DOI: https://doi.org/10.15587/1729-4061.2018.147585

The effect of additive on combustion characteristics and cycle to cycle variations on si engine fueled by gasoline and bioethanol

Setia Abikusna, Bambang Sugiarto, Ratna Monasari, Iqbal Yamin

Abstract


Currently, the main energy source is heavily dependent on fossil energy. The current transportation technology also uses fossil-derived energy sources to make vehicle engines are ignited. Also, the electricity that is currently enjoyed by billions of people resulted enormously from the use of fossil energy. Limitations of existing fossil energy sources and the issue of global warming have led many to expand on renewable energy and energy conservation to maintain energy availability. One of an alternative energy source that is currently being developed is the use of bioethanol as a mixture or replacement of fossil fuel. The use of bioethanol (C2H5OH) as a substitute for a mixture of fossil fuels affects the efficiency of the engine produced by fuel. This study examines the effect of a mixture of bioethanol gasoline (RON 80) on a single-cylinder spark ignition (SI) 125 cc engine that is carried out with variations in fuel mixtures (E0, E5, E10, and E15) with the addition of 0.5 vol % oxygenated cyclohexanol and this experimental test is carried out as much as 800 cycles for each fuel mixture, with throttle opening, maintained 100 %, and variations in engine speed at 4,000 rpm up to 8,500 rpm with engine speed increases every 500 rpm. Engine performance is measured by connecting a machine with a dynamometer, and the variation of cylinder pressure combustion is measured by a pressure transducer. The test results are expected to prove that the mixture of fuel with oxygenated cyclohexanol can reduce COVIMEP in the cycle to cycle variations (E10++ which is 4.24 %), so that torque fluctuations do not occur which results in reliable engine performance or vehicle driveability increase, besides that the performance of both power and torque becomes better

Keywords


bioethanol; oxygenated; cylinder pressure; coefficient of variation; cycle to cycle variations; power; torque

Full Text:

PDF

References


Data Handbook of Energy & Economic Statistic of Indonesia (2014). Ministry of Energy and Mineral Resources.

Zhuang, Y., Hong, G. (2014). Effects of direct injection timing of ethanol fuel on engine knock and lean burn in a port injection gasoline engine. Fuel, 135, 27–37. doi: https://doi.org/10.1016/j.fuel.2014.06.028

Yao, Y.-C., Tsai, J.-H., Wang, I.-T. (2013). Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend. Applied Energy, 102, 93–100. doi: https://doi.org/10.1016/j.apenergy.2012.07.041

Turkcan, A., Ozsezen, A. N., Canakci, M. (2014). Experimental investigation of the effects of different injection parameters on a direct injection HCCI engine fueled with alcohol–gasoline fuel blends. Fuel Processing Technology, 126, 487–496. doi: https://doi.org/10.1016/j.fuproc.2014.05.023

Zhuang, Y., Hong, G. (2013). Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. Fuel, 105, 425–431. doi: https://doi.org/10.1016/j.fuel.2012.09.013

Feng, R., Fu, J., Yang, J., Wang, Y., Li, Y., Deng, B. et. al. (2015). Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend. Renewable Energy, 81, 113–122. doi: https://doi.org/10.1016/j.renene.2015.03.025

Schifter, I., Diaz, L., Gómez, J. P Gonzalez, U. (2013). Combustion characterization in a single cylinder engine with mid-level hydrated ethanol–gasoline blended fuels. Fuel, 103, 292–298. doi: https://doi.org/10.1016/j.fuel.2012.06.002

Wang, X., Chen, Z., Ni, J., Liu, S., Zhou, H. (2015). The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Studies in Thermal Engineering, 6, 147–154. doi: https://doi.org/10.1016/j.csite.2015.09.007

Sen, A. K., Medina, A., Curto-Risso, P. L., Calvo Hernández, A. (2014). Effect of ethanol addition on cyclic variability in a simulated spark ignition gasoline engine. Meccanica, 49 (10), 2285–2297. doi: https://doi.org/10.1007/s11012-014-9974-1

Kaleli, A., Ceviz, M. A., Erenturk, K. (2015). Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines. Applied Thermal Engineering, 87, 624–632. doi: https://doi.org/10.1016/j.applthermaleng.2015.05.042

Heywood, J. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill, 960.

Reyes, M., Melgar, A., Pérez, A., Giménez, B. (2013). Study of the cycle-to-cycle variations of an internal combustion engine fuelled with natural gas/hydrogen blends from the diagnosis of combustion pressure. International Journal of Hydrogen Energy, 38 (35), 15477–15487. doi: https://doi.org/10.1016/j.ijhydene.2013.09.071

Phuangwongtrakul, S., Wechsatol, W., Sethaput, T., Suktang, K., Wongwises, S. (2016). Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol–gasoline blended fuels. Applied Thermal Engineering, 100, 869–879. doi: https://doi.org/10.1016/j.applthermaleng.2016.02.084

Abikusna, S., Sugiarto, B., Suntoro, D., Azami (2017). Low grade bioethanol for fuel mixing on gasoline engine using distillation process. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4979235

Abikusna, S., Sugiarto, B., Monasari, R., Aditya, R., Hendrawan, D. (2018). Performance analysis (WHP and torque) on SI engine fueled with low-grade bioethanol and oxygenated fuel additive. IOP Conference Series: Earth and Environmental Science, 105, 012057. doi: https://doi.org/10.1088/1755-1315/105/1/012057

Anand, T. N. C., Madan Mohan, A., Ravikrishna, R. V. (2012). Spray characterization of gasoline-ethanol blends from a multi-hole port fuel injector. Fuel, 102, 613–623. doi: https://doi.org/10.1016/j.fuel.2012.06.107

Catapano, F., Sementa, P., Vaglieco, B. M. (2016). Air-fuel mixing and combustion behavior of gasoline-ethanol blends in a GDI wall-guided turbocharged multi-cylinder optical engine. Renewable Energy, 96, 319–332. doi: https://doi.org/10.1016/j.renene.2016.04.087

Costa, R. C., Sodré, J. R. (2011). Compression ratio effects on an ethanol/gasoline fuelled engine performance. Applied Thermal Engineering, 31 (2-3), 278–283. doi: https://doi.org/10.1016/j.applthermaleng.2010.09.007

Huang, Y., Hong, G., Huang, R. (2015). Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine. Applied Energy, 160, 244–254. doi: https://doi.org/10.1016/j.apenergy.2015.09.059

Kim, N., Cho, S., Min, K. (2015). A study on the combustion and emission characteristics of an SI engine under full load conditions with ethanol port injection and gasoline direct injection. Fuel, 158, 725–732. doi: https://doi.org/10.1016/j.fuel.2015.06.025

Li, L., Ge, Y., Wang, M., Peng, Z., Song, Y., Zhang, L., Yuan, W. (2015). Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. Science of The Total Environment, 502, 627–631. doi: https://doi.org/10.1016/j.scitotenv.2014.09.068

Li, Y., Meng, L., Nithyanandan, K., Lee, T. H., Lin, Y., Lee, C. F., Liao, S. (2016). Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends. Fuel, 184, 864–872. doi: https://doi.org/10.1016/j.fuel.2016.07.063

Liu, H., Wang, Z., Long, Y., Wang, J. (2015). Dual-Fuel Spark Ignition (DFSI) combustion fuelled with different alcohols and gasoline for fuel efficiency. Fuel, 157, 255–260. doi: https://doi.org/10.1016/j.fuel.2015.04.042

Liu, H., Wang, Z., Long, Y., Xiang, S., Wang, J., Fatouraie, M. (2015). Comparative study on alcohol–gasoline and gasoline–alcohol Dual-Fuel Spark Ignition (DFSI) combustion for engine particle number (PN) reduction. Fuel, 159, 250–258. doi: https://doi.org/10.1016/j.fuel.2015.06.059

Masum, B. M., Masjuki, H. H., Kalam, M. A., Palash, S. M., Habibullah, M. (2015). Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine. Journal of Cleaner Production, 86, 230–237. doi: https://doi.org/10.1016/j.jclepro.2014.08.032

Melo, T. C. C. de, Machado, G. B., Belchior, C. R. P., Colaço, M. J., Barros, J. E. M., de Oliveira, E. J., de Oliveira, D. G. (2012). Hydrous ethanol–gasoline blends – Combustion and emission investigations on a Flex-Fuel engine. Fuel, 97, 796–804. doi: https://doi.org/10.1016/j.fuel.2012.03.018

Najafi, G., Ghobadian, B., Yusaf, T., Safieddin Ardebili, S. M., Mamat, R. (2015). Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy, 90, 1815–1829. doi: https://doi.org/10.1016/j.energy.2015.07.004

Reyes, M., Tinaut, F. V., Melgar, A., Pérez, A. (2016). Characterization of the combustion process and cycle-to-cycle variations in a spark ignition engine fuelled with natural gas/hydrogen mixtures. International Journal of Hydrogen Energy, 41 (3), 2064–2074. doi: https://doi.org/10.1016/j.ijhydene.2015.10.082

Sileghem, L., Wallner, T., Verhelst, S. (2015). A quasi-dimensional model for SI engines fueled with gasoline–alcohol blends: Knock modeling. Fuel, 140, 217–226. doi: https://doi.org/10.1016/j.fuel.2014.09.091

Suarez-Bertoa, R., Zardini, A. A., Keuken, H., Astorga, C. (2015). Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel, 143, 173–182. doi: https://doi.org/10.1016/j.fuel.2014.10.076

Wang, Z., Liu, H., Long, Y., Wang, J., He, X. (2015). Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency. Energy, 82, 395–405. doi: https://doi.org/10.1016/j.energy.2015.01.049


GOST Style Citations


Data Handbook of Energy & Economic Statistic of Indonesia. Ministry of Energy and Mineral Resources, 2014.

Zhuang Y., Hong G. Effects of direct injection timing of ethanol fuel on engine knock and lean burn in a port injection gasoline engine // Fuel. 2014. Vol. 135. P. 27–37. doi: https://doi.org/10.1016/j.fuel.2014.06.028 

Yao Y.-C., Tsai J.-H., Wang I.-T. Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend // Applied Energy. 2013. Vol. 102. P. 93–100. doi: https://doi.org/10.1016/j.apenergy.2012.07.041 

Turkcan A., Ozsezen A. N., Canakci M. Experimental investigation of the effects of different injection parameters on a direct injection HCCI engine fueled with alcohol–gasoline fuel blends // Fuel Processing Technology. 2014. Vol. 126. P. 487–496. doi: https://doi.org/10.1016/j.fuproc.2014.05.023 

Zhuang Y., Hong G. Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption // Fuel. 2013. Vol. 105. P. 425–431. doi: https://doi.org/10.1016/j.fuel.2012.09.013 

Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend / Feng R., Fu J., Yang J., Wang Y., Li Y., Deng B. et. al. // Renewable Energy. 2015. Vol. 81. P. 113–122. doi: https://doi.org/10.1016/j.renene.2015.03.025 

Combustion characterization in a single cylinder engine with mid-level hydrated ethanol–gasoline blended fuels / Schifter I., Diaz L., Gómez J. P., Gonzalez U. // Fuel. 2013. Vol. 103. P. 292–298. doi: https://doi.org/10.1016/j.fuel.2012.06.002 

The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine / Wang X., Chen Z., Ni J., Liu S., Zhou H. // Case Studies in Thermal Engineering. 2015. Vol. 6. P. 147–154. doi: https://doi.org/10.1016/j.csite.2015.09.007 

Effect of ethanol addition on cyclic variability in a simulated spark ignition gasoline engine / Sen A. K., Medina A., Curto-Risso P. L., Calvo Hernández A. // Meccanica. 2014. Vol. 49, Issue 10. P. 2285–2297. doi: https://doi.org/10.1007/s11012-014-9974-1 

Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines / Kaleli A., Ceviz M. A., Erenturk K. // Applied Thermal Engineering. 2015. Vol. 87. P. 624–632. doi: https://doi.org/10.1016/j.applthermaleng.2015.05.042 

Heywood J. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988. 960 p.

Study of the cycle-to-cycle variations of an internal combustion engine fuelled with natural gas/hydrogen blends from the diagnosis of combustion pressure / Reyes M., Melgar A., Pérez A., Giménez B. // International Journal of Hydrogen Energy. 2013. Vol. 38, Issue 35. P. 15477–15487. doi: https://doi.org/10.1016/j.ijhydene.2013.09.071 

Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol–gasoline blended fuels / Phuangwongtrakul S., Wechsatol W., Sethaput T., Suktang K., Wongwises S. // Applied Thermal Engineering. 2016. Vol. 100. P. 869–879. doi: https://doi.org/10.1016/j.applthermaleng.2016.02.084 

Low grade bioethanol for fuel mixing on gasoline engine using distillation process / Abikusna S., Sugiarto B., Suntoro D., Azami // AIP Conference Proceedings. 2017. doi: https://doi.org/10.1063/1.4979235 

Performance analysis (WHP and torque) on SI engine fueled with low-grade bioethanol and oxygenated fuel additive / Abikusna S., Sugiarto B., Monasari R., Aditya R., Hendrawan D. // IOP Conference Series: Earth and Environmental Science. 2018. Vol. 105. P. 012057. doi: https://doi.org/10.1088/1755-1315/105/1/012057 

Anand T. N. C., Madan Mohan A., Ravikrishna R. V. Spray characterization of gasoline-ethanol blends from a multi-hole port fuel injector // Fuel. 2012. Vol. 102. P. 613–623. doi: https://doi.org/10.1016/j.fuel.2012.06.107 

Air-fuel mixing and combustion behavior of gasoline-ethanol blends in a GDI wall-guided turbocharged multi-cylinder optical engine / Catapano F., Sementa P., Vaglieco B. M. // Renewable Energy. 2016. Vol. 96. P. 319–332. doi: https://doi.org/10.1016/j.renene.2016.04.087 

Costa R. C., Sodré J. R. Compression ratio effects on an ethanol/gasoline fuelled engine performance // Applied Thermal Engineering. 2011. Vol. 31, Issue 2-3. P. 278–283. doi: https://doi.org/10.1016/j.applthermaleng.2010.09.007 

Huang Y., Hong G., Huang R. Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine // Applied Energy. 2015. Vol. 160. P. 244–254. doi: https://doi.org/10.1016/j.apenergy.2015.09.059 

Kim N., Cho S., Min K. A study on the combustion and emission characteristics of an SI engine under full load conditions with ethanol port injection and gasoline direct injection // Fuel. 2015. Vol. 158. P. 725–732. doi: https://doi.org/10.1016/j.fuel.2015.06.025 

Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends / Li L., Ge Y., Wang M., Peng Z., Song Y., Zhang L., Yuan W. // Science of The Total Environment. 2015. Vol. 502. P. 627–631. doi: https://doi.org/10.1016/j.scitotenv.2014.09.068 

Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends / Li Y., Meng L., Nithyanandan K., Lee T. H., Lin Y., Lee C. F., Liao S. // Fuel. 2016. Vol. 184. P. 864–872. doi: https://doi.org/10.1016/j.fuel.2016.07.063 

Dual-Fuel Spark Ignition (DFSI) combustion fuelled with different alcohols and gasoline for fuel efficiency / Liu H., Wang Z., Long Y., Wang J. // Fuel. 2015. Vol. 157. P. 255–260. doi: https://doi.org/10.1016/j.fuel.2015.04.042 

Comparative study on alcohol–gasoline and gasoline–alcohol Dual-Fuel Spark Ignition (DFSI) combustion for engine particle number (PN) reduction / Liu H., Wang Z., Long Y., Xiang S., Wang J., Fatouraie M. // Fuel. 2015. Vol. 159. P. 250–258. doi: https://doi.org/10.1016/j.fuel.2015.06.059 

Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine / Masum B. M., Masjuki H. H., Kalam M. A., Palash S. M., Habibullah M. // Journal of Cleaner Production. 2015. Vol. 86. P. 230–237. doi: https://doi.org/10.1016/j.jclepro.2014.08.032 

Hydrous ethanol–gasoline blends – Combustion and emission investigations on a Flex-Fuel engine / Melo T. C. C. de, Machado G. B., Belchior C. R. P., Colaço M. J., Barros J. E. M., de Oliveira E. J., de Oliveira D. G. // Fuel. 2012. Vol. 97. P. 796–804. doi: https://doi.org/10.1016/j.fuel.2012.03.018 

Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology / Najafi G., Ghobadian B., Yusaf T., Safieddin Ardebili S. M., Mamat R. // Energy. 2015. Vol. 90. P. 1815–1829. doi: https://doi.org/10.1016/j.energy.2015.07.004 

Characterization of the combustion process and cycle-to-cycle variations in a spark ignition engine fuelled with natural gas/hydrogen mixtures / Reyes M., Tinaut F. V., Melgar A., Pérez A. // International Journal of Hydrogen Energy. 2016. Vol. 41, Issue 3. P. 2064–2074. doi: https://doi.org/10.1016/j.ijhydene.2015.10.082 

Sileghem L., Wallner T., Verhelst S. A quasi-dimensional model for SI engines fueled with gasoline–alcohol blends: Knock modeling // Fuel. 2015. Vol. 140. P. 217–226. doi: https://doi.org/10.1016/j.fuel.2014.09.091 

Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC) / Suarez-Bertoa R., Zardini A. A., Keuken H., Astorga C. // Fuel. 2015. Vol. 143. P. 173–182. doi: https://doi.org/10.1016/j.fuel.2014.10.076 

Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency / Wang Z., Liu H., Long Y., Wang J., He X. // Energy. 2015. Vol. 82. P. 395–405. doi: https://doi.org/10.1016/j.energy.2015.01.049 







Copyright (c) 2018 Setia Abikusna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061