DOI: https://doi.org/10.15587/1729-4061.2019.169461

Anionic carbonate activation of layered (α+β) nickel hydroxide

Vadym Kovalenko, Valerii Kotok

Abstract


Nickel hydroxide is widely used as the active material in supercapacitors. Samples of Ni(OH)2 with the (α+β) layered structure, synthesized in the slit-diaphragm electrolyzer, are the most active. The possibility of carbonate activation of layered (α+β) Ni(OH)2 was studied by the synthesis of samples in the slit-diaphragm electrolyzer using a mixture of sodium hydroxide and sodium carbonate as the electrolyte. The molar part of sodium carbonate in the NaOH+Na2CO3 mixture was controlled by acid titration in the presence of two indicators. The synthesis of nickel hydroxide samples was conducted at the molar part of carbonate from 0.16 (NaOH without the additional introduction of carbonate) to 0.83. The crystal structure of the samples was studied by means of X-ray diffraction analysis, electrochemical characteristic – by means of cyclic voltammetry and galvanostatic charge-discharge cycling in the accumulator regime. By means of XRD analysis, it was found that upon increasing the molar part of carbonate in the anolyte to 0.49, the crystallinity of the monophase layered (α+β) structure increases. It was found that a further increase of the carbonate part results in a more amorphous structure due to a partial breakdown of the hydroxide lattice with the formation of basic salts and formation of the bi-phase system. This conclusion is supported by cyclic voltammetry and discharge curves. The study of the electrochemical characteristics revealed, that for the molar part of carbonate below 0.39, carbonate activation of hydroxide occurs resulting in an improved specific capacity. Increasing the carbonate part to 0.49 results in a lower specific capacity, and even further increase results in the breakdown of hydroxide into basic salts and a significant drop in electrochemical activity. Thus, it was found, that to achieve the maximum activating effect, the optimal molar part of sodium carbonate (in a mixture with sodium hydroxide) should be about 40 %. The specific capacity of nickel hydroxide under this optimal condition is 234 mA·h/g, and this sample is found to be susceptible to activation with cobalt compounds, which further improved capacity to 254 mA·h/g.


Keywords


carbonate; activation; nickel hydroxide; layered (α+β) structure; alkaline accumulator; slit-diaphragm electrolyzer.

References


Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792

Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030

Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522

Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z

Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2010). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1

Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2009). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0

Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7

Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2569–2603. doi: https://doi.org/10.1007/s11771-014-2218-7

Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e

Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.

Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223

Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049

Huang, W., Li, Z. L., Peng, Y. D., Chen, S., Zheng, J. F., Niu, Z. J. (2005). Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. Journal of Solid State Electrochemistry, 9 (5), 284–289. doi: https://doi.org/10.1007/s10008-004-0599-5

Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of the Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes

Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., Ouyang, R. (2014). Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics, 53, 428–439. doi: https://doi.org/10.1016/j.bios.2013.10.008

Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852

Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2006). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5

Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480

Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239

Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050

Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c

Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041

Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: https://doi.org/10.1149/1.1403731

Zhang, Z., Zhu, Y., Bao, J., Zhou, Z., Lin, X., Zheng, H. (2012). Structural and Electrochemical Performance of Additives-doped α-Ni(OH)2. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (3), 538–541. doi: https://doi.org/10.1007/s11595-012-0500-9

Sugimoto, A., Ishida, S., Kenzo, H. (1999). Preparation and Characterization of Ni/Al-Layered Double Hydroxide. Journal of The Electrochemical Society, 146 (4), 1251–1255. doi: https://doi.org/10.1149/1.1391754

Zhen, F. Z., Quan, J. W., Min, Y. L., Peng, Z., Jun, J. L. (2004). A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide. Metals and Materials International, 10 (5), 485–488. doi: https://doi.org/10.1007/bf03027353

Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947

Caravaggio, G. A., Detellier, C., Wronski, Z. (2001). Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry, 11 (3), 912–921. doi: https://doi.org/10.1039/b004542j

Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015

Zhao, Y. L., Wang, J. M., Chen, H., Pan, T., Zhang, J. Q., Cao, C. N. (2004). Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. International Journal of Hydrogen Energy, 29 (8), 889–896. doi: https://doi.org/10.1016/j.ijhydene.2003.10.006

Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004

Faour, A., Mousty, C., Prevot, V., Devouard, B., De Roy, A., Bordet, P. et. al. (2012). Correlation among Structure, Microstructure, and Electrochemical Properties of NiAl–CO3 Layered Double Hydroxide Thin Films. The Journal of Physical Chemistry C, 116 (29), 15646–15659. doi: https://doi.org/10.1021/jp300780w

Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni–Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465

Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813

Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699

Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390

Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172

Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548

Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2

Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y

Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081

Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886

Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770

Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764

Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0

Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559

Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738

Volynskii, V. V., Volynskii, V. A., Merzlova, E. V., Popova, S. S. (1999). On the mechanism of joint effect of zinc and cobalt compounds on parameters of nickel-cadmium batteries. Russian Journal of Applied Chemistry, 72 (6), 1008–1011.

Ezhov, B. B., Malandin, O. G. (1991). Structure modification and change of electrochemical activity of nickel hydroxides. Journal of The Electrochemical Society, 138 (4), 885–889. doi: https://doi.org/10.1149/1.2085741

Ezhov, B. B., Rozovskiy, V. M. (1991). Anions as activatore for nickel hydroxides electrode. 42th Meet. of the Int. Soc. Electrochem. Montreux, Abstract No. 7-026.

Ezhov, B. B., Rozovskiy, V. M. (1991). Anionic activation of the nickel hydroxide electrode used in alkaline storage batteries. 33rd IUPAC Congress. Budapest, Abstract No. 3030.

Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472

Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810


GOST Style Citations


Nickel hydroxides and related materials: a review of their structures, synthesis and properties / Hall D. S., Lockwood D. J., Bock C., MacDougall B. R. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. Vol. 471, Issue 2174. P. 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792 

Vidotti M., Torresi R., Torresi S. I. C. de. Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries // Química Nova. 2010. Vol. 33, Issue 10. P. 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030 

Chen J. Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries // Journal of The Electrochemical Society. 1999. Vol. 146, Issue 10. P. 3606. doi: https://doi.org/10.1149/1.1392522 

Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries / Sun Y.-K., Lee D.-J., Lee Y. J., Chen Z., Myung S.-T. // ACS Applied Materials & Interfaces. 2013. Vol. 5, Issue 21. P. 11434–11440. doi: https://doi.org/10.1021/am403684z 

Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon / Lang J.-W., Kong L.-B., Liu M., Luo Y.-C., Kang L. // Journal of Solid State Electrochemistry. 2010. Vol. 14, Issue 8. P. 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1 

A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors / Lang J.-W., Kong L.-B., Wu W.-J., Liu M., Luo Y.-C., Kang L. // Journal of Solid State Electrochemistry. 2009. Vol. 13, Issue 2. P. 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0 

Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors / Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. // Journal of Solid State Electrochemistry. 2014. Vol. 18, Issue 6. P. 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7 

Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route / Zheng C., Liu X., Chen Z., Wu Z., Fang D. // Journal of Central South University. 2014. Vol. 21, Issue 7. P. 2569–2603. doi: https://doi.org/10.1007/s11771-014-2218-7 

Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties / Wang B., Williams G. R., Chang Z., Jiang M., Liu J., Lei X., Sun X. // ACS Applied Materials & Interfaces. 2014. Vol. 6, Issue 18. P. 16304–16311. doi: https://doi.org/10.1021/am504530e 

Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839 

Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis / Kotok V. A., Kovalenko V. L., Solovov V. A., Kovalenko P. V., Ananchenko B. A. // ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, Issue 9. P. 3076–3086.

Kotok V., Kovalenko V. A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 12 (95). P. 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223 

Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium / Wang Y., Zhang D., Peng W., Liu L., Li M. // Electrochimica Acta. 2011. Vol. 56, Issue 16. P. 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049 

Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode / Huang W., Li Z. L., Peng Y. D., Chen S., Zheng J. F., Niu Z. J. // Journal of Solid State Electrochemistry. 2005. Vol. 9, Issue 5. P. 284–289. doi: https://doi.org/10.1007/s10008-004-0599-5 

Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose / Fan Y., Yang Z., Cao X., Liu P., Chen S., Cao Z. // Journal of the Electrochemical Society. 2014. Vol. 161, Issue 10. P. B201–B206. doi: https://doi.org/10.1149/2.0251410jes 

Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules / Miao Y., Ouyang L., Zhou S., Xu L., Yang Z., Xiao M., Ouyang R. // Biosensors and Bioelectronics. 2014. Vol. 53. P. 428–439. doi: https://doi.org/10.1016/j.bios.2013.10.008 

Ramesh T. N., Kamath P. V., Shivakumara C. Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode // Journal of The Electrochemical Society. 2005. Vol. 152, Issue 4. P. A806. doi: https://doi.org/10.1149/1.1865852 

Zhao Y., Zhu Z., Zhuang Q.-K. The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior // Journal of Solid State Electrochemistry. 2006. Vol. 10, Issue 11. P. 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5 

Jayashree R. S., Kamath P. V., Subbanna G. N. The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide // Journal of The Electrochemical Society. 2000. Vol. 147, Issue 6. P. 2029. doi: https://doi.org/10.1149/1.1393480 

Jayashree R. S., Kamath P. V. Factors governing the electrochemical synthesis of α-nickel (II) hydroxide // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 4. P. 449–454. doi: https://doi.org/10.1023/a:1003493711239

Ramesh T. N., Kamath P. V. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder // Journal of Power Sources. 2006. Vol. 156, Issue 2. P. 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050 

Rajamathi M., Vishnu Kamath P., Seshadri R. Polymorphism in nickel hydroxide: role of interstratification // Journal of Materials Chemistry. 2000. Vol. 10, Issue 2. P. 503–506. doi: https://doi.org/10.1039/a905651c 

Structural transformation and its effects on the electrochemical performances of a layered double hydroxide / Hu M., Yang Z., Lei L., Sun Y. // Journal of Power Sources. 2011. Vol. 196, Issue 3. P. 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041 

Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes / Córdoba de Torresi S. I., Provazi K., Malta M., Torresi R. M. // Journal of The Electrochemical Society. 2001. Vol. 148, Issue 10. P. A1179–A1184. doi: https://doi.org/10.1149/1.1403731 

Structural and Electrochemical Performance of Additives-doped α-Ni(OH)2 / Zhang Z., Zhu Y., Bao J., Zhou Z., Lin X., Zheng H. // Journal of Wuhan University of Technology-Mater. Sci. Ed. 2012. Vol. 27, Issue 3. P. 538–541. doi: https://doi.org/10.1007/s11595-012-0500-9 

Sugimoto A., Ishida S., Kenzo H. Preparation and Characterization of Ni/Al-Layered Double Hydroxide // Journal of The Electrochemical Society. 1999. Vol. 146, Issue 4. P. 1251–1255. doi: https://doi.org/10.1149/1.1391754 

A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide / Zhen F. Z., Quan J. W., Min Y. L., Peng Z., Jun J. L. // Metals and Materials International. 2004. Vol. 10, Issue 5. P. 485–488. doi: https://doi.org/10.1007/bf03027353 

Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide / Liu B., Wang X. Y., Yuan H. T., Zhang Y. S., Song D. Y., Zhou Z. X. // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 7. P. 853–858. doi: https://doi.org/10.1023/a:1003537900947

Caravaggio G. A., Detellier C., Wronski Z. Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides // Journal of Materials Chemistry. 2001. Vol. 11, Issue 3. P. 912–921. doi: https://doi.org/10.1039/b004542j 

Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes / Li Y. W., Yao J. H., Liu C. J., Zhao W. M., Deng W. X., Zhong S. K. // International Journal of Hydrogen Energy. 2010. Vol. 35, Issue 6. P. 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015 

Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea / Zhao Y. L., Wang J. M., Chen H., Pan T., Zhang J. Q., Cao C. N. // International Journal of Hydrogen Energy. 2004. Vol. 29, Issue 8. P. 889–896. doi: https://doi.org/10.1016/j.ijhydene.2003.10.006 

The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials / Lei L., Hu M., Gao X., Sun Y. // Electrochimica Acta. 2008. Vol. 54, Issue 2. P. 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004 

Correlation among Structure, Microstructure, and Electrochemical Properties of NiAl–CO3 Layered Double Hydroxide Thin Films / Faour A., Mousty C., Prevot V., Devouard B., De Roy A., Bordet P. et. al. // The Journal of Physical Chemistry C. 2012. Vol. 116, Issue 29. P. 15646–15659. doi: https://doi.org/10.1021/jp300780w 

Kotok V., Kovalenko V., Vlasov S. Investigation of Ni–Al hydroxide with silver addition as an active substance of alkaline batteries // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 6 (93). P. 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465 

Kovalenko V., Kotok V. Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 6 (88). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813 

Kovalenko V., Kotok V. Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6 (86). P. 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699 

Kovalenko V., Kotok V. Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390 

A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application / Li J., Luo F., Tian X., Lei Y., Yuan H., Xiao D. // Journal of Power Sources. 2013. Vol. 243. P. 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172 

Kovalenko V., Kotok V. Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 12 (93). P. 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548 

Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications / Kovalenko V. L., Kotok V. A., Sykchin A. A., Mudryi I. A., Ananchenko B. A., Burkov A. A. et. al. // Journal of Solid State Electrochemistry. 2016. Vol. 21, Issue 3. P. 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2 

Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3− / Miao C., Zhu Y., Zhao T., Jian X., Li W. // Ionics. 2015. Vol. 21, Issue 12. P. 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y 

Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide / Li Y., Yao J., Zhu Y., Zou Z., Wang H. // Journal of Power Sources. 2012. Vol. 203. P. 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081 

Kovalenko V., Kotok V. Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2 // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 6 (92). P. 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886 

Kotok V., Kovalenko V., Malyshev V. Comparison of oxygen evolution parameters on different types of nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770 

Kotok V., Kovalenko V. Definition of the aging process parameters for nickel hydroxide in the alkaline medium // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 12 (92). P. 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764 

Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers / Burmistr M. V., Boiko V. S., Lipko E. O., Gerasimenko K. O., Gomza Y. P., Vesnin R. L. et. al. // Mechanics of Composite Materials. 2014. Vol. 50, Issue 2. P. 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0 

Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis / Vlasova E., Kovalenko V., Kotok V., Vlasov S. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 5 (83). P. 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559 

Kovalenko V., Kotok V. Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1, Issue 6 (97). P. 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738 

On the mechanism of joint effect of zinc and cobalt compounds on parameters of nickel-cadmium batteries / Volynskii V. V., Volynskii V. A., Merzlova E. V., Popova S. S. // Russian Journal of Applied Chemistry. 1999. Vol. 72, Issue 6. P. 1008–1011.

Ezhov B. B., Malandin O. G. Structure modification and change of electrochemical activity of nickel hydroxides // Journal of The Electrochemical Society. 1991. Vol. 138, Issue 4. P. 885–889. doi: https://doi.org/10.1149/1.2085741 

Ezhov B. B., Rozovskiy V. M. Anions as activatore for nickel hydroxides electrode // 42th Meet. of the Int. Soc. Electrochem. Montreux, 1991. Abstract No. 7-026.

Ezhov B. B., Rozovskiy V. M. Anionic activation of the nickel hydroxide electrode used in alkaline storage batteries // 33rd IUPAC Congress. Budapest, 1991. Abstract No. 3030.

Kovalenko V., Kotok V., Kovalenko I. Activation of the nickel foam as a current collector for application in supercapacitors // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 12 (93). P. 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472 

Kotok V., Kovalenko V. Optimization of nickel hydroxide electrode of the hybrid supercapacitor // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810 







Copyright (c) 2019 Vadym Kovalenko, Valerii Kotok

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061