Analysis and comparison of mechanical and chemical properties of protective coatings obtained at different combinations of "target – substrate"

Authors

  • Larisa Vasetskaya Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University Volodymyrska str., 31, Rubizhne, Ukraine, 93009, Ukraine https://orcid.org/0000-0002-4873-8835

DOI:

https://doi.org/10.15587/1729-4061.2019.161292

Keywords:

ion implantation, protective coating, steel substrate, wear resistance, service life

Abstract

The effect of different combinations of the "target-substrate" on the mechanical and chemical properties of protective coatings obtained by ion-plasma treatment has been studied. The widespread use of ion-plasma technology for strengthening products is constrained by the imperfection of equipment, the lack of sufficient theoretical and experimental research for control and regulates the physical properties and technical parameters of the process. Eliminating these problems is possible based on further research and new solutions in the field of strengthening technology. For research in this direction, an experimental ion-plasma setup was used with software for regulating and controlling energy, dose, concentration of implanted ions, working gas pressure, coating thickness. The effective technique to improve the quality of the steel tool working surface has been applied, which made it possible to carry out mass transfer of alloying elements by ion-plasma surface treatment. Due to the controlled low-temperature two-stage ionization of nitrogen atoms and alloying elements in the reaction volume, the iron crystal lattice was saturated with implanted ions and carbonitride phases of the alloying elements, which are responsible for increasing hardness, wear and corrosion resistance. The optimal parameters of the implantation process (Us=25 kV, Is=35 mA, D=4.01·1,017 cm-2 per hour) were revealed, which made it possible to achieve an improvement in the surface properties of structural carbon, structural alloyed, tool steels. The relationship has been established between the service life of the products and the surface properties obtained after implantation. An increase in the service life of products with TiN coating (1.5–3 times), CrN (1.9–6 times) and ZrN (3–12 times) in comparison with uncoated products is shown. An analysis was conducted and the most effective variants of combinations "target ‒ steel substrate" for practical application of protective coatings were determined. The use of relatively inexpensive steel products with enhanced strength characteristics has economic benefits for the manufacturer and is one of the trends in modern production.

Author Biography

Larisa Vasetskaya, Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University Volodymyrska str., 31, Rubizhne, Ukraine, 93009

PhD

Department of Machines and Apparatus of Chemical Production

References

  1. Dragunov, Yu. G. et. al.; Dragunov, Yu. G., Zubchenko, A. S. (Eds.) (2014). Marochnik staley i splavov. Moscow, 1216.
  2. Ba, Z., Dong, Q., Yin, J., Wang, J., Ma, B., Zhang, X.Wang, Z. (2017). Surface properties of Mg-Gd-Zn-Zr alloy modified by Sn ion implantation. Materials Letters, 190, 90–94. doi: https://doi.org/10.1016/j.matlet.2016.12.038
  3. Schibicheski Kurelo, B. C. E., de Oliveira, W. R., Serbena, F. C., de Souza, G. B. (2018). Surface mechanics and wear resistance of supermartensitic stainless steel nitrided by plasma immersion ion implantation. Surface and Coatings Technology, 353, 199–209. doi: https://doi.org/10.1016/j.surfcoat.2018.08.079
  4. Borisov, A. M., Krit, B. L., Kulikauskas, V. S., Semenova, N. L., Suminov, I. V., Tihonov, S. A. (2014). Issledovanie uprochneniya poverhnosti staley pri kombinirovannom ionnom i lazernom vozdeystvii. Izvestiya Tomskogo politekhnicheskogo universiteta, 324 (2), 137–142.
  5. Bystrov, S. G., Pepelyaev, N. B., Reshetnikov, S. M., Kolotov, A. A., Bayankin, V. Ya. (2017). Vliyanie implantacii ionov argona na fiziko-himicheskoe stroenie i korrozionnoe povedenie vysokohromistoy stali. Himicheskaya fizika i mezoskopiya, 19 (2), 250–258.
  6. Pogrebnyak, A. D., Kaverina, A. Sh., Kylyshkanov, M. K. (2014). Electrolytic plasma processing for plating coatings and treating metals and alloys. Protection of Metals and Physical Chemistry of Surfaces, 50 (1), 72–87. doi: https://doi.org/10.1134/s2070205114010092
  7. Proskuryakov, V. I., Rodionov, I. V., Koshuro, V. A. (2019). Issledovanie izmeneniya mikrotverdosti poverhnosti cirkoniya posle lazernoy modificiruyushchey obrabotki. Zhurnal tekhnicheskoy fiziki, 45 (6), 20–22. doi: https://doi.org/10.21883/pjtf.2019.06.47493.17598
  8. Semendeeva, O. V., Uchevatkina, N. V., Ovchinnikov, V. V. (2011). Analysis of implantation features for titanic alloys, 2, 36–47.
  9. Yakupov, N. M., Giniyatullin, R. R. (2011). Corrosion deterioration of the thin-walled elements processed by a method of ionic implantation. Stroitel'naya mekhanika inzhenernyh konstrukciy i sooruzheniy, 3, 74–79.
  10. Wang, F., Zhou, C., Zheng, L., Zhang, H. (2017). Corrosion resistance of carbon ion-implanted M50NiL aerospace bearing steel. Progress in Natural Science: Materials International, 27 (5), 615–621. doi: https://doi.org/10.1016/j.pnsc.2017.07.003
  11. Vlcak, P., Fojt, J., Weiss, Z., Kopeček, J., Perina, V. (2019). The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surface and Coatings Technology, 358, 144–152. doi: https://doi.org/10.1016/j.surfcoat.2018.11.004
  12. Bratushka, S. N., Sokolov, S. V. (2012). Vliyanie plazmennoy obrabotki i ionnoy implantacii na svoystva i strukturno-fazovye izmeneniya v titanovyh splavah. Fizicheskaya inzheneriya poverhnosti, 10 (2), 138–161.
  13. Singh, O., Malik, H. K., Dahiya, R. P., Kulriya, P. K. (2017). Tuning of mechanical and structural properties of 20 MC 5 steel using N ion implantation and subsequent annealing. Journal of Alloys and Compounds, 710, 253–259. doi: https://doi.org/10.1016/j.jallcom.2017.03.097
  14. Jie, J., Shao, T. (2017). Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy. Materials, 10 (10), 1204. doi: https://doi.org/10.3390/ma10101204
  15. Budzynski, P., Youssef, A. A., Sielanko, J. (2006). Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear, 261 (11-12), 1271–1276. doi: https://doi.org/10.1016/j.wear.2006.03.008
  16. Sepitka, J., Vlcak, P., Horazdovsky, T., Perina, V. (2016). Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation. World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering, 10 (12), 1451–1454.
  17. Carroll, M. P., Stephenson, K., Findley, K. O. (2009). Characterization of high energy ion implantation into Ti–6Al–4V. Journal of Nuclear Materials, 389 (2), 248–253. doi: https://doi.org/10.1016/j.jnucmat.2009.02.008
  18. Budzynski, P., Youssef, A. A., Surowiec, Z., Paluch, R. (2007). Nitrogen ion implantation for improvement of the mechanical surface properties of aluminum. Vacuum, 81 (10), 1154–1158. doi: https://doi.org/10.1016/j.vacuum.2007.01.072
  19. Vlcak, P., Sepitka, J., Drahokoupil, J., Horazdovsky, T., Tolde, Z. (2016). Structural Characterization and Mechanical Properties of a Titanium Nitride-Based Nanolayer Prepared by Nitrogen Ion Implantation on a Titanium Alloy. Journal of Nanomaterials, 2016, 1–7. doi: https://doi.org/10.1155/2016/9214204
  20. Tian, X. B., Zeng, Z. M., Tang, B. Y., Fu, K. Y., Kwok, D. T. K., Chu, P. K. (2000). Properties of titanium nitride fabricated on stainless steel by plasma-based ion implantation/deposition. Materials Science and Engineering: A, 282 (1-2), 164–169. doi: https://doi.org/10.1016/s0921-5093(99)00756-x
  21. Gabovich, M. D. (1972). Fizika i tekhnika plazmennyh istochnikov ionov. Moscow: Atomizdat, 304.
  22. Vil'yams, Dzh. S., Pout, Dzh. M. (Eds.) (1988). Ionnaya implantaciya i luchevye tekhnologii. Kyiv: Naukova dumka, 360.
  23. Pogrebnyak, A. D., Bratushka, S. N., Malikov, L. V., Levintant, N., Erdybaeva, N. K., Plotnikov, S. V., Gricenko, B. P. (2009). Vliyanie vysokih doz ionov N+ , N+ + Ni+ , Mo+ + W+ na fiziko-mekhanicheskie svoystva TiNi. Zhurnal tekhnicheskoy fiziki, 79 (5), 65–72.
  24. Belous, V. A., Nosov, G. I., Azarenkov, N. A. (2010). O vliyanii oblucheniya ionami Ar+ na korrozionnuyu stoykost' metallov i splavov. Fizychna inzheneriya poverkhni, 8 (2), 161–168.
  25. Sergeeva, M. H., Kohanovskiy, V. A. (2008) Surface nano level structural modification. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 8 (2), 192–197.
  26. Dziuba, V. L., Kliakhina, N. P., Vasetska, L. O. (2010). Pat. No. 56823 UA. Method for nitride film producing. No. u201009062; declareted: 19.07.2010; published: 25.01.2011, Bul. No. 2.
  27. Topolyanskiy, P. A., Ermakov, S. A., Sosnin, N. A. (2005). Tverdost' tonkoplenochnogo pokrytiya, nanosimogo metodom finishnogo plazmennogo uprochneniya. Tekhnologii remonta, vosstanovleniya i uprochneniya detaley mashin, mekhanizmov, oborudovaniya, instrumenta i tekhnologicheskoy osnastki: tezisy dokl. 7-oy mezhdunar. prakt. konf.-vystavki. Sankt-Peterburg, 274–298.
  28. Belous, V. A., Lapshin, V. I., Marchenko, I. G., Neklyudov, I. M. (2003). Radiacionnye tekhnologi modifikacii poverhnosti. I. Ionnaya ochistka i vysokodozovaya implantaciya. Fizicheskaya inzheneriya poverhnosti, 1 (1), 40–48.
  29. Gricenko, B. P., Kashin, O. A. (2004). Vliyanie vysokodoznoy ionnoy implantacii i akusticheskih kolebaniy v tribosisteme na deformacionnoe povedenie i iznosostoykost' stali 45. Izvestiya Tomskogo politekhnicheskogo universiteta, 307 (4), 121–125.

Downloads

Published

2019-04-02

How to Cite

Vasetskaya, L. (2019). Analysis and comparison of mechanical and chemical properties of protective coatings obtained at different combinations of "target – substrate". Eastern-European Journal of Enterprise Technologies, 2(12 (98), 19–27. https://doi.org/10.15587/1729-4061.2019.161292

Issue

Section

Materials Science