Research of a microwave radiometer for monitoring of internal temperature of biological tissues

Sergey G. Vesnin, Mikhail Sedankin, Vitaly Leushin, Victor Skuratov, Igor Nelin, Anastasiia Konovalova


Currently, there is growing interest among specialists in the use of non-invasive dose-free technologies for diagnosis and monitoring treatment of various diseases. Microwave radiometry enables non-invasive detection of thermal abnormalities in internal tissues of the human body. The current level of development of the method of microwave radiometry makes it possible to non-invasively detect malignant neoplasms at early stages according to characteristics of the person's own radiothermal fields. For a wider implementation of the method, it is necessary to overcome a series of scientific and technical barriers that impede its development. First of all, it is necessary to ensure miniaturization of the equipment used.

An analytical review of the current state of development in the field of medical radiometers has been performed. Miniaturization of equipment is an important area for studies. It was shown that application of the proposed scheme for designing a null balance radiometer with a sliding scheme of reflection compensation with two matched RF loads will enable creation of a miniature highly stable radiometer. The measurement error of this device does not depend on the ambient temperature, intrinsic temperature of the device and impedance of the studied area of the body. The device calibration procedure was considered and noise signal calculations were performed. Results of experimental verification of correctness of choice of the way of designing the miniature radiometer circuit were presented. Introduction of thermal compensation has made it possible to reduce measurement error associated with the device heating to 0.2 °C when intrinsic temperature of the radiometer changed by 20 °C. It was shown that a radiometer operating in the frequency band 3.4–4.2 GHz can be used to detect various diseases and monitor internal temperature of tissues during treatment. With introduction of autonomous power supply and wireless communication with a smartphone, the miniature radiometer can be used as a wearable device to monitor temperature of internal tissues in everyday human life.


microwave radiometry; temperature monitoring; medical radiometer; brightness temperature; medical robotics; printed antenna


Vesnin, S., Turnbull, A. K., Dixon, J. M., Goryanin, I. (2017). Modern Microwave Thermometry for Breast Cancer. Journal of Molecular Imaging & Dynamics, 7 (2). doi:

Sedankin, M. K., Leushin, V. Y., Gudkov, A. G., Vesnin, S. G., Sidorov, I. A., Agasieva, S. V., Markin, A. V. (2018). Mathematical Simulation of Heat Transfer Processes in a Breast with a Malignant Tumor. Biomedical Engineering, 52 (3), 190–194. doi:

Cheboksarov, D. V., Butrov, A, V., Shevelev, O. A., Amcheslavsky, V. G., Pulina, N. N., Buntina, M. A., Sokolov, I. M. (2015). Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiia i reanimatologiia, 60 (1), 66–69.

Toutouzas, K., Benetos, G., Koutagiar, I., Barampoutis, N., Mitropoulou, F., Davlouros, P. et. al. (2017). Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis, 262, 25–30. doi:

Drakopoulou, M., Moldovan, C., Toutouzas, K., Tousoulis, D. (2018). The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Current Opinion in Pharmacology, 39, 99–104. doi:

Zampeli, E., Raftakis, I., Michelongona, A., Nikolaou, C., Elezoglou, A., Toutouzas, K. et. al. (2013). Detection of Subclinical Synovial Inflammation by Microwave Radiometry. PLoS ONE, 8 (5), e64606. doi:

Crandall, J. P., O, J. H., Gajwani, P., Leal, J. P., Mawhinney, D. D., Sterzer, F., Wahl, R. L. (2018). Measurement of Brown Adipose Tissue Activity Using Microwave Radiometry and18F-FDG PET/CT. Journal of Nuclear Medicine, 59 (8), 1243–1248. doi:

Kublanov, V. S., Borisov, V. I. (2017). Biophysical Evaluation of Microwave Radiation for Functional Research of the Human Brain. IFMBE Proceedings, 1045–1048. doi:

Groumpas, E., Koutsoupidou, M., Karanasiou, I., Papageorgiou, C., Uzunoglu, N. (2019). Real-time Passive Brain Monitoring System Using Near-Field Microwave Radiometry. IEEE Transactions on Biomedical Engineering.

Tarakanov, A. V., Efremov, V. V., Tarakanov, A. A. (2016). Perspectives of microwave radiometry application at dorsopathy in hospital department of the emergency medical care. Emergency medical care, 1, 64–68.

Ravi, V. M., Sharma, A. K., Arunachalam, K. (2019). Pre‐Clinical Testing of Microwave Radiometer and a Pilot Study on the Screening Inflammation of Knee Joints. Bioelectromagnetics, 40 (6), 402–411. doi:

Zamechnik, T. V., Larin, S. I., Losev, A. G. (2015). Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrashcheniya nizhnikh konechnostey [Combined Radio Thermometry as a Method of Investigating of Venous Circulation of the Lower Limbs]. Volgograd: Izd-vo VolgGMU, 252.

Zinovyev, S. V. (2018). New Medical Technology – Functional Microwave Thermography: Experimental Study. KnE Energy, 3 (2), 547. doi:

Khashukoeva, A. Z., Tsomaeva, E. A., Vodianyk, N. D. (2012). Zastosuvannia transabdomynalnoi i vahinalnoi radiotermometriyi v kompleksniy diahnostytsi zapalnykh zakhvoriuvan prydatkiv matky. Likuvannia ta profilaktyka, 1, 26–30.

Kaprin, A. D., Kostin, A. A., Andryukhin, M. I., Ivanenko, K. V., Popov, S. V., Shegai, P. V. et. al. (2019). Microwave Radiometry in the Diagnosis of Various Urological Diseases. Biomedical Engineering, 53 (2), 87–91. doi:

Snow, B. W., Arunachalam, K., De Luca, V., Maccarini, P. F., Klemetsen, Ø., Birkelund, Y. et. al. (2011). Non-invasive vesicoureteral reflux detection: Heating risk studies for a new device. Journal of Pediatric Urology, 7 (6), 624–630. doi:

Ivanov, Y., Kozlov, A. F., Galiullin, R. A., Tatur, V. Y., Ziborov, V. S., Ivanova, N. D. et. al. (2018). Use of Microwave Radiometry to Monitor Thermal Denaturation of Albumin. Frontiers in Physiology, 9. doi:

Ivanov, Y. D., Kozlov, A. F., Malsagova, К. А., Pleshakova, Т. О., Vesnin, S. G., Tatur, V. Y. et. al. (2016). Monitoring of microwave emission of HRP system during the enzyme functioning. Biochemistry and Biophysics Reports, 7, 20–25. doi:

Toutouzas, K., Synetos, A., Nikolaou, C., Stathogiannis, K., Tsiamis, E., Stefanadis, C. (2012). Microwave radiometry: a new non-invasive method for the detection of vulnerable plaque. Cardiovascular diagnosis and therapy, 2 (4), 290–297. doi:

Tikhomirov, V. G., Gudkov, A. G., Agasieva, S. V., Gorlacheva, E. N., Shashurin, V. D., Zybin, A. A. et. al. (2017). The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method. Journal of Physics: Conference Series, 917, 042016. doi:

Parnes, Y. M., Tikhomirov, V. G., Petrov, V. A., Gudkov, A. G., Marzhanovskiy, I. N., Kukhareva, E. S. et. al. (2016). Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling. Journal of Physics: Conference Series, 741, 012024. doi:

Aleksandr, G., Shashurin, V., Vyuginov, V., Tikhomirov, V., Vidyakin, S., Agasieva, S., Chizhikov, S. (2017). Dependence analysis of the GaN HEMT parameters for space application on the thickness AlGaN barrier layer by numerical simulation. 2017 IEEE 2nd International Conference on Opto-Electronic Information Processing (ICOIP). doi:

Tikhomirov, V. G., Gudkov, A., Petrov, V., Agasieva, S., Zybin, A., Yankevich, V., Evseenkov, A. (2017). Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation. 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo). doi:

Gudkov, A. G., Ivanov, Y. A., Meshkov, S. A., Agasieva, S. V., Petrov, V. I., Sinyakin, V. Y., Schukin, S. I. (2015). Prospects for Application of Radio-Frequency Identification Technology with Passive Tags in Invasive Biosensor Systems. Biomedical Engineering, 49 (2), 98–101. doi:

Gudkov, A. G. (2004). Optimal designing of microstrip discrete phase-stable attenuator with allowance for production technology. Radiotekhnika, 2, 67–72.

Vidyakin, S. I., Gudkov, A. G., Oganesyan, G. A., Petrov, V. N., Sakharov, A. V., Shabunina, E. I. et. al. (2016). Impact of nanomaterial arrangement on the reliability and the electron mobility in AlGaN/GaN HEMTs. Journal of Physics: Conference Series, 741, 012172. doi:

Emtsev, V. V., Zavarin, E. E., Oganesyan, G. A., Petrov, V. N., Sakharov, A. V., Shmidt, N. M. et. al. (2016). The relationship between the reliability of transistors with 2D AlGaN/GaN channel and organization type of nanomaterial. Technical Physics Letters, 42 (7), 701–703. doi:

Iudicello, S., Bardati, F. (2009). Microwave radiometry for breast cancer detection. Dottorato di ricerca in Geoinformazione, Universita'degli studi di Roma" Tor Vergata.

Stauffer, P. R., Rodriques, D. B., Salahi, S., Topsakal, E., Oliveira, T. R., Prakash, A. et. al. (2013). Stable microwave radiometry system for long term monitoring of deep tissue temperature. Energy-Based Treatment of Tissue and Assessment VII. doi:

Momenroodaki, P., Haines, W., Popovic, Z. (2017). Non-invasive microwave thermometry of multilayer human tissues. 2017 IEEE MTT-S International Microwave Symposium (IMS). doi:

Momenroodaki, P., Haines, W., Fromandi, M., Popovic, Z. (2018). Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry. IEEE Transactions on Microwave Theory and Techniques, 66 (5), 2535–2545. doi:

Popovic, Z., Momenroodaki, P., Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52 (10), 118–125. doi:

Ravi, V. M., Arunachalam, K. (2019). A low noise stable radiometer front-end for passive microwave tissue thermometry. Journal of Electromagnetic Waves and Applications, 33 (6), 743–758. doi:

Sedankin, M., Chupina, D., Vesnin, S., Nelin, I., Skuratov, V. (2018). Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 26–36. doi:

Livanos, N.-A., Hammal, S., Nikolopoulos, C. D., Baklezos, A. T., Capsalis, C. N., Koulouras, G. E. et. al. (2018). Design and Interdisciplinary Simulations of a Hand-Held Device for Internal-Body Temperature Sensing Using Microwave Radiometry. IEEE Sensors Journal, 18 (6), 2421–2433. doi:

Siegman, A. E., Hagger, H. J. (1964). Microwave Solid‐state Masers. Physics Today, 17 (10), 65–66. doi:

Osipenkov, V., Vesnin, S. G. (1994). Microwave filters of parallel-cascade structure. IEEE Transactions on Microwave Theory and Techniques, 42 (7), 1360–1367. doi:

Galazis, C., Vesnin, S., Goryanin, I. (2019). Application of Artificial Intelligence in Microwave Radiometry (MWR). Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. doi:

GOST Style Citations



1. Numerical simulation of miniature antennas applicators of microwave radiometry for diagnostics of the functional state of the brain
Vitaly Leushin, Sergey Chizhikov, Sergey Vesnin, Mikhail Sedankin, Igor Porokhov, Dmitry Gorbachev, Evgenia Goriacheva, P. Yermolov
ITM Web of Conferences  Vol: 30  First page: 13005  Year: 2019  
doi: 10.1051/itmconf/20193013005

Copyright (c) 2019 Sergey G. Vesnin, Mikhail Sedankin, Vitaly Leushin, Victor Skuratov, Igor Nelin, Anastasiia Konovalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061