Influence of the geometrical sizes of the na vortical device its aerodynamic resistance

Authors

  • Андрей Александрович Чейлытко Zaporizhia State Engineering Academy, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18899

Keywords:

aerodynamic drag, vortex device, optimal geometrical sizes

Abstract

The paper deals with the modeling of vortex device with a minimum drag coefficient on a cold flow. The traditional method of intumescence of siliceous materials involves fast heating of raw particles in drum-type furnaces at temperatures of 800-1000 ºC. It is very energy-intensive compared to the method of intumescence in the vortex device at the temperature up to 300 ºC. The results of the calculation of aerodynamic drag of such cyclone are given in the paper. In order to determine the overall aerodynamic drag, pressure losses at all zones for the flow core are summarized, and wall, bottom and lid friction losses are taken into account. Mathematical modeling of 16 vortex devices which have different geometrical sizes was conducted. This allowed to find optimum ratios of the geometrical sizes of the device. The drag increases with the diameter of the inlet nozzles. The obtained calculation data coincide with of the calculation data of Ustimenko who investigated the change of distribution of velocities and pressure of vortex chambers taking into account a supply of thermal energy.

Dependencies of the coefficient of aerodynamic drag of the vortex device on geometrical and aerodynamic parameters are specified. The obtained results can be used for optimization of a design of the vortex device, including in the production dealing with the intumescence of porous disperse particles in the heated flow.

Author Biography

Андрей Александрович Чейлытко, Zaporizhia State Engineering Academy

Candidate of Engineering Sciences, Professor assistant 

References

  1. Сидельковский, Л. Н. Промышленная огнетехника и энерготехнологическое теплоиспользование / Сидельковский Л.Н. // Труды МЭИ. – 1972. – №125. – С.48–55.
  2. Чаплиц, А.Д. Визуализация газовых потоков во внутренних каналах (методы и результаты экспериментальных исследований) / Чаплиц А.Д., Астапов А.И. – Днепропетровск : НАН Украины и НКА Украины Институт технической механики, 2007. – 210 с.
  3. Устименко, Б.П. Термоанемометрические методы исследования турбулентности в газовых потоках и факелах / Устименко Б.П., Змейков В.Н., Шишкин А.А. – Алма-Ата : Наука, 1983. – 180 с.
  4. Голубцов В.М. К расчету сопротивлений вихревых газовых горелок / Голубцов В.М. // Газовая промышленность, 1975. – №1. – С. 52–54.
  5. Христов Х.И. Точечные случайные функции и крупномасштабная турбулентность / Христов Х.И., Нартов В.П. – Новосибирск : Наука, 1992. – 161 с.
  6. Browand F.K., Ho C.M. The mixing layer: an example of quasi two-dimensional turbulence // J.Mech. et Apple. – 1983. - №2. – Р.99-120.
  7. Шрайбер А.А. Турбулентные течения газовзвеси / [Шрайбер А.А., Гавин Л.Б., Наумов В.А. и др.]. – К. : Наук. думка, 1987. – 240 с.
  8. Тагер С.А. Расчет аэродинамического сопротивления циклонных камер сгорания / Тагер С.А. // Теплоэнергетика. – 1971. – №7. – С.18–23
  9. Oksana V. Seraya, Dmitriy A. Demin (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44, 34-48
  10. Дёмин, Д.А. Оптимизация технологических режимов [Текст] / Д. А. Дёмин // Восточно-Европейский журнал передовых технологий. – 2006. - №2/1(20). – С. 32-35.
  11. Sidelkovsky, L. ( 1972). Industrial ognetehnika and energotechnological teploispolzovanie , 125, 48 -55.
  12. Chaplits, A. (2007). Visualization of gas flow in the internal channels (methods and results of experimental studies. National Academy of Sciences of Ukraine and National Space Agency of Ukraine Institute of Engineering Mechanics, 210 .
  13. Ustimenko, B. (1983). Hot-wire methods of study of turbulence in the gas streams and flares. Nauka, 180.
  14. Golubtsov, V. (1975). To calculate the resistance of the vortex gas burners. Gas Industry, 1, 52-54.
  15. Christ, H. (1992). Random point functions and large-scale turbulence, 161.
  16. Browand, F. (1983). The mixing layer: an example of quasi two-dimensional turbulence, 2, 99 - 120.
  17. Schreiber, A. (1987). The turbulent flow of a gas suspension, 240.
  18. Tager, S. (1971). Calculation of aerodynamic drag cyclone combustor. Thermal, 7, 18 -23.
  19. Seraya, O., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44, 34-48.
  20. Demin, D. A. (2006). Optimization of technological modes. Eastern-European Journal of Enterprise Technologies, 2/1(20), 32-35.

Published

2013-12-13

How to Cite

Чейлытко, А. А. (2013). Influence of the geometrical sizes of the na vortical device its aerodynamic resistance. Eastern-European Journal of Enterprise Technologies, 6(8(66), 45–48. https://doi.org/10.15587/1729-4061.2013.18899

Issue

Section

Energy-saving technologies and equipment