatalyst towards the degradation of bis-phenol A / Bai X., Yang L., Hagfeldt A., Johansson E. M. J., Jin P. // Chemical Engineering Journal. 2019. Vol. 355. P. 999–1010. doi: https://doi.org/10.1016/j.cej.2018.08.061 

Lebedeva I. I., Sizeneva I. P., Kisel'kov D. M. Razrabotka vysokoaktivnogo fotokatalizatora na osnove mezoporistogodioksida titana, dopirovannogo oksidom alyuminiya // Vestnik Permskogo nauchnogo centra. 2015. P. 49–53.

Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts / Andrade M. A., Carmona R. J., Mestre A. S., Matos J., Carvalho A. P., Ania C. O. // Carbon. 2014. Vol. 76. Р. 183–192. doi: https://doi.org/10.1016/j.carbon.2014.04.066 

Akhlaghian F., Najafi A. CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater // Scientia Iranica. 2018. doi: https://doi.org/10.24200/sci.2018.20611 

Preparation of phenol-formaldehyde resin-coupled TiO 2 and study of photocatalytic activity during phenol degradation under sunligh / Li H., Ji J., Cheng C., Liang K. // Journal of Physics and Chemistry of Solids. 2018. Vol. 122. Р. 25–30. doi: https://doi.org/10.1016/j.jpcs.2018.06.012 

Ocenka vozmozhnosti ochistki vody ot fenol'nyh soedineniy v usloviyah kataliticheskogo ozonirovaniya i UF izlucheniya s primeneniem kompoziciy B-N-Fe i Si-N-Fe / Skvorcova L., Chuhlomina L., Gormakova N., Kozubec M. // Vestnik Tomskogo gosudarstvennogo universiteta. 2013. Issue 370. P. 190–193.

Hella K., Bahari K., Sadi F. Kataliticheskie svoystva mezoporistoy sistemy Fe-HMS v okislenii fenola // Kinetika i kataliz. 2014. Vol. 55, Issue 4. P. 490–497. doi: https://doi.org/10.7868/s0453881114040091 

Hryukin M. B. Princip vybora osnovnyh razmerov peremeshivayushchih apparatov // Academy. 2017. Issue 5. P. 46–49.

Chudakov G. M., Ivanov M. G. Razrabotka fil'truyushchih centrifug // Nauchnye trudy KubGTU. 2015. Issue 5.

Zolotov Yu. A. K voprosu o metodologii sozdaniya metodov kolichestvennogo himicheskogo analiza // Zhurnal analiticheskoy himii. 2016. Vol. 71, Issue 10. P. 1061–1062. doi: https://doi.org/10.7868/s0044450216100145 

Blinova N. N., Aubakirova R. A., Troeglazova A. V. Metod bromatometricheskogo titrovaniya dlya analiza atmosfernogo vozduha na soderzhanie fenola // Aktual'nye problemy gumanitarnyh i estestvennyh nauk. 2015. Issue 7. P. 20–28.

Vliyanie fazovogo sostava dioksida titana na fotokataliticheskuyu degradaciyu organicheskih krasiteley / Cherkasova C. O., Shapovalov V. V., Dmitrenko I. P., Budnik A. P. // Inzhenerniy vestnik Dona. 2017. Issue 2.

Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air / Jacoby W. A., Maness P. C., Wolfrum E. J., Blake D. M., Fennell J. A. // Environmental Science & Technology. 1998. Vol. 32, Issue 17. P. 2650–2653. doi: https://doi.org/10.1021/es980036f 

Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst / Zhao W., Chen C., Li X., Zhao J., Hidaka H., Serpone N. // The Journal of Physical Chemistry B. 2002. Vol. 106, Issue 19. P. 5022–5028. doi: https://doi.org/10.1021/jp020205p 

Microwave Synthesis and Photocatalytic Activity of Nano Lanthanide (Ce, Pr, and Nd) Orthovanadates / Mahapatra S., Nayak S. K., Madras G., Guru Row T. N. // Industrial & Engineering Chemistry Research. 2008. Vol. 47, Issue 17. P. 6509–6516. doi: https://doi.org/10.1021/ie8003094 







Copyright (c) 2018 Dmytro Deineka, Oleksandr Kobziev, Svitlana Avina, Svitlana Grin, Viktoriya Deyneka, Dmytro Taraduda, Vitaliy Sobina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061