The use of heat circulator for flammability in mesoscale combustor

Authors

  • Achmad Fauzan Hery Soegiharto University of Muhammadiyah Malang Jalan Raya Tlogomas, 246, Malang, Indonesia, 65144 Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0003-4310-2931
  • I Nyoman Gede Wardana Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0003-3146-9517
  • Lilis Yuliati Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Mega Nur Sasongko Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia

DOI:

https://doi.org/10.15587/1729-4061.2019.155347

Keywords:

micro-combustor, flammability, heat recirculation, liquid fuel, micropower generator

Abstract

The mesoscale combustor is a part of the micropower electric generator. The function of the mesoscale combustor is to convert hydrocarbon to become thermal energy through combustion reaction. It is difficult to maintain the flame stability of a mesoscale combustor due to its millimetre-scale size.

This study aims to determine the performance and recognize mesoscale combustor phenomena that have stainless steel heat recirculators. This study is to test the combustion characteristics of liquid and gas fuels in meso-combustors which use heat recirculator. The heat circulator is made of stainless steel tube with an inner diameter of 3.5. The parameters observed were flammability limits, temperature distribution and flame visualization.

It is confirmed that the stainless steel heat recirculator, is useful for liquid fuel preheating and evaporating inside of mesoscale combustor. The flame of liquid fuels can be stabilized at an equivalence ratio of 0.9 to 1.25, and up to about 900 centigrade Celsius. Thus recommend for liquid fuel micropower generator. It is noted that when the heat recirculator is too close to the flame, excessive flame cooling occurs and causes the flame extinguished. The meso-combustor, which has no heat recirculator, and designed for gas fuel only, can stabilize flame at an equivalence ratio of 0.7 to 1.5. It is also confirmed that the inaccurate selection of the material of thermal recirculator risks reducing the flame stability. It is important to note that when the gas fuel exits the storage tube, there is an expansion and a decrease in temperature which can affect flammability limits

Author Biographies

Achmad Fauzan Hery Soegiharto, University of Muhammadiyah Malang Jalan Raya Tlogomas, 246, Malang, Indonesia, 65144 Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Lecturer

PhD student

I Nyoman Gede Wardana, Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

PhD, Professor

Department of Mechanical Engineering

Lilis Yuliati, Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

Mega Nur Sasongko, Universitas Brawijaya Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

References

  1. Chou, S. K., Yang, W. M., Chua, K. J., Li, J., Zhang, K. L. (2011). Development of micro power generators – A review. Applied Energy, 88 (1), 1–16. doi: https://doi.org/10.1016/j.apenergy.2010.07.010
  2. Fan, A., Zhang, H., Wan, J. (2017). Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body. Energy, 123, 252–259. doi: https://doi.org/10.1016/j.energy.2017.02.003
  3. Wierzbicki, T. A., Lee, I. C., Gupta, A. K. (2014). Performance of synthetic jet fuels in a meso-scale heat recirculating combustor. Applied Energy, 118, 41–47. doi: https://doi.org/10.1016/j.apenergy.2013.12.021
  4. Higuchi, K., Nakano, T., Takahashi, S. (2018). Development of portable power unit with catalytic micro-combustor. Journal of Physics: Conference Series, 1052, 012058. doi: https://doi.org/10.1088/1742-6596/1052/1/012058
  5. E, J., Zuo, W., Liu, H., Peng, Q. (2016). Field synergy analysis of the micro-cylindrical combustor with a step. Applied Thermal Engineering, 93, 83–89. doi: https://doi.org/10.1016/j.applthermaleng.2015.09.028
  6. Aravind, B., Raghuram, G. K. S., Kishore, V. R., Kumar, S. (2018). Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Conversion and Management, 156, 224–234. doi: https://doi.org/10.1016/j.enconman.2017.11.021
  7. Aravind, B., Khandelwal, B., Kumar, S. (2018). Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator. Applied Energy, 228, 1173–1181. doi: https://doi.org/10.1016/j.apenergy.2018.07.022
  8. Yang, W., Xiang, Y., Fan, A., Yao, H. (2017). Effect of the cavity depth on the combustion efficiency of lean H2/air flames in a micro combustor with dual cavities. International Journal of Hydrogen Energy, 42 (20), 14312–14320. doi: https://doi.org/10.1016/j.ijhydene.2017.03.235
  9. Wan, J., Zhao, H. (2017). Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels. Energy, 139, 366–379. doi: https://doi.org/10.1016/j.energy.2017.08.002
  10. Tang, A., Cai, T., Deng, J., Xu, Y., Pan, J. (2017). Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor. Energy Conversion and Management, 152, 65–71. doi: https://doi.org/10.1016/j.enconman.2017.09.011
  11. Nakamura, Y., Gao, J., Matsuoka, T. (2017). Progress in small-scale combustion. Journal of Thermal Science and Technology, 12 (1), JTST0001–JTST0001. doi: https://doi.org/10.1299/jtst.2017jtst0001
  12. Mustafa, K. F., Abdullah, S., Abdullah, M. Z., Sopian, K. (2017). A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable and Sustainable Energy Reviews, 71, 572–584. doi: https://doi.org/10.1016/j.rser.2016.12.085
  13. Kim, T. Y., Kim, H. K., Ku, J. W., Kwon, O. C. (2017). A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion. Applied Energy, 193, 174–181. doi: https://doi.org/10.1016/j.apenergy.2017.02.040
  14. Hery Soegiharto, A. F., Wardana, I. N. G., Yuliati, L., Nursasongko, M. (2017). The Role of Liquid Fuels Channel Configuration on the Combustion inside Cylindrical Mesoscale Combustor. Journal of Combustion, 2017, 1–9. doi: https://doi.org/10.1155/2017/3679679
  15. Gan, Y., Tong, Y., Ju, Y., Zhang, X., Li, H., Chen, X. (2017). Experimental study on electro-spraying and combustion characteristics in meso-scale combustors. Energy Conversion and Management, 131, 10–17. doi: https://doi.org/10.1016/j.enconman.2016.11.015
  16. Alipoor, A., Saidi, M. H. (2017). Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator. Applied Energy, 199, 382–399. doi: https://doi.org/10.1016/j.apenergy.2017.05.027
  17. Akhtar, S., Khan, M. N., Kurnia, J. C., Shamim, T. (2017). Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications. Applied Energy, 192, 134–145. doi: https://doi.org/10.1016/j.apenergy.2017.01.097
  18. Yang, W., Zhou, M., Deng, C., Huang, T., Zhou, J., Wang, Z. et. al. (2016). Experiments on n -heptane combustion with two types of catalyst layouts. Applied Thermal Engineering, 100, 325–332. doi: https://doi.org/10.1016/j.applthermaleng.2016.02.010
  19. Li, S., Pei, J., Liu, D., Bao, L., Li, J.-F., Wu, H., Li, L. (2016). Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering. Energy, 113, 35–43. doi: https://doi.org/10.1016/j.energy.2016.07.034
  20. Jiang, D., Yang, W., Tang, A. (2015). Development of a high-temperature and high-uniformity micro planar combustor for thermophotovoltaics application. Energy Conversion and Management, 103, 359–365. doi: https://doi.org/10.1016/j.enconman.2015.06.083
  21. Li, J., Huang, J., Yan, M., Zhao, D., Zhao, J., Wei, Z., Wang, N. (2014). Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science, 52, 47–58. doi: https://doi.org/10.1016/j.expthermflusci.2013.08.021
  22. Mikami, M., Maeda, Y., Matsui, K., Seo, T., Yuliati, L. (2013). Combustion of gaseous and liquid fuels in meso-scale tubes with wire mesh. Proceedings of the Combustion Institute, 34 (2), 3387–3394. doi: https://doi.org/10.1016/j.proci.2012.05.064
  23. Yuliati, L., Seo, T., Mikami, M. (2012). Liquid-fuel combustion in a narrow tube using an electrospray technique. Combustion and Flame, 159 (1), 462–464. doi: https://doi.org/10.1016/j.combustflame.2011.06.010
  24. Yang, W. M., Jiang, D. Y., Chou, S. K., Chua, K. J., Karthikeyan, K., An, H. (2012). Experimental study on micro modular combustor for micro-thermophotovoltaic system application. International Journal of Hydrogen Energy, 37 (12), 9576–9583. doi: https://doi.org/10.1016/j.ijhydene.2012.03.129
  25. Shirsat, V., Gupta, A. K. (2011). Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors. Applied Energy, 88 (12), 5069–5082. doi: https://doi.org/10.1016/j.apenergy.2011.07.019
  26. Chen, X., Li, J., Feng, M., Wang, N. (2018). Effects of external heating on flame stability in a micro porous combustor fuelled with heptane. Combustion Science and Technology, 191 (2), 311–324. doi: https://doi.org/10.1080/00102202.2018.1463220
  27. Giovannoni, V., Sharma, R. N., Raine, R. R. (2016). Premixed combustion of methane–air mixture stabilized over porous medium: A 2D numerical study. Chemical Engineering Science, 152, 591–605. doi: https://doi.org/10.1016/j.ces.2016.06.039
  28. Li, J., Wang, Y., Shi, J., Liu, X. (2015). Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium. Fuel, 145, 70–78. doi: https://doi.org/10.1016/j.fuel.2014.12.070
  29. Coutinho, J. E. A., de Lemos, M. J. S. (2012). Laminar flow with combustion in inert porous media. International Communications in Heat and Mass Transfer, 39 (7), 896–903. doi: https://doi.org/10.1016/j.icheatmasstransfer.2012.06.002
  30. Wang, G., Wang, F., Li, L., Zhang, G. (2013). A study of methanol steam reforming on distributed catalyst bed. International Journal of Hydrogen Energy, 38 (25), 10788–10794. doi: https://doi.org/10.1016/j.ijhydene.2013.02.061
  31. Bijjula, K., Vlachos, D. G. (2011). Catalytic ignition and autothermal combustion of JP-8 and its surrogates over a Pt/γ-Al2O3 catalyst. Proceedings of the Combustion Institute, 33 (2), 1801–1807. doi: https://doi.org/10.1016/j.proci.2010.05.008
  32. Li, Y.-H., Chen, G.-B., Hsu, H.-W., Chao, Y.-C. (2010). Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities. Chemical Engineering Journal, 160 (2), 715–722. doi: https://doi.org/10.1016/j.cej.2010.03.057
  33. Lee, M. J., Kim, N. I. (2010). Experiment on the effect of Pt-catalyst on the characteristics of a small heat-regenerative CH4–air premixed combustor. Applied Energy, 87 (11), 3409–3416. doi: https://doi.org/10.1016/j.apenergy.2010.04.033
  34. Wan, J., Zhao, H. (2018). Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels. Energy, 157, 448–459. doi: https://doi.org/10.1016/j.energy.2018.05.189
  35. Wan, J., Shang, C., Zhao, H. (2018). Dynamics of methane/air premixed flame in a mesoscale diverging combustor with/without a cylindrical flame holder. Fuel, 232, 659–665. doi: https://doi.org/10.1016/j.fuel.2018.06.026
  36. Wan, J., Shang, C., Zhao, H. (2018). Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel, 232, 591–599. doi: https://doi.org/10.1016/j.fuel.2018.06.027
  37. Wan, J., Fan, A., Yao, H. (2016). Effect of the length of a plate flame holder on flame blowout limit in a micro-combustor with preheating channels. Combustion and Flame, 170, 53–62. doi: https://doi.org/10.1016/j.combustflame.2016.05.015
  38. Wan, J., Fan, A. (2015). Effect of solid material on the blow-off limit of CH 4 /air flames in a micro combustor with a plate flame holder and preheating channels. Energy Conversion and Management, 101, 552–560. doi: https://doi.org/10.1016/j.enconman.2015.06.010
  39. Li, J., Huang, J., Chen, X., Zhao, D., Shi, B., Wei, Z., Wang, N. (2016). Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 109, 697–708. doi: https://doi.org/10.1016/j.applthermaleng.2016.08.085
  40. Yan, Y., Pan, W., Zhang, L., Tang, W., Chen, Y., Li, L. (2015). Numerical study of the geometrical parameters on CH4/air premixed combustion in heat recirculation micro-combustor. Fuel, 159, 45–51. doi: https://doi.org/10.1016/j.fuel.2015.06.069
  41. Lee, M. J., Cho, S. M., Choi, B. I., Kim, N. I. (2010). Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type. Applied Thermal Engineering, 30 (14-15), 2227–2235. doi: https://doi.org/10.1016/j.applthermaleng.2010.06.003
  42. Scarpa, A., Pirone, R., Russo, G., Vlachos, D. G. (2009). Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor. Combustion and Flame, 156 (5), 947–953. doi: https://doi.org/10.1016/j.combustflame.2008.11.005
  43. Chen, W.-H., Cheng, Y.-C., Hung, C.-I. (2012). Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production. International Journal of Hydrogen Energy, 37 (8), 6608–6619. doi: https://doi.org/10.1016/j.ijhydene.2012.01.054
  44. Zhong, B.-J., Wang, J.-H. (2010). Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combustion and Flame, 157 (12), 2222–2229. doi: https://doi.org/10.1016/j.combustflame.2010.07.014
  45. Il Kim, N., Aizumi, S., Yokomori, T., Kato, S., Fujimori, T., Maruta, K. (2007). Development and scale effects of small Swiss-roll combustors. Proceedings of the Combustion Institute, 31 (2), 3243–3250. doi: https://doi.org/10.1016/j.proci.2006.08.077
  46. Kim, N., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., Maruta, K. (2005). Flame stabilization and emission of small Swiss-roll combustors as heaters. Combustion and Flame, 141 (3), 229–240. doi: https://doi.org/10.1016/j.combustflame.2005.01.006
  47. Munir, F. A., Mikami, M. (2015). A numerical study of propane-air combustion in meso-scale tube combustors with concentric rings. Journal of Thermal Science and Technology, 10 (1), JTST0008–JTST0008. doi: https://doi.org/10.1299/jtst.2015jtst0008
  48. Yang, W. M., Chua, K. J., Pan, J. F., Jiang, D. Y., An, H. (2014). Development of micro-thermophotovoltaic power generator with heat recuperation. Energy Conversion and Management, 78, 81–87. doi: https://doi.org/10.1016/j.enconman.2013.10.040
  49. Munir, F. A., Hatakeda, N., Seo, T., Mikami, M. (2014). Improvement of Combustion Stability in Narrow tubes with wire Mesh. ISTP_Fudhail_Rev4_ISTP final.
  50. Taywade, U. W., Deshpande, A. A., Kumar, S. (2013). Thermal performance of a micro combustor with heat recirculation. Fuel Processing Technology, 109, 179–188. doi: https://doi.org/10.1016/j.fuproc.2012.11.002
  51. Li, Y.-H., Chen, G.-B., Cheng, T.-S., Yeh, Y.-L., Chao, Y.-C. (2013). Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics. Energy, 61, 150–157. doi: https://doi.org/10.1016/j.energy.2013.09.003
  52. Jiang, D., Yang, W., Chua, K. J. (2013). Entropy generation analysis of H2/air premixed flame in micro-combustors with heat recuperation. Chemical Engineering Science, 98, 265–272. doi: https://doi.org/10.1016/j.ces.2013.05.038
  53. Deshpande, A. A Kumar, S. (2013). On the formation of spinning flames and combustion completeness for premixed fuel–air mixtures in stepped tube microcombustors. Applied Thermal Engineering, 51 (1-2), 91–101. doi: https://doi.org/10.1016/j.applthermaleng.2012.09.013
  54. Bai, B., Chen, Z., Zhang, H., Chen, S. (2013). Flame propagation in a tube with wall quenching of radicals. Combustion and Flame, 160 (12), 2810–2819. doi: https://doi.org/10.1016/j.combustflame.2013.07.008
  55. DuttaRoy, R., Chakravarthy, S. R., Sen, A. K. (2018). Experimental investigation of flame propagation and stabilization in a meso-combustor with sudden expansion. Experimental Thermal and Fluid Science, 90, 299–309. doi: https://doi.org/10.1016/j.expthermflusci.2017.09.008

Downloads

Published

2019-04-05

How to Cite

Hery Soegiharto, A. F., Wardana, I. N. G., Yuliati, L., & Nur Sasongko, M. (2019). The use of heat circulator for flammability in mesoscale combustor. Eastern-European Journal of Enterprise Technologies, 2(8 (98), 46–56. https://doi.org/10.15587/1729-4061.2019.155347

Issue

Section

Energy-saving technologies and equipment