Comparative tests of contact elements at current collectors in order to comprehensively assess their operational performance

Authors

  • Mykola Babyak Lviv branch of Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Blazhkevych str., 12a, Lviv, Ukraine, 79052, Ukraine https://orcid.org/0000-0001-5125-9133
  • Volodymyr Horobets Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-6537-7461
  • Viktor Sychenko Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-9533-2897
  • Yevhen Horobets Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010, Ukraine https://orcid.org/0000-0001-8017-1595

DOI:

https://doi.org/10.15587/1729-4061.2018.151751

Keywords:

pantograph pads, current collector inserts, contact material, contacts wear, contact plate, electric vehicles

Abstract

We have studied the interaction between contact elements in the pantographs of electric transport under operation at the sections of railroads powered by direct and alternating current. In contrast to known techniques for bench tests, we investigated the mechanism of current collection and wear resistance at the new testing installation over a minimally narrow region of the sliding contact, simulating the phenomenon of a pantograph "cut". This installation can be used both industrially when manufacturing new contact elements and under laboratory setting when studying wear resistance.

The experimental research confirmed that the wear intensity of contact elements at pantographs depends on current load over a contact area, the magnitude of contact pressure, the area of a contact surface, and motion speed. We have practically proven a possibility to maintain a reliable contact connection in the sliding contact under extreme operating conditions when using a reliable contact material for the current collector pads.

It has been proposed to use the powder composition BrIG based on bronze, iron, and graphite, for making contact elements for pantographs that could provide for reliable contact when interacting with the contact wire. Application of new and high-quality contact materials affects the tribology and stability of interaction between plates and the contact wire.

Owing to our study, a possibility has been established to manufacture a reliable contact element BrIG, which would prolong the time of interaction in the contact pair "pantograph at electric transport ‒ contact network".

The practical significance of this research relates to the proven efficiency of utilizing the new contact material BrIG for electric railroad transport network, in trolley buses and trams.

Thus, one can argue about the possibility to prolong the time of operation for the contact pair "pad in a pantograph at electric transport ‒ contact network" by applying the new contact material BrIG

Author Biographies

Mykola Babyak, Lviv branch of Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD, Associate Professor

Department of Transport Technologies

Volodymyr Horobets, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Life Safety

Viktor Sychenko, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Intelligent Power Supply Systems

Yevhen Horobets, Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

Postgraduate student

Department of Car and Car Facilities

References

  1. Diakov, V. O., Bosyi, D. O., Antonov, A. V. (2017). Kontaktna merezha elektryfikovanykh zaliznyts. Ulashtuvannia kontaktnoi merezhi. Dnipro: Vyd-vo PF «Standart–Servis», 228.
  2. Rekomendacii po primeneniyu naibolee celesoobraznyh materialov dlya vstavok (plastin) tokopriemnikov i ih konstrukcii. Available at: http://osjd.org/doco/public/ru?STRUCTURE_ID=5070&layer_id=4581&refererLayerId=5315&refererPageId=4&id=732
  3. TI-514. Tekhnicheskoe obsluzhivanie i remont tokopriemnikov otechestvennyh elektrovozov postoyannogo i peremennogo toka. Tekhnologicheskaya instrukciya (1988).
  4. «Pravyla kapitalnoho remontu KR-1, KR-2 elektrovoziv zminnoho strumu seriy VL80v/i, VL82M» TsT-0134, zatverdzhenykh nakazom Ukrzaliznytsi vid 16.03.2006 r. No. 253-TsZ.
  5. TsT-0038. Pravyla tekhnichnoho obsluhovuvannia ta potochnoho remontu elektrovoziv zminnoho strumu VL60k VL60p, VL80k, VL80s, VL80t, VL82m, zatverdzheni nakazom Ukrzaliznytsi vid 30.01.2002. No. 40-Ts.
  6. Baranovskyi, D. M. (2007). Teoretychni peredumovy pidvyshchennia nadiynosti systemy "kontaktna pidviska – strumopryimach" zmenshenniam intensyvnosti znoshuvannia yii elementiv pislia lazernoho modyfikuvannia. Problemy trybolohiyi, 2, 34–38.
  7. Bolshakov, Y. L., Antonov, A. V. (2015). Investigation of properties of current collector elements and their effect on the performance of tribosystem «contact wire – current collector element». Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 6, 35–44. doi: https://doi.org/10.15802/stp2015/57006
  8. Koval, V. A. (2013). Results poster research slider municipal electric. Elektryfikatsiya transportu, 5, 41–46. Available at: http://nbuv.gov.ua/UJRN/eltr_2013_5_8
  9. -TsZ. Pravyla remontu KR-1, KR-2 elektrovoziv seriy VL8, VL10, VL11. TsT-0119 (2006). Kyiv, 172.
  10. GOST 434-78. Shiny mednye elektrotekhnicheskogo naznacheniya.
  11. TsT-0188. Pravyla tekhnichnoho obsluhovuvannia ta potochnykh remontiv elektrovoziv postiynoho strumu VL8, VL10, VL11. zatv. Nakaz Ukrzaliznytsi 28.07.2009 r. No. 418-TS.
  12. Belyaev, I. A. (1986). Mashinistu o kontaktnoy seti i tokos'eme. Moscow: Transport, 127.
  13. Berent, V. Ya. (2002). Perspektivy uluchsheniya raboty sil'notochnogo skol'zyashchego kontakta «kontaktnyy provod tokos'emniy element poloza tokopriemnika». Zheleznye dorogi mira, 10, 46–51.
  14. Gershman, I. S. (2002). Tokos'emnye uglerodno-mednye materialy. Vestnik VNIIZhT, 5.
  15. Bogatov, O. S., Stepancyuk, A. M. (2018). Operating properties of antifriction materials based on dispersion-strengthed copper by using them as current collectors of trams. Problems of friction and wear, 1 (78), 50–55. Available at: http://ecobio.nau.edu.ua/index.php/PTZ/article/viewFile/12758/17591
  16. Romanov, S. M., Romanov, D. S. (2006). Pat. No. 84599. Antyfryktsiynyi material romanit-uvlsh, sposib yoho oderzhannia ta element vuzla tertia. No. a200610502; declareted: 04.10.2006; published: 10.11.2008, Bul. No. 21.
  17. Aydin, I., Karakose, M., Akin, E. (2014). A New Contactless Fault Diagnosis Approach for Pantograph-Catenary System Using Pattern Recognition and Image Processing Methods. Advances in Electrical and Computer Engineering, 14 (3), 79–88. doi: https://doi.org/10.4316/aece.2014.03010
  18. Zhao, H., Barber, G. C., Liu, J. (2001). Friction and wear in high speed sliding with and without electrical current. Wear, 249 (5-6), 409–414. doi: https://doi.org/10.1016/s0043-1648(01)00545-2
  19. Chen, G. X., Yang, H. J., Zhang, W. H., Wang, X., Zhang, S. D., Zhou, Z. R. (2013). Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current. Tribology International, 61, 88–94. doi: https://doi.org/10.1016/j.triboint.2012.11.020
  20. Bucca, G., Collina, A. (2009). A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear, 266 (1-2), 46–59. doi: https://doi.org/10.1016/j.wear.2008.05.006
  21. Ding, T., Chen, G. X., Wang, X., Zhu, M. H., Zhang, W. H., Zhou, W. X. (2011). Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds. Tribology International, 44 (4), 437–444. doi: https://doi.org/10.1016/j.triboint.2010.11.022
  22. Ding, T., Li, Y., Xu, G., Yang, Y., He, Q. (2017). Friction and Wear Behaviors with Electric Current of Carbon Strip/Copper Contact Wire for Pantograph/Centenary System. DEStech Transactions on Engineering and Technology Research. doi: https://doi.org/10.12783/dtetr/apetc2017/11246
  23. Ding, T., Xuan, W., He, Q., Wu, H., Xiong, W. (2014). Study on Friction and Wear Properties of Pantograph Strip/Copper Contact Wire for High-Speed Train. The Open Mechanical Engineering Journal, 8 (1), 125–128. doi: https://doi.org/10.2174/1874155x20140501005
  24. Tekhnicheskie trebovaniya k tokopriemnikam elektropodvizhnogo sostava dlya skorostey dvizheniya do 250 km/ch. Available at: http://osjd.org/doco/public/ru?STRUCTURE_ID=5070&layer_id=4581&refererLayerId=5315&refererPageId=4&id=672
  25. GOST 32204-2013. Tokopriemniki zheleznodorozhnogo elektropodvizhnogo sostava. Obshchie tekhnicheskie usloviya.
  26. DSTU HOST 32680:2016. Strumoznimalni elementy kontaktni strumopryimachiv elektrorukhomoho skladu. Zahalni tekhnichni umovy (HOST 32680-2014, IDT).
  27. EN 50318:2002. Primenenie na zheleznyh dorogah. Sistemy tokos'ema. Tekhnicheskie kriterii dlya ocenki vzaimodeystviya tokopriemnika i kontaktnoy podveski.
  28. Fedorchenko, I. M. (Ed.) (1985). Poroshkovaya metallurgiya. Materialy, tekhnologiya, svoystva, oblasti primeneniya: spravochnik. Kyiv: Naukova dumka, 442.
  29. Minieiev, O. S., Babiak, M. O., Minieiev, A. O. (2014). Pat. No. 90838. Kompozytsiya dlia vyhotovlennia strumoznimnoho elementa strumopryimacha elektrorukhomoho skladu. No. u201400462; declareted: 20.01.2014; published: 10.06.2014, Bul. No. 11.
  30. Minieiev, A. O., Babiak, M. O., Minieiev, O. S. (2014). Pat. No. 93116. Sposib podachi mastyla v zonu tertia mizh kontaktnym drotom ta strumoznimnym elementom. No. u201400457; declareted: 20.01.2014; published: 25.09.2014, Bul. No. 18.
  31. Babyak, N. (2018). Resource-saving technology for operating pantograph linings, taking into account their interaction with the contact wire. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 2, 32–37.
  32. Babyak, M., Gorobets, V., Artemchuk, V. (2016). Investigation of physical and mechanical properties of the pantographs linings used as current collecting elements of electric locomotive. Elektricheskie kontakty i elektrody. Seriya: Kompozicionnye, sloistye i gradientnye materialy i pokrytiya, 89–100.
  33. TsE-0023. Pravyla ulashtuvannia ta tekhnichnoho obsluhovuvannia kontaktnoi merezhi elektryfikovanykh zaliznyts (2008). Kyiv: TOV "Inpres", 208.

Downloads

Published

2018-12-19

How to Cite

Babyak, M., Horobets, V., Sychenko, V., & Horobets, Y. (2018). Comparative tests of contact elements at current collectors in order to comprehensively assess their operational performance. Eastern-European Journal of Enterprise Technologies, 6(12 (96), 13–21. https://doi.org/10.15587/1729-4061.2018.151751

Issue

Section

Materials Science