Research of a microwave radiometer for monitoring of internal temperature of biological tissues

Authors

  • Sergey G. Vesnin LLC "RTM Diagnostics" Bol'shaya Pochtovaya str., 55/59, Moscow, Russian Federation, 105082 Bauman Moscow State Technical University 2nd Baumanskaya str., 5, Moscow, Russian Federation, 105005, Russian Federation https://orcid.org/0000-0003-4353-8962
  • Mikhail Sedankin State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency Marshala Novikova str., 23, Moscow, Russian Federation, 123098, Russian Federation https://orcid.org/0000-0001-9875-6313
  • Vitaly Leushin Bauman Moscow State Technical University 2nd Baumanskaya str., 5, Moscow, Russian Federation, 105005, Russian Federation https://orcid.org/0000-0001-7092-360X
  • Victor Skuratov All-Russian Research Institute of Radio Engineering Bol'shaya Pochtovaya str., 22, Moscow, Russian Federation, 105082, Russian Federation https://orcid.org/0000-0003-1526-1505
  • Igor Nelin Moscow Aviation Institute Volokolamskoe highway, 4, Moscow, Russian Federation, 125993, Russian Federation https://orcid.org/0000-0003-0469-6650
  • Anastasiia Konovalova Russian Technological University Vernadskogo ave., 78, Moscow, Russian Federation, 119454, Russian Federation https://orcid.org/0000-0002-3151-6312

DOI:

https://doi.org/10.15587/1729-4061.2019.176357

Keywords:

microwave radiometry, temperature monitoring, medical radiometer, brightness temperature, medical robotics, printed antenna

Abstract

Currently, there is growing interest among specialists in the use of non-invasive dose-free technologies for diagnosis and monitoring treatment of various diseases. Microwave radiometry enables non-invasive detection of thermal abnormalities in internal tissues of the human body. The current level of development of the method of microwave radiometry makes it possible to non-invasively detect malignant neoplasms at early stages according to characteristics of the person's own radiothermal fields. For a wider implementation of the method, it is necessary to overcome a series of scientific and technical barriers that impede its development. First of all, it is necessary to ensure miniaturization of the equipment used.

An analytical review of the current state of development in the field of medical radiometers has been performed. Miniaturization of equipment is an important area for studies. It was shown that application of the proposed scheme for designing a null balance radiometer with a sliding scheme of reflection compensation with two matched RF loads will enable creation of a miniature highly stable radiometer. The measurement error of this device does not depend on the ambient temperature, intrinsic temperature of the device and impedance of the studied area of the body. The device calibration procedure was considered and noise signal calculations were performed. Results of experimental verification of correctness of choice of the way of designing the miniature radiometer circuit were presented. Introduction of thermal compensation has made it possible to reduce measurement error associated with the device heating to 0.2 °C when intrinsic temperature of the radiometer changed by 20 °C. It was shown that a radiometer operating in the frequency band 3.4–4.2 GHz can be used to detect various diseases and monitor internal temperature of tissues during treatment. With introduction of autonomous power supply and wireless communication with a smartphone, the miniature radiometer can be used as a wearable device to monitor temperature of internal tissues in everyday human life.

Author Biographies

Sergey G. Vesnin, LLC "RTM Diagnostics" Bol'shaya Pochtovaya str., 55/59, Moscow, Russian Federation, 105082 Bauman Moscow State Technical University 2nd Baumanskaya str., 5, Moscow, Russian Federation, 105005

PhD, Chief Designer

Technical Department

PhD, Senior Researcher

Mikhail Sedankin, State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency Marshala Novikova str., 23, Moscow, Russian Federation, 123098

PhD, Senior Researcher

Department of Radiation Epidemiology

Vitaly Leushin, Bauman Moscow State Technical University 2nd Baumanskaya str., 5, Moscow, Russian Federation, 105005

PhD, Senior Researcher

Victor Skuratov, All-Russian Research Institute of Radio Engineering Bol'shaya Pochtovaya str., 22, Moscow, Russian Federation, 105082

Engineer, Researcher

Department of Antennas and Microwave Devices

Igor Nelin, Moscow Aviation Institute Volokolamskoe highway, 4, Moscow, Russian Federation, 125993

PhD, Associate Professor

Department of Radiolocation, Radio Navigation and On-Board Radio Electronic Equipment

Anastasiia Konovalova, Russian Technological University Vernadskogo ave., 78, Moscow, Russian Federation, 119454

Department of Bio-Cybernetic Systems and Technologies

References

  1. Vesnin, S., Turnbull, A. K., Dixon, J. M., Goryanin, I. (2017). Modern Microwave Thermometry for Breast Cancer. Journal of Molecular Imaging & Dynamics, 7 (2). doi: https://doi.org/10.4172/2155-9937.1000136
  2. Sedankin, M. K., Leushin, V. Y., Gudkov, A. G., Vesnin, S. G., Sidorov, I. A., Agasieva, S. V., Markin, A. V. (2018). Mathematical Simulation of Heat Transfer Processes in a Breast with a Malignant Tumor. Biomedical Engineering, 52 (3), 190–194. doi: https://doi.org/10.1007/s10527-018-9811-2
  3. Cheboksarov, D. V., Butrov, A, V., Shevelev, O. A., Amcheslavsky, V. G., Pulina, N. N., Buntina, M. A., Sokolov, I. M. (2015). Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiia i reanimatologiia, 60 (1), 66–69.
  4. Toutouzas, K., Benetos, G., Koutagiar, I., Barampoutis, N., Mitropoulou, F., Davlouros, P. et. al. (2017). Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis, 262, 25–30. doi: https://doi.org/10.1016/j.atherosclerosis.2017.04.019
  5. Drakopoulou, M., Moldovan, C., Toutouzas, K., Tousoulis, D. (2018). The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Current Opinion in Pharmacology, 39, 99–104. doi: https://doi.org/10.1016/j.coph.2018.02.008
  6. Zampeli, E., Raftakis, I., Michelongona, A., Nikolaou, C., Elezoglou, A., Toutouzas, K. et. al. (2013). Detection of Subclinical Synovial Inflammation by Microwave Radiometry. PLoS ONE, 8 (5), e64606. doi: https://doi.org/10.1371/journal.pone.0064606
  7. Crandall, J. P., O, J. H., Gajwani, P., Leal, J. P., Mawhinney, D. D., Sterzer, F., Wahl, R. L. (2018). Measurement of Brown Adipose Tissue Activity Using Microwave Radiometry and18F-FDG PET/CT. Journal of Nuclear Medicine, 59 (8), 1243–1248. doi: https://doi.org/10.2967/jnumed.117.204339
  8. Kublanov, V. S., Borisov, V. I. (2017). Biophysical Evaluation of Microwave Radiation for Functional Research of the Human Brain. IFMBE Proceedings, 1045–1048. doi: https://doi.org/10.1007/978-981-10-5122-7_261
  9. Groumpas, E., Koutsoupidou, M., Karanasiou, I., Papageorgiou, C., Uzunoglu, N. (2019). Real-time Passive Brain Monitoring System Using Near-Field Microwave Radiometry. IEEE Transactions on Biomedical Engineering.
  10. Tarakanov, A. V., Efremov, V. V., Tarakanov, A. A. (2016). Perspectives of microwave radiometry application at dorsopathy in hospital department of the emergency medical care. Emergency medical care, 1, 64–68.
  11. Ravi, V. M., Sharma, A. K., Arunachalam, K. (2019). Pre‐Clinical Testing of Microwave Radiometer and a Pilot Study on the Screening Inflammation of Knee Joints. Bioelectromagnetics, 40 (6), 402–411. doi: https://doi.org/10.1002/bem.22203
  12. Zamechnik, T. V., Larin, S. I., Losev, A. G. (2015). Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrashcheniya nizhnikh konechnostey [Combined Radio Thermometry as a Method of Investigating of Venous Circulation of the Lower Limbs]. Volgograd: Izd-vo VolgGMU, 252.
  13. Zinovyev, S. V. (2018). New Medical Technology – Functional Microwave Thermography: Experimental Study. KnE Energy, 3 (2), 547. doi: https://doi.org/10.18502/ken.v3i2.1864
  14. Khashukoeva, A. Z., Tsomaeva, E. A., Vodianyk, N. D. (2012). Zastosuvannia transabdomynalnoi i vahinalnoi radiotermometriyi v kompleksniy diahnostytsi zapalnykh zakhvoriuvan prydatkiv matky. Likuvannia ta profilaktyka, 1, 26–30.
  15. Kaprin, A. D., Kostin, A. A., Andryukhin, M. I., Ivanenko, K. V., Popov, S. V., Shegai, P. V. et. al. (2019). Microwave Radiometry in the Diagnosis of Various Urological Diseases. Biomedical Engineering, 53 (2), 87–91. doi: https://doi.org/10.1007/s10527-019-09883-3
  16. Snow, B. W., Arunachalam, K., De Luca, V., Maccarini, P. F., Klemetsen, Ø., Birkelund, Y. et. al. (2011). Non-invasive vesicoureteral reflux detection: Heating risk studies for a new device. Journal of Pediatric Urology, 7 (6), 624–630. doi: https://doi.org/10.1016/j.jpurol.2011.05.005
  17. Ivanov, Y., Kozlov, A. F., Galiullin, R. A., Tatur, V. Y., Ziborov, V. S., Ivanova, N. D. et. al. (2018). Use of Microwave Radiometry to Monitor Thermal Denaturation of Albumin. Frontiers in Physiology, 9. doi: https://doi.org/10.3389/fphys.2018.00956
  18. Ivanov, Y. D., Kozlov, A. F., Malsagova, К. А., Pleshakova, Т. О., Vesnin, S. G., Tatur, V. Y. et. al. (2016). Monitoring of microwave emission of HRP system during the enzyme functioning. Biochemistry and Biophysics Reports, 7, 20–25. doi: https://doi.org/10.1016/j.bbrep.2016.05.003
  19. Toutouzas, K., Synetos, A., Nikolaou, C., Stathogiannis, K., Tsiamis, E., Stefanadis, C. (2012). Microwave radiometry: a new non-invasive method for the detection of vulnerable plaque. Cardiovascular diagnosis and therapy, 2 (4), 290–297. doi: http://doi.org/10.3978/j.issn.2223-3652.2012.10.09
  20. Tikhomirov, V. G., Gudkov, A. G., Agasieva, S. V., Gorlacheva, E. N., Shashurin, V. D., Zybin, A. A. et. al. (2017). The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method. Journal of Physics: Conference Series, 917, 042016. doi: https://doi.org/10.1088/1742-6596/917/4/042016
  21. Parnes, Y. M., Tikhomirov, V. G., Petrov, V. A., Gudkov, A. G., Marzhanovskiy, I. N., Kukhareva, E. S. et. al. (2016). Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling. Journal of Physics: Conference Series, 741, 012024. doi: https://doi.org/10.1088/1742-6596/741/1/012024
  22. Aleksandr, G., Shashurin, V., Vyuginov, V., Tikhomirov, V., Vidyakin, S., Agasieva, S., Chizhikov, S. (2017). Dependence analysis of the GaN HEMT parameters for space application on the thickness AlGaN barrier layer by numerical simulation. 2017 IEEE 2nd International Conference on Opto-Electronic Information Processing (ICOIP). doi: https://doi.org/10.1109/optip.2017.8030703
  23. Tikhomirov, V. G., Gudkov, A., Petrov, V., Agasieva, S., Zybin, A., Yankevich, V., Evseenkov, A. (2017). Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation. 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo). doi: https://doi.org/10.1109/emccompo.2017.7998094
  24. Gudkov, A. G., Ivanov, Y. A., Meshkov, S. A., Agasieva, S. V., Petrov, V. I., Sinyakin, V. Y., Schukin, S. I. (2015). Prospects for Application of Radio-Frequency Identification Technology with Passive Tags in Invasive Biosensor Systems. Biomedical Engineering, 49 (2), 98–101. doi: https://doi.org/10.1007/s10527-015-9506-x
  25. Gudkov, A. G. (2004). Optimal designing of microstrip discrete phase-stable attenuator with allowance for production technology. Radiotekhnika, 2, 67–72.
  26. Vidyakin, S. I., Gudkov, A. G., Oganesyan, G. A., Petrov, V. N., Sakharov, A. V., Shabunina, E. I. et. al. (2016). Impact of nanomaterial arrangement on the reliability and the electron mobility in AlGaN/GaN HEMTs. Journal of Physics: Conference Series, 741, 012172. doi: https://doi.org/10.1088/1742-6596/741/1/012172
  27. Emtsev, V. V., Zavarin, E. E., Oganesyan, G. A., Petrov, V. N., Sakharov, A. V., Shmidt, N. M. et. al. (2016). The relationship between the reliability of transistors with 2D AlGaN/GaN channel and organization type of nanomaterial. Technical Physics Letters, 42 (7), 701–703. doi: https://doi.org/10.1134/s1063785016070075
  28. Iudicello, S., Bardati, F. (2009). Microwave radiometry for breast cancer detection. Dottorato di ricerca in Geoinformazione, Universita'degli studi di Roma" Tor Vergata.
  29. Stauffer, P. R., Rodriques, D. B., Salahi, S., Topsakal, E., Oliveira, T. R., Prakash, A. et. al. (2013). Stable microwave radiometry system for long term monitoring of deep tissue temperature. Energy-Based Treatment of Tissue and Assessment VII. doi: https://doi.org/10.1117/12.2003976
  30. Momenroodaki, P., Haines, W., Popovic, Z. (2017). Non-invasive microwave thermometry of multilayer human tissues. 2017 IEEE MTT-S International Microwave Symposium (IMS). doi: https://doi.org/10.1109/mwsym.2017.8058873
  31. Momenroodaki, P., Haines, W., Fromandi, M., Popovic, Z. (2018). Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry. IEEE Transactions on Microwave Theory and Techniques, 66 (5), 2535–2545. doi: https://doi.org/10.1109/tmtt.2017.2776952
  32. Popovic, Z., Momenroodaki, P., Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52 (10), 118–125. doi: https://doi.org/10.1109/mcom.2014.6917412
  33. Ravi, V. M., Arunachalam, K. (2019). A low noise stable radiometer front-end for passive microwave tissue thermometry. Journal of Electromagnetic Waves and Applications, 33 (6), 743–758. doi: https://doi.org/10.1080/09205071.2019.1576063
  34. Sedankin, M., Chupina, D., Vesnin, S., Nelin, I., Skuratov, V. (2018). Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 26–36. doi: https://doi.org/10.15587/1729-4061.2018.134130
  35. Livanos, N.-A., Hammal, S., Nikolopoulos, C. D., Baklezos, A. T., Capsalis, C. N., Koulouras, G. E. et. al. (2018). Design and Interdisciplinary Simulations of a Hand-Held Device for Internal-Body Temperature Sensing Using Microwave Radiometry. IEEE Sensors Journal, 18 (6), 2421–2433. doi: https://doi.org/10.1109/jsen.2018.2791443
  36. Siegman, A. E., Hagger, H. J. (1964). Microwave Solid‐state Masers. Physics Today, 17 (10), 65–66. doi: https://doi.org/10.1063/1.3051185
  37. Osipenkov, V., Vesnin, S. G. (1994). Microwave filters of parallel-cascade structure. IEEE Transactions on Microwave Theory and Techniques, 42 (7), 1360–1367. doi: https://doi.org/10.1109/22.299730
  38. Galazis, C., Vesnin, S., Goryanin, I. (2019). Application of Artificial Intelligence in Microwave Radiometry (MWR). Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. doi: https://doi.org/10.5220/0007567901120122

Downloads

Published

2019-08-20

How to Cite

Vesnin, S. G., Sedankin, M., Leushin, V., Skuratov, V., Nelin, I., & Konovalova, A. (2019). Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies, 4(5 (100), 6–15. https://doi.org/10.15587/1729-4061.2019.176357

Issue

Section

Applied physics